1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
//! A double-ended queue (deque) implemented with a growable ring buffer.
//!
//! This queue has *O*(1) amortized inserts and removals from both ends of the
//! container. It also has *O*(1) indexing like a vector. The contained elements
//! are not required to be copyable, and the queue will be sendable if the
//! contained type is sendable.

#![stable(feature = "rust1", since = "1.0.0")]

use core::cmp::{self, Ordering};
use core::fmt;
use core::hash::{Hash, Hasher};
use core::iter::{repeat_with, FromIterator};
use core::marker::PhantomData;
use core::mem::{self, ManuallyDrop, MaybeUninit};
use core::ops::{Index, IndexMut, Range, RangeBounds};
use core::ptr::{self, NonNull};
use core::slice;

use crate::alloc::{Allocator, Global};
use crate::collections::TryReserveError;
use crate::collections::TryReserveErrorKind;
use crate::raw_vec::RawVec;
use crate::vec::Vec;

#[macro_use]
mod macros;

#[stable(feature = "drain", since = "1.6.0")]
pub use self::drain::Drain;

mod drain;

#[stable(feature = "rust1", since = "1.0.0")]
pub use self::iter_mut::IterMut;

mod iter_mut;

#[stable(feature = "rust1", since = "1.0.0")]
pub use self::into_iter::IntoIter;

mod into_iter;

#[stable(feature = "rust1", since = "1.0.0")]
pub use self::iter::Iter;

mod iter;

use self::pair_slices::PairSlices;

mod pair_slices;

use self::ring_slices::RingSlices;

mod ring_slices;

#[cfg(test)]
mod tests;

const INITIAL_CAPACITY: usize = 7; // 2^3 - 1
const MINIMUM_CAPACITY: usize = 1; // 2 - 1

const MAXIMUM_ZST_CAPACITY: usize = 1 << (usize::BITS - 1); // Largest possible power of two

/// A double-ended queue implemented with a growable ring buffer.
///
/// The "default" usage of this type as a queue is to use [`push_back`] to add to
/// the queue, and [`pop_front`] to remove from the queue. [`extend`] and [`append`]
/// push onto the back in this manner, and iterating over `VecDeque` goes front
/// to back.
///
/// A `VecDeque` with a known list of items can be initialized from an array:
///
/// ```
/// use std::collections::VecDeque;
///
/// let deq = VecDeque::from([-1, 0, 1]);
/// ```
///
/// Since `VecDeque` is a ring buffer, its elements are not necessarily contiguous
/// in memory. If you want to access the elements as a single slice, such as for
/// efficient sorting, you can use [`make_contiguous`]. It rotates the `VecDeque`
/// so that its elements do not wrap, and returns a mutable slice to the
/// now-contiguous element sequence.
///
/// [`push_back`]: VecDeque::push_back
/// [`pop_front`]: VecDeque::pop_front
/// [`extend`]: VecDeque::extend
/// [`append`]: VecDeque::append
/// [`make_contiguous`]: VecDeque::make_contiguous
#[cfg_attr(not(test), rustc_diagnostic_item = "VecDeque")]
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_insignificant_dtor]
pub struct VecDeque<
    T,
    #[unstable(feature = "allocator_api", issue = "32838")] A: Allocator = Global,
> {
    // tail and head are pointers into the buffer. Tail always points
    // to the first element that could be read, Head always points
    // to where data should be written.
    // If tail == head the buffer is empty. The length of the ringbuffer
    // is defined as the distance between the two.
    tail: usize,
    head: usize,
    buf: RawVec<T, A>,
}

#[stable(feature = "rust1", since = "1.0.0")]
impl<T: Clone, A: Allocator + Clone> Clone for VecDeque<T, A> {
    fn clone(&self) -> Self {
        let mut deq = Self::with_capacity_in(self.len(), self.allocator().clone());
        deq.extend(self.iter().cloned());
        deq
    }

    fn clone_from(&mut self, other: &Self) {
        self.truncate(other.len());

        let mut iter = PairSlices::from(self, other);
        while let Some((dst, src)) = iter.next() {
            dst.clone_from_slice(&src);
        }

        if iter.has_remainder() {
            for remainder in iter.remainder() {
                self.extend(remainder.iter().cloned());
            }
        }
    }
}

#[stable(feature = "rust1", since = "1.0.0")]
unsafe impl<#[may_dangle] T, A: Allocator> Drop for VecDeque<T, A> {
    fn drop(&mut self) {
        /// Runs the destructor for all items in the slice when it gets dropped (normally or
        /// during unwinding).
        struct Dropper<'a, T>(&'a mut [T]);

        impl<'a, T> Drop for Dropper<'a, T> {
            fn drop(&mut self) {
                unsafe {
                    ptr::drop_in_place(self.0);
                }
            }
        }

        let (front, back) = self.as_mut_slices();
        unsafe {
            let _back_dropper = Dropper(back);
            // use drop for [T]
            ptr::drop_in_place(front);
        }
        // RawVec handles deallocation
    }
}

#[stable(feature = "rust1", since = "1.0.0")]
impl<T> Default for VecDeque<T> {
    /// Creates an empty deque.
    #[inline]
    fn default() -> VecDeque<T> {
        VecDeque::new()
    }
}

impl<T, A: Allocator> VecDeque<T, A> {
    /// Marginally more convenient
    #[inline]
    fn ptr(&self) -> *mut T {
        self.buf.ptr()
    }

    /// Marginally more convenient
    #[inline]
    fn cap(&self) -> usize {
        if mem::size_of::<T>() == 0 {
            // For zero sized types, we are always at maximum capacity
            MAXIMUM_ZST_CAPACITY
        } else {
            self.buf.capacity()
        }
    }

    /// Turn ptr into a slice, since the elements of the backing buffer may be uninitialized,
    /// we will return a slice of [`MaybeUninit<T>`].
    ///
    /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and
    /// incorrect usage of this method.
    ///
    /// [zeroed]: mem::MaybeUninit::zeroed
    #[inline]
    unsafe fn buffer_as_slice(&self) -> &[MaybeUninit<T>] {
        unsafe { slice::from_raw_parts(self.ptr() as *mut MaybeUninit<T>, self.cap()) }
    }

    /// Turn ptr into a mut slice, since the elements of the backing buffer may be uninitialized,
    /// we will return a slice of [`MaybeUninit<T>`].
    ///
    /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and
    /// incorrect usage of this method.
    ///
    /// [zeroed]: mem::MaybeUninit::zeroed
    #[inline]
    unsafe fn buffer_as_mut_slice(&mut self) -> &mut [MaybeUninit<T>] {
        unsafe { slice::from_raw_parts_mut(self.ptr() as *mut MaybeUninit<T>, self.cap()) }
    }

    /// Moves an element out of the buffer
    #[inline]
    unsafe fn buffer_read(&mut self, off: usize) -> T {
        unsafe { ptr::read(self.ptr().add(off)) }
    }

