1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
//! Operations related to UTF-8 validation.

use crate::mem;

use super::Utf8Error;

/// Returns the initial codepoint accumulator for the first byte.
/// The first byte is special, only want bottom 5 bits for width 2, 4 bits
/// for width 3, and 3 bits for width 4.
#[inline]
const fn utf8_first_byte(byte: u8, width: u32) -> u32 {
    (byte & (0x7F >> width)) as u32
}

/// Returns the value of `ch` updated with continuation byte `byte`.
#[inline]
const fn utf8_acc_cont_byte(ch: u32, byte: u8) -> u32 {
    (ch << 6) | (byte & CONT_MASK) as u32
}

/// Checks whether the byte is a UTF-8 continuation byte (i.e., starts with the
/// bits `10`).
#[inline]
pub(super) const fn utf8_is_cont_byte(byte: u8) -> bool {
    (byte as i8) < -64
}

/// Reads the next code point out of a byte iterator (assuming a
/// UTF-8-like encoding).
///
/// # Safety
///
/// `bytes` must produce a valid UTF-8-like (UTF-8 or WTF-8) string
#[unstable(feature = "str_internals", issue = "none")]
#[inline]
pub unsafe fn next_code_point<'a, I: Iterator<Item = &'a u8>>(bytes: &mut I) -> Option<u32> {
    // Decode UTF-8
    let x = *bytes.next()?;
    if x < 128 {
        return Some(x as u32);
    }

    // Multibyte case follows
    // Decode from a byte combination out of: [[[x y] z] w]
    // NOTE: Performance is sensitive to the exact formulation here
    let init = utf8_first_byte(x, 2);
    // SAFETY: `bytes` produces an UTF-8-like string,
    // so the iterator must produce a value here.
    let y = unsafe { *bytes.next().unwrap_unchecked() };
    let mut ch = utf8_acc_cont_byte(init, y);
    if x >= 0xE0 {
        // [[x y z] w] case
        // 5th bit in 0xE0 .. 0xEF is always clear, so `init` is still valid
        // SAFETY: `bytes` produces an UTF-8-like string,
        // so the iterator must produce a value here.
        let z = unsafe { *bytes.next().unwrap_unchecked() };
        let y_z = utf8_acc_cont_byte((y & CONT_MASK) as u32, z);
        ch = init << 12 | y_z;
        if x >= 0xF0 {
            // [x y z w] case
            // use only the lower 3 bits of `init`
            // SAFETY: `bytes` produces an UTF-8-like string,
            // so the iterator must produce a value here.
            let w = unsafe { *bytes.next().unwrap_unchecked() };
            ch = (init & 7) << 18 | utf8_acc_cont_byte(y_z, w);
        }
    }

    Some(ch)
}

/// Reads the last code point out of a byte iterator (assuming a
/// UTF-8-like encoding).
///
/// # Safety
///
/// `bytes` must produce a valid UTF-8-like (UTF-8 or WTF-8) string
#[inline]
pub(super) unsafe fn next_code_point_reverse<'a, I>(bytes: &mut I) -> Option<u32>
where
    I: DoubleEndedIterator<Item = &'a u8>,
{
    // Decode UTF-8
    let w = match *bytes.next_back()? {
        next_byte if next_byte < 128 => return Some(next_byte as u32),
        back_byte => back_byte,
    };

    // Multibyte case follows
    // Decode from a byte combination out of: [x [y [z w]]]
    let mut ch;
    // SAFETY: `bytes` produces an UTF-8-like string,
    // so the iterator must produce a value here.
    let z = unsafe { *bytes.next_back().unwrap_unchecked() };
    ch = utf8_first_byte(z, 2);
    if utf8_is_cont_byte(z) {
        // SAFETY: `bytes` produces an UTF-8-like string,
        // so the iterator must produce a value here.
        let y = unsafe { *bytes.next_back().unwrap_unchecked() };
        ch = utf8_first_byte(y, 3);
        if utf8_is_cont_byte(y) {
            // SAFETY: `bytes` produces an UTF-8-like string,
            // so the iterator must produce a value here.
            let x = unsafe { *bytes.next_back().unwrap_unchecked() };
            ch = utf8_first_byte(x, 4);
            ch = utf8_acc_cont_byte(ch, y);
        }
        ch = utf8_acc_cont_byte(ch, z);
    }
    ch = utf8_acc_cont_byte(ch, w);

    Some(ch)
}

// use truncation to fit u64 into usize
const NONASCII_MASK: usize = 0x80808080_80808080u64 as usize;

/// Returns `true` if any byte in the word `x` is nonascii (>= 128).
#[inline]
const fn contains_nonascii(x: usize) -> bool {
    (x & NONASCII_MASK) != 0
}

