1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331
//! Operations on ASCII `[u8]`.
use crate::ascii;
use crate::fmt::{self, Write};
use crate::iter;
use crate::mem;
use crate::ops;
#[cfg_attr(bootstrap, lang = "slice_u8")]
#[cfg(not(test))]
impl [u8] {
/// Checks if all bytes in this slice are within the ASCII range.
#[stable(feature = "ascii_methods_on_intrinsics", since = "1.23.0")]
#[must_use]
#[inline]
pub fn is_ascii(&self) -> bool {
is_ascii(self)
}
/// Checks that two slices are an ASCII case-insensitive match.
///
/// Same as `to_ascii_lowercase(a) == to_ascii_lowercase(b)`,
/// but without allocating and copying temporaries.
#[stable(feature = "ascii_methods_on_intrinsics", since = "1.23.0")]
#[must_use]
#[inline]
pub fn eq_ignore_ascii_case(&self, other: &[u8]) -> bool {
self.len() == other.len() && iter::zip(self, other).all(|(a, b)| a.eq_ignore_ascii_case(b))
}
/// Converts this slice to its ASCII upper case equivalent in-place.
///
/// ASCII letters 'a' to 'z' are mapped to 'A' to 'Z',
/// but non-ASCII letters are unchanged.
///
/// To return a new uppercased value without modifying the existing one, use
/// [`to_ascii_uppercase`].
///
/// [`to_ascii_uppercase`]: #method.to_ascii_uppercase
#[stable(feature = "ascii_methods_on_intrinsics", since = "1.23.0")]
#[inline]
pub fn make_ascii_uppercase(&mut self) {
for byte in self {
byte.make_ascii_uppercase();
}
}
/// Converts this slice to its ASCII lower case equivalent in-place.
///
/// ASCII letters 'A' to 'Z' are mapped to 'a' to 'z',
/// but non-ASCII letters are unchanged.
///
/// To return a new lowercased value without modifying the existing one, use
/// [`to_ascii_lowercase`].
///
/// [`to_ascii_lowercase`]: #method.to_ascii_lowercase
#[stable(feature = "ascii_methods_on_intrinsics", since = "1.23.0")]
#[inline]
pub fn make_ascii_lowercase(&mut self) {
for byte in self {
byte.make_ascii_lowercase();
}
}
/// Returns an iterator that produces an escaped version of this slice,
/// treating it as an ASCII string.
///
/// # Examples
///
/// ```
///
/// let s = b"0\t\r\n'\"\\\x9d";
/// let escaped = s.escape_ascii().to_string();
/// assert_eq!(escaped, "0\\t\\r\\n\\'\\\"\\\\\\x9d");
/// ```
#[must_use = "this returns the escaped bytes as an iterator, \
without modifying the original"]
#[stable(feature = "inherent_ascii_escape", since = "1.60.0")]
pub fn escape_ascii(&self) -> EscapeAscii<'_> {
EscapeAscii { inner: self.iter().flat_map(EscapeByte) }
}
/// Returns a byte slice with leading ASCII whitespace bytes removed.
///
/// 'Whitespace' refers to the definition used by
/// `u8::is_ascii_whitespace`.
///
/// # Examples
///
/// ```
/// #![feature(byte_slice_trim_ascii)]
///
/// assert_eq!(b" \t hello world\n".trim_ascii_start(), b"hello world\n");
/// assert_eq!(b" ".trim_ascii_start(), b"");
/// assert_eq!(b"".trim_ascii_start(), b"");
/// ```
#[unstable(feature = "byte_slice_trim_ascii", issue = "94035")]
pub const fn trim_ascii_start(&self) -> &[u8] {
let mut bytes = self;
// Note: A pattern matching based approach (instead of indexing) allows
// making the function const.
while let [first, rest @ ..] = bytes {
if first.is_ascii_whitespace() {
bytes = rest;
} else {
break;
}
}
bytes
}
/// Returns a byte slice with trailing ASCII whitespace bytes removed.
///
/// 'Whitespace' refers to the definition used by
/// `u8::is_ascii_whitespace`.