    /// Writes an element into the buffer, moving it.
    #[inline]
    unsafe fn buffer_write(&mut self, off: usize, value: T) {
        unsafe {
            ptr::write(self.ptr().add(off), value);
        }
    }

    /// Returns `true` if the buffer is at full capacity.
    #[inline]
    fn is_full(&self) -> bool {
        self.cap() - self.len() == 1
    }

    /// Returns the index in the underlying buffer for a given logical element
    /// index.
    #[inline]
    fn wrap_index(&self, idx: usize) -> usize {
        wrap_index(idx, self.cap())
    }

    /// Returns the index in the underlying buffer for a given logical element
    /// index + addend.
    #[inline]
    fn wrap_add(&self, idx: usize, addend: usize) -> usize {
        wrap_index(idx.wrapping_add(addend), self.cap())
    }

    /// Returns the index in the underlying buffer for a given logical element
    /// index - subtrahend.
    #[inline]
    fn wrap_sub(&self, idx: usize, subtrahend: usize) -> usize {
        wrap_index(idx.wrapping_sub(subtrahend), self.cap())
    }

    /// Copies a contiguous block of memory len long from src to dst
    #[inline]
    unsafe fn copy(&self, dst: usize, src: usize, len: usize) {
        debug_assert!(
            dst + len <= self.cap(),
            "cpy dst={} src={} len={} cap={}",
            dst,
            src,
            len,
            self.cap()
        );
        debug_assert!(
            src + len <= self.cap(),
            "cpy dst={} src={} len={} cap={}",
            dst,
            src,
            len,
            self.cap()
        );
        unsafe {
            ptr::copy(self.ptr().add(src), self.ptr().add(dst), len);
        }
    }

    /// Copies a contiguous block of memory len long from src to dst
    #[inline]
    unsafe fn copy_nonoverlapping(&self, dst: usize, src: usize, len: usize) {
        debug_assert!(
            dst + len <= self.cap(),
            "cno dst={} src={} len={} cap={}",
            dst,
            src,
            len,
            self.cap()
        );
        debug_assert!(
            src + len <= self.cap(),
            "cno dst={} src={} len={} cap={}",
            dst,
            src,
            len,
            self.cap()
        );
        unsafe {
            ptr::copy_nonoverlapping(self.ptr().add(src), self.ptr().add(dst), len);
        }
    }

    /// Copies a potentially wrapping block of memory len long from src to dest.
    /// (abs(dst - src) + len) must be no larger than cap() (There must be at
    /// most one continuous overlapping region between src and dest).
    unsafe fn wrap_copy(&self, dst: usize, src: usize, len: usize) {
        #[allow(dead_code)]
        fn diff(a: usize, b: usize) -> usize {
            if a <= b { b - a } else { a - b }
        }
        debug_assert!(
            cmp::min(diff(dst, src), self.cap() - diff(dst, src)) + len <= self.cap(),
            "wrc dst={} src={} len={} cap={}",
            dst,
            src,
            len,
            self.cap()
        );

        if src == dst || len == 0 {
            return;
        }

        let dst_after_src = self.wrap_sub(dst, src) < len;

        let src_pre_wrap_len = self.cap() - src;
        let dst_pre_wrap_len = self.cap() - dst;
        let src_wraps = src_pre_wrap_len < len;
        let dst_wraps = dst_pre_wrap_len < len;

        match (dst_after_src, src_wraps, dst_wraps) {
            (_, false, false) => {
                // src doesn't wrap, dst doesn't wrap
                //
                //        S . . .
                // 1 [_ _ A A B B C C _]
                // 2 [_ _ A A A A B B _]
                //            D . . .
                //
                unsafe {
                    self.copy(dst, src, len);
                }
            }
            (false, false, true) => {
                // dst before src, src doesn't wrap, dst wraps
                //
                //    S . . .
                // 1 [A A B B _ _ _ C C]
                // 2 [A A B B _ _ _ A A]
                // 3 [B B B B _ _ _ A A]
                //    . .           D .
                //
                unsafe {
                    self.copy(dst, src, dst_pre_wrap_len);
                    self.copy(0, src + dst_pre_wrap_len, len - dst_pre_wrap_len);
                }
            }
            (true, false, true) => {
                // src before dst, src doesn't wrap, dst wraps
                //
                //              S . . .
                // 1 [C C _ _ _ A A B B]
                // 2 [B B _ _ _ A A B B]
                // 3 [B B _ _ _ A A A A]
                //    . .           D .
                //
                unsafe {
                    self.copy(0, src + dst_pre_wrap_len, len - dst_pre_wrap_len);
                    self.copy(dst, src, dst_pre_wrap_len);
                }
            }
            (false, true, false) => {
                // dst before src, src wraps, dst doesn't wrap
                //
                //    . .           S .
                // 1 [C C _ _ _ A A B B]
                // 2 [C C _ _ _ B B B B]
                // 3 [C C _ _ _ B B C C]
                //              D . . .
                //
                unsafe {
                    self.copy(dst, src, src_pre_wrap_len);
                    self.copy(dst + src_pre_wrap_len, 0, len - src_pre_wrap_len);
                }
            }
            (true, true, false) => {
                // src before dst, src wraps, dst doesn't wrap
                //
                //    . .           S .
                // 1 [A A B B _ _ _ C C]
                // 2 [A A A A _ _ _ C C]
                // 3 [C C A A _ _ _ C C]
                //    D . . .
                //
                unsafe {
                    self.copy(dst + src_pre_wrap_len, 0, len - src_pre_wrap_len);
                    self.copy(dst, src, src_pre_wrap_len);
                }
            }
            (false, true, true) => {
                // dst before src, src wraps, dst wraps
                //
                //    . . .         S .
                // 1 [A B C D _ E F G H]
                // 2 [A B C D _ E G H H]
                // 3 [A B C D _ E G H A]
                // 4 [B C C D _ E G H A]
                //    . .         D . .
                //
                debug_assert!(dst_pre_wrap_len > src_pre_wrap_len);
                let delta = dst_pre_wrap_len - src_pre_wrap_len;
                unsafe {
                    self.copy(dst, src, src_pre_wrap_len);
                    self.copy(dst + src_pre_wrap_len, 0, delta);
                    self.copy(0, delta, len - dst_pre_wrap_len);
                }
            }
            (true, true, true) => {
                // src before dst, src wraps, dst wraps
                //
                //    . .         S . .
                // 1 [A B C D _ E F G H]
                // 2 [A A B D _ E F G H]
                // 3 [H A B D _ E F G H]
                // 4 [H A B D _ E F F G]
                //    . . .         D .
                //
                debug_assert!(src_pre_wrap_len > dst_pre_wrap_len);
                let delta = src_pre_wrap_len - dst_pre_wrap_len;
                unsafe {
                    self.copy(delta, 0, len - src_pre_wrap_len);
                    self.copy(0, self.cap() - delta, delta);
                    self.copy(dst, src, dst_pre_wrap_len);
                }
            }
        }
    }