/// Walks through `v` checking that it's a valid UTF-8 sequence,
/// returning `Ok(())` in that case, or, if it is invalid, `Err(err)`.
#[inline(always)]
#[rustc_const_unstable(feature = "str_internals", issue = "none")]
pub(super) const fn run_utf8_validation(v: &[u8]) -> Result<(), Utf8Error> {
    let mut index = 0;
    let len = v.len();

    let usize_bytes = mem::size_of::<usize>();
    let ascii_block_size = 2 * usize_bytes;
    let blocks_end = if len >= ascii_block_size { len - ascii_block_size + 1 } else { 0 };
    let align = v.as_ptr().align_offset(usize_bytes);

    while index < len {
        let old_offset = index;
        macro_rules! err {
            ($error_len: expr) => {
                return Err(Utf8Error { valid_up_to: old_offset, error_len: $error_len })
            };
        }

        macro_rules! next {
            () => {{
                index += 1;
                // we needed data, but there was none: error!
                if index >= len {
                    err!(None)
                }
                v[index]
            }};
        }

        let first = v[index];
        if first >= 128 {
            let w = utf8_char_width(first);
            // 2-byte encoding is for codepoints  \u{0080} to  \u{07ff}
            //        first  C2 80        last DF BF
            // 3-byte encoding is for codepoints  \u{0800} to  \u{ffff}
            //        first  E0 A0 80     last EF BF BF
            //   excluding surrogates codepoints  \u{d800} to  \u{dfff}
            //               ED A0 80 to       ED BF BF
            // 4-byte encoding is for codepoints \u{1000}0 to \u{10ff}ff
            //        first  F0 90 80 80  last F4 8F BF BF
            //
            // Use the UTF-8 syntax from the RFC
            //
            // https://tools.ietf.org/html/rfc3629
            // UTF8-1      = %x00-7F
            // UTF8-2      = %xC2-DF UTF8-tail
            // UTF8-3      = %xE0 %xA0-BF UTF8-tail / %xE1-EC 2( UTF8-tail ) /
            //               %xED %x80-9F UTF8-tail / %xEE-EF 2( UTF8-tail )
            // UTF8-4      = %xF0 %x90-BF 2( UTF8-tail ) / %xF1-F3 3( UTF8-tail ) /
            //               %xF4 %x80-8F 2( UTF8-tail )
            match w {
                2 => {
                    if next!() as i8 >= -64 {
                        err!(Some(1))
                    }
                }
                3 => {
                    match (first, next!()) {
                        (0xE0, 0xA0..=0xBF)
                        | (0xE1..=0xEC, 0x80..=0xBF)
                        | (0xED, 0x80..=0x9F)
                        | (0xEE..=0xEF, 0x80..=0xBF) => {}
                        _ => err!(Some(1)),
                    }
                    if next!() as i8 >= -64 {
                        err!(Some(2))
                    }
                }
                4 => {
                    match (first, next!()) {
                        (0xF0, 0x90..=0xBF) | (0xF1..=0xF3, 0x80..=0xBF) | (0xF4, 0x80..=0x8F) => {}
                        _ => err!(Some(1)),
                    }
                    if next!() as i8 >= -64 {
                        err!(Some(2))
                    }
                    if next!() as i8 >= -64 {
                        err!(Some(3))
                    }
                }
                _ => err!(Some(1)),
            }
            index += 1;
        } else {
            // Ascii case, try to skip forward quickly.
            // When the pointer is aligned, read 2 words of data per iteration
            // until we find a word containing a non-ascii byte.
            if align != usize::MAX && align.wrapping_sub(index) % usize_bytes == 0 {
                let ptr = v.as_ptr();
                while index < blocks_end {
                    // SAFETY: since `align - index` and `ascii_block_size` are
                    // multiples of `usize_bytes`, `block = ptr.add(index)` is
                    // always aligned with a `usize` so it's safe to dereference
                    // both `block` and `block.offset(1)`.
                    unsafe {
                        let block = ptr.add(index) as *const usize;
                        // break if there is a nonascii byte
                        let zu = contains_nonascii(*block);
                        let zv = contains_nonascii(*block.offset(1));
                        if zu || zv {
                            break;
                        }
                    }
                    index += ascii_block_size;
                }
                // step from the point where the wordwise loop stopped
                while index < len && v[index] < 128 {
                    index += 1;
                }
            } else {
                index += 1;
            }
        }
    }

    Ok(())
}

// https://tools.ietf.org/html/rfc3629
const UTF8_CHAR_WIDTH: &[u8; 256] = &[
    // 1  2  3  4  5  6  7  8  9  A  B  C  D  E  F
    1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // 0
    1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // 1
    1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // 2
    1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // 3
    1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // 4
    1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // 5
    1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // 6
    1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // 7
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 8
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 9
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // A
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // B
    0, 0, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, // C
    2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, // D
    3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, // E
    4, 4, 4, 4, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // F
];

/// Given a first byte, determines how many bytes are in this UTF-8 character.
#[unstable(feature = "str_internals", issue = "none")]
#[must_use]
#[inline]
pub const fn utf8_char_width(b: u8) -> usize {
    UTF8_CHAR_WIDTH[b as usize] as usize
}

/// Mask of the value bits of a continuation byte.
const CONT_MASK: u8 = 0b0011_1111;