///
/// # Examples
///
/// ```
/// #![feature(byte_slice_trim_ascii)]
///
/// assert_eq!(b"\r hello world\n ".trim_ascii_end(), b"\r hello world");
/// assert_eq!(b" ".trim_ascii_end(), b"");
/// assert_eq!(b"".trim_ascii_end(), b"");
/// ```
#[unstable(feature = "byte_slice_trim_ascii", issue = "94035")]
pub const fn trim_ascii_end(&self) -> &[u8] {
let mut bytes = self;
// Note: A pattern matching based approach (instead of indexing) allows
// making the function const.
while let [rest @ .., last] = bytes {
if last.is_ascii_whitespace() {
bytes = rest;
} else {
break;
}
}
bytes
}
/// Returns a byte slice with leading and trailing ASCII whitespace bytes
/// removed.
///
/// 'Whitespace' refers to the definition used by
/// `u8::is_ascii_whitespace`.
///
/// # Examples
///
/// ```
/// #![feature(byte_slice_trim_ascii)]
///
/// assert_eq!(b"\r hello world\n ".trim_ascii(), b"hello world");
/// assert_eq!(b" ".trim_ascii(), b"");
/// assert_eq!(b"".trim_ascii(), b"");
/// ```
#[unstable(feature = "byte_slice_trim_ascii", issue = "94035")]
pub const fn trim_ascii(&self) -> &[u8] {
self.trim_ascii_start().trim_ascii_end()
}
}
impl_fn_for_zst! {
#[derive(Clone)]
struct EscapeByte impl Fn = |byte: &u8| -> ascii::EscapeDefault {
ascii::escape_default(*byte)
};
}
/// An iterator over the escaped version of a byte slice.
///
/// This `struct` is created by the [`slice::escape_ascii`] method. See its
/// documentation for more information.
#[stable(feature = "inherent_ascii_escape", since = "1.60.0")]
#[derive(Clone)]
#[must_use = "iterators are lazy and do nothing unless consumed"]
pub struct EscapeAscii<'a> {
inner: iter::FlatMap<super::Iter<'a, u8>, ascii::EscapeDefault, EscapeByte>,
}
#[stable(feature = "inherent_ascii_escape", since = "1.60.0")]
impl<'a> iter::Iterator for EscapeAscii<'a> {
type Item = u8;
#[inline]
fn next(&mut self) -> Option<u8> {
self.inner.next()
}
#[inline]
fn size_hint(&self) -> (usize, Option<usize>) {
self.inner.size_hint()
}
#[inline]
fn try_fold<Acc, Fold, R>(&mut self, init: Acc, fold: Fold) -> R
where
Fold: FnMut(Acc, Self::Item) -> R,
R: ops::Try<Output = Acc>,
{
self.inner.try_fold(init, fold)
}
#[inline]
fn fold<Acc, Fold>(self, init: Acc, fold: Fold) -> Acc
where
Fold: FnMut(Acc, Self::Item) -> Acc,
{
self.inner.fold(init, fold)
}
#[inline]
fn last(mut self) -> Option<u8> {
self.next_back()
}
}
#[stable(feature = "inherent_ascii_escape", since = "1.60.0")]
impl<'a> iter::DoubleEndedIterator for EscapeAscii<'a> {
fn next_back(&mut self) -> Option<u8> {
self.inner.next_back()
}
}
#[stable(feature = "inherent_ascii_escape", since = "1.60.0")]
impl<'a> iter::ExactSizeIterator for EscapeAscii<'a> {}
#[stable(feature = "inherent_ascii_escape", since = "1.60.0")]
impl<'a> iter::FusedIterator for EscapeAscii<'a> {}
#[stable(feature = "inherent_ascii_escape", since = "1.60.0")]
impl<'a> fmt::Display for EscapeAscii<'a> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
self.clone().try_for_each(|b| f.write_char(b as char))
}
}
#[stable(feature = "inherent_ascii_escape", since = "1.60.0")]
impl<'a> fmt::Debug for EscapeAscii<'a> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_struct("EscapeAscii").finish_non_exhaustive()
}
}
/// Returns `true` if any byte in the word `v` is nonascii (>= 128). Snarfed
/// from `../str/mod.rs`, which does something similar for utf8 validation.