    /// Copies all values from `src` to `dst`, wrapping around if needed.
    /// Assumes capacity is sufficient.
    #[inline]
    unsafe fn copy_slice(&mut self, dst: usize, src: &[T]) {
        debug_assert!(src.len() <= self.cap());
        let head_room = self.cap() - dst;
        if src.len() <= head_room {
            unsafe {
                ptr::copy_nonoverlapping(src.as_ptr(), self.ptr().add(dst), src.len());
            }
        } else {
            let (left, right) = src.split_at(head_room);
            unsafe {
                ptr::copy_nonoverlapping(left.as_ptr(), self.ptr().add(dst), left.len());
                ptr::copy_nonoverlapping(right.as_ptr(), self.ptr(), right.len());
            }
        }
    }

    /// Frobs the head and tail sections around to handle the fact that we
    /// just reallocated. Unsafe because it trusts old_capacity.
    #[inline]
    unsafe fn handle_capacity_increase(&mut self, old_capacity: usize) {
        let new_capacity = self.cap();

        // Move the shortest contiguous section of the ring buffer
        //    T             H
        //   [o o o o o o o . ]
        //    T             H
        // A [o o o o o o o . . . . . . . . . ]
        //        H T
        //   [o o . o o o o o ]
        //          T             H
        // B [. . . o o o o o o o . . . . . . ]
        //              H T
        //   [o o o o o . o o ]
        //              H                 T
        // C [o o o o o . . . . . . . . . o o ]

        if self.tail <= self.head {
            // A
            // Nop
        } else if self.head < old_capacity - self.tail {
            // B
            unsafe {
                self.copy_nonoverlapping(old_capacity, 0, self.head);
            }
            self.head += old_capacity;
            debug_assert!(self.head > self.tail);
        } else {
            // C
            let new_tail = new_capacity - (old_capacity - self.tail);
            unsafe {
                self.copy_nonoverlapping(new_tail, self.tail, old_capacity - self.tail);
            }
            self.tail = new_tail;
            debug_assert!(self.head < self.tail);
        }
        debug_assert!(self.head < self.cap());
        debug_assert!(self.tail < self.cap());
        debug_assert!(self.cap().count_ones() == 1);
    }
}

impl<T> VecDeque<T> {
    /// Creates an empty deque.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::collections::VecDeque;
    ///
    /// let deque: VecDeque<u32> = VecDeque::new();
    /// ```
    #[inline]
    #[stable(feature = "rust1", since = "1.0.0")]
    #[must_use]
    pub fn new() -> VecDeque<T> {
        VecDeque::new_in(Global)
    }

    /// Creates an empty deque with space for at least `capacity` elements.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::collections::VecDeque;
    ///
    /// let deque: VecDeque<u32> = VecDeque::with_capacity(10);
    /// ```
    #[inline]
    #[stable(feature = "rust1", since = "1.0.0")]
    #[must_use]
    pub fn with_capacity(capacity: usize) -> VecDeque<T> {
        Self::with_capacity_in(capacity, Global)
    }
}

impl<T, A: Allocator> VecDeque<T, A> {
    /// Creates an empty deque.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::collections::VecDeque;
    ///
    /// let deque: VecDeque<u32> = VecDeque::new();
    /// ```
    #[inline]
    #[unstable(feature = "allocator_api", issue = "32838")]
    pub fn new_in(alloc: A) -> VecDeque<T, A> {
        VecDeque::with_capacity_in(INITIAL_CAPACITY, alloc)
    }

    /// Creates an empty deque with space for at least `capacity` elements.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::collections::VecDeque;
    ///
    /// let deque: VecDeque<u32> = VecDeque::with_capacity(10);
    /// ```
    #[unstable(feature = "allocator_api", issue = "32838")]
    pub fn with_capacity_in(capacity: usize, alloc: A) -> VecDeque<T, A> {
        assert!(capacity < 1_usize << usize::BITS - 1, "capacity overflow");
        // +1 since the ringbuffer always leaves one space empty
        let cap = cmp::max(capacity + 1, MINIMUM_CAPACITY + 1).next_power_of_two();

        VecDeque { tail: 0, head: 0, buf: RawVec::with_capacity_in(cap, alloc) }
    }

    /// Provides a reference to the element at the given index.
    ///
    /// Element at index 0 is the front of the queue.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::collections::VecDeque;
    ///
    /// let mut buf = VecDeque::new();
    /// buf.push_back(3);
    /// buf.push_back(4);
    /// buf.push_back(5);
    /// assert_eq!(buf.get(1), Some(&4));
    /// ```
    #[stable(feature = "rust1", since = "1.0.0")]
    pub fn get(&self, index: usize) -> Option<&T> {
        if index < self.len() {
            let idx = self.wrap_add(self.tail, index);
            unsafe { Some(&*self.ptr().add(idx)) }
        } else {
            None
        }
    }

    /// Provides a mutable reference to the element at the given index.
    ///
    /// Element at index 0 is the front of the queue.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::collections::VecDeque;
    ///
    /// let mut buf = VecDeque::new();
    /// buf.push_back(3);
    /// buf.push_back(4);
    /// buf.push_back(5);
    /// if let Some(elem) = buf.get_mut(1) {
    ///     *elem = 7;
    /// }
    ///
    /// assert_eq!(buf[1], 7);
    /// ```
    #[stable(feature = "rust1", since = "1.0.0")]
    pub fn get_mut(&mut self, index: usize) -> Option<&mut T> {
        if index < self.len() {
            let idx = self.wrap_add(self.tail, index);
            unsafe { Some(&mut *self.ptr().add(idx)) }
        } else {
            None
        }
    }

    /// Swaps elements at indices `i` and `j`.
    ///
    /// `i` and `j` may be equal.
    ///
    /// Element at index 0 is the front of the queue.
    ///
    /// # Panics
    ///
    /// Panics if either index is out of bounds.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::collections::VecDeque;
    ///
    /// let mut buf = VecDeque::new();
    /// buf.push_back(3);
    /// buf.push_back(4);
    /// buf.push_back(5);
    /// assert_eq!(buf, [3, 4, 5]);
    /// buf.swap(0, 2);
    /// assert_eq!(buf, [5, 4, 3]);
    /// ```
    #[stable(feature = "rust1", since = "1.0.0")]
    pub fn swap(&mut self, i: usize, j: usize) {
        assert!(i < self.len());
        assert!(j < self.len());
        let ri = self.wrap_add(self.tail, i);
        let rj = self.wrap_add(self.tail, j);
        unsafe { ptr::swap(self.ptr().add(ri), self.ptr().add(rj)) }
    }

    /// Returns the number of elements the deque can hold without
    /// reallocating.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::collections::VecDeque;
    ///
    /// let buf: VecDeque<i32> = VecDeque::with_capacity(10);
    /// assert!(buf.capacity() >= 10);
    /// ```
    #[inline]
    #[stable(feature = "rust1", since = "1.0.0")]
    pub fn capacity(&self) -> usize {
        self.cap() - 1
    }

    /// Reserves the minimum capacity for exactly `additional` more elements to be inserted in the
    /// given deque. Does nothing if the capacity is already sufficient.
    ///
    /// Note that the allocator may give the collection more space than it requests. Therefore
    /// capacity can not be relied upon to be precisely minimal. Prefer [`reserve`] if future
    /// insertions are expected.
    ///
    /// # Panics
    ///
    /// Panics if the new capacity overflows `usize`.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::collections::VecDeque;
    ///
    /// let mut buf: VecDeque<i32> = [1].into();
    /// buf.reserve_exact(10);
    /// assert!(buf.capacity() >= 11);
    /// ```
    ///
    /// [`reserve`]: VecDeque::reserve
    #[stable(feature = "rust1", since = "1.0.0")]
    pub fn reserve_exact(&mut self, additional: usize) {
        self.reserve(additional);
    }

    /// Reserves capacity for at least `additional` more elements to be inserted in the given
    /// deque. The collection may reserve more space to avoid frequent reallocations.
    ///
    /// # Panics
    ///
    /// Panics if the new capacity overflows `usize`.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::collections::VecDeque;
    ///
    /// let mut buf: VecDeque<i32> = [1].into();
    /// buf.reserve(10);
    /// assert!(buf.capacity() >= 11);
    /// ```
    #[stable(feature = "rust1", since = "1.0.0")]
    pub fn reserve(&mut self, additional: usize) {
        let old_cap = self.cap();
        let used_cap = self.len() + 1;
        let new_cap = used_cap
            .checked_add(additional)
            .and_then(|needed_cap| needed_cap.checked_next_power_of_two())
            .expect("capacity overflow");

        if new_cap > old_cap {
            self.buf.reserve_exact(used_cap, new_cap - used_cap);
            unsafe {
                self.handle_capacity_increase(old_cap);
            }
        }
    }

    /// Tries to reserve the minimum capacity for exactly `additional` more elements to
    /// be inserted in the given deque. After calling `try_reserve_exact`,
    /// capacity will be greater than or equal to `self.len() + additional`.
    /// Does nothing if the capacity is already sufficient.
    ///
    /// Note that the allocator may give the collection more space than it
    /// requests. Therefore, capacity can not be relied upon to be precisely
    /// minimal. Prefer [`try_reserve`] if future insertions are expected.
    ///
    /// [`try_reserve`]: VecDeque::try_reserve
    ///
    /// # Errors
    ///
    /// If the capacity overflows `usize`, or the allocator reports a failure, then an error
    /// is returned.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::collections::TryReserveError;
    /// use std::collections::VecDeque;
    ///
    /// fn process_data(data: &[u32]) -> Result<VecDeque<u32>, TryReserveError> {
    ///     let mut output = VecDeque::new();
    ///
    ///     // Pre-reserve the memory, exiting if we can't
    ///     output.try_reserve_exact(data.len())?;
    ///
    ///     // Now we know this can't OOM(Out-Of-Memory) in the middle of our complex work
    ///     output.extend(data.iter().map(|&val| {
    ///         val * 2 + 5 // very complicated
    ///     }));
    ///
    ///     Ok(output)
    /// }
    /// # process_data(&[1, 2, 3]).expect("why is the test harness OOMing on 12 bytes?");
    /// ```
    #[stable(feature = "try_reserve", since = "1.57.0")]
    pub fn try_reserve_exact(&mut self, additional: usize) -> Result<(), TryReserveError> {
        self.try_reserve(additional)
    }

    /// Tries to reserve capacity for at least `additional` more elements to be inserted
    /// in the given deque. The collection may reserve more space to avoid
    /// frequent reallocations. After calling `try_reserve`, capacity will be
    /// greater than or equal to `self.len() + additional`. Does nothing if
    /// capacity is already sufficient.
    ///
    /// # Errors
    ///
    /// If the capacity overflows `usize`, or the allocator reports a failure, then an error
    /// is returned.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::collections::TryReserveError;
    /// use std::collections::VecDeque;
    ///
    /// fn process_data(data: &[u32]) -> Result<VecDeque<u32>, TryReserveError> {
    ///     let mut output = VecDeque::new();
    ///
    ///     // Pre-reserve the memory, exiting if we can't
    ///     output.try_reserve(data.len())?;
    ///
    ///     // Now we know this can't OOM in the middle of our complex work
    ///     output.extend(data.iter().map(|&val| {
    ///         val * 2 + 5 // very complicated
    ///     }));
    ///
    ///     Ok(output)
    /// }
    /// # process_data(&[1, 2, 3]).expect("why is the test harness OOMing on 12 bytes?");
    /// ```
    #[stable(feature = "try_reserve", since = "1.57.0")]
    pub fn try_reserve(&mut self, additional: usize) -> Result<(), TryReserveError> {
        let old_cap = self.cap();
        let used_cap = self.len() + 1;
        let new_cap = used_cap
            .checked_add(additional)
            .and_then(|needed_cap| needed_cap.checked_next_power_of_two())
            .ok_or(TryReserveErrorKind::CapacityOverflow)?;

        if new_cap > old_cap {
            self.buf.try_reserve_exact(used_cap, new_cap - used_cap)?;
            unsafe {
                self.handle_capacity_increase(old_cap);
            }
        }
        Ok(())
    }

    /// Shrinks the capacity of the deque as much as possible.
    ///
    /// It will drop down as close as possible to the length but the allocator may still inform the
    /// deque that there is space for a few more elements.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::collections::VecDeque;
    ///
    /// let mut buf = VecDeque::with_capacity(15);
    /// buf.extend(0..4);
    /// assert_eq!(buf.capacity(), 15);
    /// buf.shrink_to_fit();
    /// assert!(buf.capacity() >= 4);
    /// ```
    #[stable(feature = "deque_extras_15", since = "1.5.0")]
    pub fn shrink_to_fit(&mut self) {
        self.shrink_to(0);
    }

    /// Shrinks the capacity of the deque with a lower bound.
    ///
    /// The capacity will remain at least as large as both the length
    /// and the supplied value.
    ///
    /// If the current capacity is less than the lower limit, this is a no-op.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::collections::VecDeque;
    ///
    /// let mut buf = VecDeque::with_capacity(15);
    /// buf.extend(0..4);
    /// assert_eq!(buf.capacity(), 15);
    /// buf.shrink_to(6);
    /// assert!(buf.capacity() >= 6);
    /// buf.shrink_to(0);
    /// assert!(buf.capacity() >= 4);
    /// ```
    #[stable(feature = "shrink_to", since = "1.56.0")]
    pub fn shrink_to(&mut self, min_capacity: usize) {
        let min_capacity = cmp::min(min_capacity, self.capacity());
        // We don't have to worry about an overflow as neither `self.len()` nor `self.capacity()`
        // can ever be `usize::MAX`. +1 as the ringbuffer always leaves one space empty.
        let target_cap = cmp::max(cmp::max(min_capacity, self.len()) + 1, MINIMUM_CAPACITY + 1)
            .next_power_of_two();