#[inline]
fn contains_nonascii(v: usize) -> bool {
const NONASCII_MASK: usize = 0x80808080_80808080u64 as usize;
(NONASCII_MASK & v) != 0
}
/// Optimized ASCII test that will use usize-at-a-time operations instead of
/// byte-at-a-time operations (when possible).
///
/// The algorithm we use here is pretty simple. If `s` is too short, we just
/// check each byte and be done with it. Otherwise:
///
/// - Read the first word with an unaligned load.
/// - Align the pointer, read subsequent words until end with aligned loads.
/// - Read the last `usize` from `s` with an unaligned load.
///
/// If any of these loads produces something for which `contains_nonascii`
/// (above) returns true, then we know the answer is false.
#[inline]
fn is_ascii(s: &[u8]) -> bool {
const USIZE_SIZE: usize = mem::size_of::<usize>();
let len = s.len();
let align_offset = s.as_ptr().align_offset(USIZE_SIZE);
// If we wouldn't gain anything from the word-at-a-time implementation, fall
// back to a scalar loop.
//
// We also do this for architectures where `size_of::<usize>()` isn't
// sufficient alignment for `usize`, because it's a weird edge case.
if len < USIZE_SIZE || len < align_offset || USIZE_SIZE < mem::align_of::<usize>() {
return s.iter().all(|b| b.is_ascii());
}
// We always read the first word unaligned, which means `align_offset` is
// 0, we'd read the same value again for the aligned read.
let offset_to_aligned = if align_offset == 0 { USIZE_SIZE } else { align_offset };
let start = s.as_ptr();
// SAFETY: We verify `len < USIZE_SIZE` above.
let first_word = unsafe { (start as *const usize).read_unaligned() };
if contains_nonascii(first_word) {
return false;
}
// We checked this above, somewhat implicitly. Note that `offset_to_aligned`
// is either `align_offset` or `USIZE_SIZE`, both of are explicitly checked
// above.
debug_assert!(offset_to_aligned <= len);
// SAFETY: word_ptr is the (properly aligned) usize ptr we use to read the
// middle chunk of the slice.
let mut word_ptr = unsafe { start.add(offset_to_aligned) as *const usize };
// `byte_pos` is the byte index of `word_ptr`, used for loop end checks.
let mut byte_pos = offset_to_aligned;
// Paranoia check about alignment, since we're about to do a bunch of
// unaligned loads. In practice this should be impossible barring a bug in
// `align_offset` though.
debug_assert_eq!(word_ptr.addr() % mem::align_of::<usize>(), 0);
// Read subsequent words until the last aligned word, excluding the last
// aligned word by itself to be done in tail check later, to ensure that
// tail is always one `usize` at most to extra branch `byte_pos == len`.
while byte_pos < len - USIZE_SIZE {
debug_assert!(
// Sanity check that the read is in bounds
(word_ptr.addr() + USIZE_SIZE) <= start.addr().wrapping_add(len) &&
// And that our assumptions about `byte_pos` hold.
(word_ptr.addr() - start.addr()) == byte_pos
);
// SAFETY: We know `word_ptr` is properly aligned (because of
// `align_offset`), and we know that we have enough bytes between `word_ptr` and the end
let word = unsafe { word_ptr.read() };
if contains_nonascii(word) {
return false;
}
byte_pos += USIZE_SIZE;
// SAFETY: We know that `byte_pos <= len - USIZE_SIZE`, which means that
// after this `add`, `word_ptr` will be at most one-past-the-end.
word_ptr = unsafe { word_ptr.add(1) };
}
// Sanity check to ensure there really is only one `usize` left. This should
// be guaranteed by our loop condition.
debug_assert!(byte_pos <= len && len - byte_pos <= USIZE_SIZE);
// SAFETY: This relies on `len >= USIZE_SIZE`, which we check at the start.
let last_word = unsafe { (start.add(len - USIZE_SIZE) as *const usize).read_unaligned() };
!contains_nonascii(last_word)
}