        if target_cap < self.cap() {
            // There are three cases of interest:
            //   All elements are out of desired bounds
            //   Elements are contiguous, and head is out of desired bounds
            //   Elements are discontiguous, and tail is out of desired bounds
            //
            // At all other times, element positions are unaffected.
            //
            // Indicates that elements at the head should be moved.
            let head_outside = self.head == 0 || self.head >= target_cap;
            // Move elements from out of desired bounds (positions after target_cap)
            if self.tail >= target_cap && head_outside {
                //                    T             H
                //   [. . . . . . . . o o o o o o o . ]
                //    T             H
                //   [o o o o o o o . ]
                unsafe {
                    self.copy_nonoverlapping(0, self.tail, self.len());
                }
                self.head = self.len();
                self.tail = 0;
            } else if self.tail != 0 && self.tail < target_cap && head_outside {
                //          T             H
                //   [. . . o o o o o o o . . . . . . ]
                //        H T
                //   [o o . o o o o o ]
                let len = self.wrap_sub(self.head, target_cap);
                unsafe {
                    self.copy_nonoverlapping(0, target_cap, len);
                }
                self.head = len;
                debug_assert!(self.head < self.tail);
            } else if self.tail >= target_cap {
                //              H                 T
                //   [o o o o o . . . . . . . . . o o ]
                //              H T
                //   [o o o o o . o o ]
                debug_assert!(self.wrap_sub(self.head, 1) < target_cap);
                let len = self.cap() - self.tail;
                let new_tail = target_cap - len;
                unsafe {
                    self.copy_nonoverlapping(new_tail, self.tail, len);
                }
                self.tail = new_tail;
                debug_assert!(self.head < self.tail);
            }

            self.buf.shrink_to_fit(target_cap);

            debug_assert!(self.head < self.cap());
            debug_assert!(self.tail < self.cap());
            debug_assert!(self.cap().count_ones() == 1);
        }
    }

    /// Shortens the deque, keeping the first `len` elements and dropping
    /// the rest.
    ///
    /// If `len` is greater than the deque's current length, this has no
    /// effect.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::collections::VecDeque;
    ///
    /// let mut buf = VecDeque::new();
    /// buf.push_back(5);
    /// buf.push_back(10);
    /// buf.push_back(15);
    /// assert_eq!(buf, [5, 10, 15]);
    /// buf.truncate(1);
    /// assert_eq!(buf, [5]);
    /// ```
    #[stable(feature = "deque_extras", since = "1.16.0")]
    pub fn truncate(&mut self, len: usize) {
        /// Runs the destructor for all items in the slice when it gets dropped (normally or
        /// during unwinding).
        struct Dropper<'a, T>(&'a mut [T]);

        impl<'a, T> Drop for Dropper<'a, T> {
            fn drop(&mut self) {
                unsafe {
                    ptr::drop_in_place(self.0);
                }
            }
        }

        // Safe because:
        //
        // * Any slice passed to `drop_in_place` is valid; the second case has
        //   `len <= front.len()` and returning on `len > self.len()` ensures
        //   `begin <= back.len()` in the first case
        // * The head of the VecDeque is moved before calling `drop_in_place`,
        //   so no value is dropped twice if `drop_in_place` panics
        unsafe {
            if len > self.len() {
                return;
            }
            let num_dropped = self.len() - len;
            let (front, back) = self.as_mut_slices();
            if len > front.len() {
                let begin = len - front.len();
                let drop_back = back.get_unchecked_mut(begin..) as *mut _;
                self.head = self.wrap_sub(self.head, num_dropped);
                ptr::drop_in_place(drop_back);
            } else {
                let drop_back = back as *mut _;
                let drop_front = front.get_unchecked_mut(len..) as *mut _;
                self.head = self.wrap_sub(self.head, num_dropped);

                // Make sure the second half is dropped even when a destructor
                // in the first one panics.
                let _back_dropper = Dropper(&mut *drop_back);
                ptr::drop_in_place(drop_front);
            }
        }
    }

    /// Returns a reference to the underlying allocator.
    #[unstable(feature = "allocator_api", issue = "32838")]
    #[inline]
    pub fn allocator(&self) -> &A {
        self.buf.allocator()
    }

    /// Returns a front-to-back iterator.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::collections::VecDeque;
    ///
    /// let mut buf = VecDeque::new();
    /// buf.push_back(5);
    /// buf.push_back(3);
    /// buf.push_back(4);
    /// let b: &[_] = &[&5, &3, &4];
    /// let c: Vec<&i32> = buf.iter().collect();
    /// assert_eq!(&c[..], b);
    /// ```
    #[stable(feature = "rust1", since = "1.0.0")]
    pub fn iter(&self) -> Iter<'_, T> {
        Iter { tail: self.tail, head: self.head, ring: unsafe { self.buffer_as_slice() } }
    }

    /// Returns a front-to-back iterator that returns mutable references.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::collections::VecDeque;
    ///
    /// let mut buf = VecDeque::new();
    /// buf.push_back(5);
    /// buf.push_back(3);
    /// buf.push_back(4);
    /// for num in buf.iter_mut() {
    ///     *num = *num - 2;
    /// }
    /// let b: &[_] = &[&mut 3, &mut 1, &mut 2];
    /// assert_eq!(&buf.iter_mut().collect::<Vec<&mut i32>>()[..], b);
    /// ```
    #[stable(feature = "rust1", since = "1.0.0")]
    pub fn iter_mut(&mut self) -> IterMut<'_, T> {
        // SAFETY: The internal `IterMut` safety invariant is established because the
        // `ring` we create is a dereferenceable slice for lifetime '_.
        let ring = ptr::slice_from_raw_parts_mut(self.ptr(), self.cap());

        unsafe { IterMut::new(ring, self.tail, self.head, PhantomData) }
    }

    /// Returns a pair of slices which contain, in order, the contents of the
    /// deque.
    ///
    /// If [`make_contiguous`] was previously called, all elements of the
    /// deque will be in the first slice and the second slice will be empty.
    ///
    /// [`make_contiguous`]: VecDeque::make_contiguous
    ///
    /// # Examples
    ///
    /// ```
    /// use std::collections::VecDeque;
    ///
    /// let mut deque = VecDeque::new();
    ///
    /// deque.push_back(0);
    /// deque.push_back(1);
    /// deque.push_back(2);
    ///
    /// assert_eq!(deque.as_slices(), (&[0, 1, 2][..], &[][..]));
    ///
    /// deque.push_front(10);
    /// deque.push_front(9);
    ///
    /// assert_eq!(deque.as_slices(), (&[9, 10][..], &[0, 1, 2][..]));
    /// ```
    #[inline]
    #[stable(feature = "deque_extras_15", since = "1.5.0")]
    pub fn as_slices(&self) -> (&[T], &[T]) {
        // Safety:
        // - `self.head` and `self.tail` in a ring buffer are always valid indices.
        // - `RingSlices::ring_slices` guarantees that the slices split according to `self.head` and `self.tail` are initialized.
        unsafe {
            let buf = self.buffer_as_slice();
            let (front, back) = RingSlices::ring_slices(buf, self.head, self.tail);
            (MaybeUninit::slice_assume_init_ref(front), MaybeUninit::slice_assume_init_ref(back))
        }
    }

    /// Returns a pair of slices which contain, in order, the contents of the
    /// deque.
    ///
    /// If [`make_contiguous`] was previously called, all elements of the
    /// deque will be in the first slice and the second slice will be empty.
    ///
    /// [`make_contiguous`]: VecDeque::make_contiguous
    ///
    /// # Examples
    ///
    /// ```
    /// use std::collections::VecDeque;
    ///
    /// let mut deque = VecDeque::new();
    ///
    /// deque.push_back(0);
    /// deque.push_back(1);
    ///
    /// deque.push_front(10);
    /// deque.push_front(9);
    ///
    /// deque.as_mut_slices().0[0] = 42;
    /// deque.as_mut_slices().1[0] = 24;
    /// assert_eq!(deque.as_slices(), (&[42, 10][..], &[24, 1][..]));
    /// ```
    #[inline]
    #[stable(feature = "deque_extras_15", since = "1.5.0")]
    pub fn as_mut_slices(&mut self) -> (&mut [T], &mut [T]) {
        // Safety:
        // - `self.head` and `self.tail` in a ring buffer are always valid indices.
        // - `RingSlices::ring_slices` guarantees that the slices split according to `self.head` and `self.tail` are initialized.
        unsafe {
            let head = self.head;
            let tail = self.tail;
            let buf = self.buffer_as_mut_slice();
            let (front, back) = RingSlices::ring_slices(buf, head, tail);
            (MaybeUninit::slice_assume_init_mut(front), MaybeUninit::slice_assume_init_mut(back))
        }
    }

    /// Returns the number of elements in the deque.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::collections::VecDeque;
    ///
    /// let mut deque = VecDeque::new();
    /// assert_eq!(deque.len(), 0);
    /// deque.push_back(1);
    /// assert_eq!(deque.len(), 1);
    /// ```
    #[stable(feature = "rust1", since = "1.0.0")]
    pub fn len(&self) -> usize {
        count(self.tail, self.head, self.cap())
    }

    /// Returns `true` if the deque is empty.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::collections::VecDeque;
    ///
    /// let mut deque = VecDeque::new();
    /// assert!(deque.is_empty());
    /// deque.push_front(1);
    /// assert!(!deque.is_empty());
    /// ```
    #[stable(feature = "rust1", since = "1.0.0")]
    pub fn is_empty(&self) -> bool {
        self.tail == self.head
    }

    fn range_tail_head<R>(&self, range: R) -> (usize, usize)
    where
        R: RangeBounds<usize>,
    {
        let Range { start, end } = slice::range(range, ..self.len());
        let tail = self.wrap_add(self.tail, start);
        let head = self.wrap_add(self.tail, end);
        (tail, head)
    }

    /// Creates an iterator that covers the specified range in the deque.
    ///
    /// # Panics
    ///
    /// Panics if the starting point is greater than the end point or if
    /// the end point is greater than the length of the deque.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::collections::VecDeque;
    ///
    /// let deque: VecDeque<_> = [1, 2, 3].into();
    /// let range = deque.range(2..).copied().collect::<VecDeque<_>>();
    /// assert_eq!(range, [3]);
    ///
    /// // A full range covers all contents
    /// let all = deque.range(..);
    /// assert_eq!(all.len(), 3);
    /// ```
    #[inline]
    #[stable(feature = "deque_range", since = "1.51.0")]
    pub fn range<R>(&self, range: R) -> Iter<'_, T>
    where
        R: RangeBounds<usize>,
    {
        let (tail, head) = self.range_tail_head(range);
        Iter {
            tail,
            head,
            // The shared reference we have in &self is maintained in the '_ of Iter.
            ring: unsafe { self.buffer_as_slice() },
        }
    }

    /// Creates an iterator that covers the specified mutable range in the deque.
    ///
    /// # Panics
    ///
    /// Panics if the starting point is greater than the end point or if
    /// the end point is greater than the length of the deque.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::collections::VecDeque;
    ///
    /// let mut deque: VecDeque<_> = [1, 2, 3].into();
    /// for v in deque.range_mut(2..) {
    ///   *v *= 2;
    /// }
    /// assert_eq!(deque, [1, 2, 6]);
    ///
    /// // A full range covers all contents
    /// for v in deque.range_mut(..) {
    ///   *v *= 2;
    /// }
    /// assert_eq!(deque, [2, 4, 12]);
    /// ```
    #[inline]
    #[stable(feature = "deque_range", since = "1.51.0")]
    pub fn range_mut<R>(&mut self, range: R) -> IterMut<'_, T>
    where
        R: RangeBounds<usize>,
    {
        let (tail, head) = self.range_tail_head(range);

        // SAFETY: The internal `IterMut` safety invariant is established because the
        // `ring` we create is a dereferenceable slice for lifetime '_.
        let ring = ptr::slice_from_raw_parts_mut(self.ptr(), self.cap());

        unsafe { IterMut::new(ring, tail, head, PhantomData) }
    }

    /// Removes the specified range from the deque in bulk, returning all
    /// removed elements as an iterator. If the iterator is dropped before
    /// being fully consumed, it drops the remaining removed elements.
    ///
    /// The returned iterator keeps a mutable borrow on the queue to optimize
    /// its implementation.
    ///
    ///
    /// # Panics
    ///
    /// Panics if the starting point is greater than the end point or if
    /// the end point is greater than the length of the deque.
    ///
    /// # Leaking
    ///
    /// If the returned iterator goes out of scope without being dropped (due to
    /// [`mem::forget`], for example), the deque may have lost and leaked
    /// elements arbitrarily, including elements outside the range.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::collections::VecDeque;
    ///
    /// let mut deque: VecDeque<_> = [1, 2, 3].into();
    /// let drained = deque.drain(2..).collect::<VecDeque<_>>();
    /// assert_eq!(drained, [3]);
    /// assert_eq!(deque, [1, 2]);
    ///
    /// // A full range clears all contents, like `clear()` does
    /// deque.drain(..);
    /// assert!(deque.is_empty());
    /// ```
    #[inline]
    #[stable(feature = "drain", since = "1.6.0")]
    pub fn drain<R>(&mut self, range: R) -> Drain<'_, T, A>
    where
        R: RangeBounds<usize>,
    {
        // Memory safety
        //
        // When the Drain is first created, the source deque is shortened to
        // make sure no uninitialized or moved-from elements are accessible at
        // all if the Drain's destructor never gets to run.
        //
        // Drain will ptr::read out the values to remove.
        // When finished, the remaining data will be copied back to cover the hole,
        // and the head/tail values will be restored correctly.
        //
        let (drain_tail, drain_head) = self.range_tail_head(range);

        // The deque's elements are parted into three segments:
        // * self.tail  -> drain_tail
        // * drain_tail -> drain_head
        // * drain_head -> self.head
        //
        // T = self.tail; H = self.head; t = drain_tail; h = drain_head
        //
        // We store drain_tail as self.head, and drain_head and self.head as
        // after_tail and after_head respectively on the Drain. This also
        // truncates the effective array such that if the Drain is leaked, we
        // have forgotten about the potentially moved values after the start of
        // the drain.
        //
        //        T   t   h   H
        // [. . . o o x x o o . . .]
        //
        let head = self.head;

        // "forget" about the values after the start of the drain until after
        // the drain is complete and the Drain destructor is run.
        self.head = drain_tail;

        let deque = NonNull::from(&mut *self);
        let iter = Iter {
            tail: drain_tail,
            head: drain_head,
            // Crucially, we only create shared references from `self` here and read from
            // it.  We do not write to `self` nor reborrow to a mutable reference.
            // Hence the raw pointer we created above, for `deque`, remains valid.
            ring: unsafe { self.buffer_as_slice() },
        };

        unsafe { Drain::new(drain_head, head, iter, deque) }
    }

    /// Clears the deque, removing all values.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::collections::VecDeque;
    ///
    /// let mut deque = VecDeque::new();
    /// deque.push_back(1);
    /// deque.clear();
    /// assert!(deque.is_empty());
    /// ```
    #[stable(feature = "rust1", since = "1.0.0")]
    #[inline]
    pub fn clear(&mut self) {
        self.truncate(0);
    }

    /// Returns `true` if the deque contains an element equal to the
    /// given value.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::collections::VecDeque;
    ///
    /// let mut deque: VecDeque<u32> = VecDeque::new();
    ///
    /// deque.push_back(0);
    /// deque.push_back(1);
    ///
    /// assert_eq!(deque.contains(&1), true);
    /// assert_eq!(deque.contains(&10), false);
    /// ```
    #[stable(feature = "vec_deque_contains", since = "1.12.0")]
    pub fn contains(&self, x: &T) -> bool
    where
        T: PartialEq<T>,
    {
        let (a, b) = self.as_slices();
        a.contains(x) || b.contains(x)
    }

    /// Provides a reference to the front element, or `None` if the deque is
    /// empty.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::collections::VecDeque;
    ///
    /// let mut d = VecDeque::new();
    /// assert_eq!(d.front(), None);
    ///
    /// d.push_back(1);
    /// d.push_back(2);
    /// assert_eq!(d.front(), Some(&1));
    /// ```
    #[stable(feature = "rust1", since = "1.0.0")]
    pub fn front(&self) -> Option<&T> {
        self.get(0)
    }

    /// Provides a mutable reference to the front element, or `None` if the
    /// deque is empty.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::collections::VecDeque;
    ///
    /// let mut d = VecDeque::new();
    /// assert_eq!(d.front_mut(), None);
    ///
    /// d.push_back(1);
    /// d.push_back(2);
    /// match d.front_mut() {
    ///     Some(x) => *x = 9,
    ///     None => (),
    /// }
    /// assert_eq!(d.front(), Some(&9));
    /// ```
    #[stable(feature = "rust1", since = "1.0.0")]
    pub fn front_mut(&mut self) -> Option<&mut T> {
        self.get_mut(0)
    }

    /// Provides a reference to the back element, or `None` if the deque is
    /// empty.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::collections::VecDeque;
    ///
    /// let mut d = VecDeque::new();
    /// assert_eq!(d.back(), None);
    ///
    /// d.push_back(1);
    /// d.push_back(2);
    /// assert_eq!(d.back(), Some(&2));
    /// ```
    #[stable(feature = "rust1", since = "1.0.0")]
    pub fn back(&self) -> Option<&T> {
        self.get(self.len().wrapping_sub(1))
    }

    /// Provides a mutable reference to the back element, or `None` if the
    /// deque is empty.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::collections::VecDeque;
    ///
    /// let mut d = VecDeque::new();
    /// assert_eq!(d.back(), None);
    ///
    /// d.push_back(1);
    /// d.push_back(2);
    /// match d.back_mut() {
    ///     Some(x) => *x = 9,
    ///     None => (),
    /// }
    /// assert_eq!(d.back(), Some(&9));
    /// ```
    #[stable(feature = "rust1", since = "1.0.0")]
    pub fn back_mut(&mut self) -> Option<&mut T> {
        self.get_mut(self.len().wrapping_sub(1))
    }

    /// Removes the first element and returns it, or `None` if the deque is
    /// empty.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::collections::VecDeque;
    ///
    /// let mut d = VecDeque::new();
    /// d.push_back(1);
    /// d.push_back(2);
    ///
    /// assert_eq!(d.pop_front(), Some(1));
    /// assert_eq!(d.pop_front(), Some(2));
    /// assert_eq!(d.pop_front(), None);
    /// ```
    #[stable(feature = "rust1", since = "1.0.0")]
    pub fn pop_front(&mut self) -> Option<T> {
        if self.is_empty() {
            None
        } else {
            let tail = self.tail;
            self.tail = self.wrap_add(self.tail, 1);
            unsafe { Some(self.buffer_read(tail)) }
        }
    }

    /// Removes the last element from the deque and returns it, or `None` if
    /// it is empty.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::collections::VecDeque;
    ///
    /// let mut buf = VecDeque::new();
    /// assert_eq!(buf.pop_back(), None);
    /// buf.push_back(1);
    /// buf.push_back(3);
    /// assert_eq!(buf.pop_back(), Some(3));
    /// ```
    #[stable(feature = "rust1", since = "1.0.0")]
    pub fn pop_back(&mut self) -> Option<T> {
        if self.is_empty() {
            None
        } else {
            self.head = self.wrap_sub(self.head, 1);
            let head = self.head;
            unsafe { Some(self.buffer_read(head)) }
        }
    }

    /// Prepends an element to the deque.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::collections::VecDeque;
    ///
    /// let mut d = VecDeque::new();
    /// d.push_front(1);
    /// d.push_front(2);
    /// assert_eq!(d.front(), Some(&2));
    /// ```
    #[stable(feature = "rust1", since = "1.0.0")]
    pub fn push_front(&mut self, value: T) {
        if self.is_full() {
            self.grow();
        }

        self.tail = self.wrap_sub(self.tail, 1);
        let tail = self.tail;
        unsafe {
            self.buffer_write(tail, value);
        }
    }

    /// Appends an element to the back of the deque.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::collections::VecDeque;
    ///
    /// let mut buf = VecDeque::new();
    /// buf.push_back(1);
    /// buf.push_back(3);
    /// assert_eq!(3, *buf.back().unwrap());
    /// ```
    #[stable(feature = "rust1", since = "1.0.0")]
    pub fn push_back(&mut self, value: T) {
        if self.is_full() {
            self.grow();
        }

        let head = self.head;
        self.head = self.wrap_add(self.head, 1);
        unsafe { self.buffer_write(head, value) }
    }

    #[inline]
    fn is_contiguous(&self) -> bool {
        // FIXME: Should we consider `head == 0` to mean
        // that `self` is contiguous?
        self.tail <= self.head
    }

    /// Removes an element from anywhere in the deque and returns it,
    /// replacing it with the first element.
    ///
    /// This does not preserve ordering, but is *O*(1).
    ///
    /// Returns `None` if `index` is out of bounds.
    ///
    /// Element at index 0 is the front of the queue.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::collections::VecDeque;
    ///
    /// let mut buf = VecDeque::new();
    /// assert_eq!(buf.swap_remove_front(0), None);
    /// buf.push_back(1);
    /// buf.push_back(2);
    /// buf.push_back(3);
    /// assert_eq!(buf, [1, 2, 3]);
    ///
    /// assert_eq!(buf.swap_remove_front(2), Some(3));
    /// assert_eq!(buf, [2, 1]);
    /// ```
    #[stable(feature = "deque_extras_15", since = "1.5.0")]
    pub fn swap_remove_front(&mut self, index: usize) -> Option<T> {
        let length = self.len();
        if length > 0 && index < length && index != 0 {
            self.swap(index, 0);
        } else if index >= length {
            return None;
        }
        self.pop_front()
    }

    /// Removes an element from anywhere in the deque and returns it,
    /// replacing it with the last element.
    ///
    /// This does not preserve ordering, but is *O*(1).
    ///
    /// Returns `None` if `index` is out of bounds.
    ///
    /// Element at index 0 is the front of the queue.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::collections::VecDeque;
    ///
    /// let mut buf = VecDeque::new();
    /// assert_eq!(buf.swap_remove_back(0), None);
    /// buf.push_back(1);
    /// buf.push_back(2);
    /// buf.push_back(3);
    /// assert_eq!(buf, [1, 2, 3]);
    ///
    /// assert_eq!(buf.swap_remove_back(0), Some(1));
    /// assert_eq!(buf, [3, 2]);
    /// ```
    #[stable(feature = "deque_extras_15", since = "1.5.0")]
    pub fn swap_remove_back(&mut self, index: usize) -> Option<T> {
        let length = self.len();
        if length > 0 && index < length - 1 {
            self.swap(index, length - 1);
        } else if index >= length {
            return None;
        }
        self.pop_back()
    }

    /// Inserts an element at `index` within the deque, shifting all elements
    /// with indices greater than or equal to `index` towards the back.
    ///
    /// Element at index 0 is the front of the queue.
    ///
    /// # Panics
    ///
    /// Panics if `index` is greater than deque's length
    ///
    /// # Examples
    ///
    /// ```
    /// use std::collections::VecDeque;
    ///
    /// let mut vec_deque = VecDeque::new();
    /// vec_deque.push_back('a');
    /// vec_deque.push_back('b');
    /// vec_deque.push_back('c');
    /// assert_eq!(vec_deque, &['a', 'b', 'c']);
    ///
    /// vec_deque.insert(1, 'd');
    /// assert_eq!(vec_deque, &['a', 'd', 'b', 'c']);
    /// ```
    #[stable(feature = "deque_extras_15", since = "1.5.0")]
    pub fn insert(&mut self, index: usize, value: T) {
        assert!(index <= self.len(), "index out of bounds");
        if self.is_full() {
            self.grow();
        }

        // Move the least number of elements in the ring buffer and insert
        // the given object
        //
        // At most len/2 - 1 elements will be moved. O(min(n, n-i))
        //
        // There are three main cases:
        //  Elements are contiguous
        //      - special case when tail is 0
        //  Elements are discontiguous and the insert is in the tail section
        //  Elements are discontiguous and the insert is in the head section
        //
        // For each of those there are two more cases:
        //  Insert is closer to tail
        //  Insert is closer to head
        //
        // Key: H - self.head
        //      T - self.tail
        //      o - Valid element
        //      I - Insertion element
        //      A - The element that should be after the insertion point
        //      M - Indicates element was moved

        let idx = self.wrap_add(self.tail, index);

        let distance_to_tail = index;
        let distance_to_head = self.len() - index;

        let contiguous = self.is_contiguous();

        match (contiguous, distance_to_tail <= distance_to_head, idx >= self.tail) {
            (true, true, _) if index == 0 => {
                // push_front
                //
                //       T
                //       I             H
                //      [A o o o o o o . . . . . . . . .]
                //
                //                       H         T
                //      [A o o o o o o o . . . . . I]
                //

                self.tail = self.wrap_sub(self.tail, 1);
            }
            (true, true, _) => {
                unsafe {
                    // contiguous, insert closer to tail:
                    //
                    //             T   I         H
                    //      [. . . o o A o o o o . . . . . .]
                    //
                    //           T               H
                    //      [. . o o I A o o o o . . . . . .]
                    //           M M
                    //
                    // contiguous, insert closer to tail and tail is 0:
                    //
                    //
                    //       T   I         H
                    //      [o o A o o o o . . . . . . . . .]
                    //
                    //                       H             T
                    //      [o I A o o o o o . . . . . . . o]
                    //       M                             M

                    let new_tail = self.wrap_sub(self.tail, 1);

                    self.copy(new_tail, self.tail, 1);
                    // Already moved the tail, so we only copy `index - 1` elements.
                    self.copy(self.tail, self.tail + 1, index - 1);

                    self.tail = new_tail;
                }
            }
            (true, false, _) => {
                unsafe {
                    //  contiguous, insert closer to head:
                    //
                    //             T       I     H
                    //      [. . . o o o o A o o . . . . . .]
                    //
                    //             T               H
                    //      [. . . o o o o I A o o . . . . .]
                    //                       M M M

                    self.copy(idx + 1, idx, self.head - idx);
                    self.head = self.wrap_add(self.head, 1);
                }
            }
            (false, true, true) => {
                unsafe {
                    // discontiguous, insert closer to tail, tail section:
                    //
                    //                   H         T   I
                    //      [o o o o o o . . . . . o o A o o]
                    //
                    //                   H       T
                    //      [o o o o o o . . . . o o I A o o]
                    //                           M M

                    self.copy(self.tail - 1, self.tail, index);
                    self.tail -= 1;
                }
            }
            (false, false, true) => {
                unsafe {
                    // discontiguous, insert closer to head, tail section:
                    //
                    //           H             T         I
                    //      [o o . . . . . . . o o o o o A o]
                    //
                    //             H           T
                    //      [o o o . . . . . . o o o o o I A]
                    //       M M M                         M

                    // copy elements up to new head
                    self.copy(1, 0, self.head);

                    // copy last element into empty spot at bottom of buffer
                    self.copy(0, self.cap() - 1, 1);

                    // move elements from idx to end forward not including ^ element
                    self.copy(idx + 1, idx, self.cap() - 1 - idx);

                    self.head += 1;
                }
            }
            (false, true, false) if idx == 0 => {
                unsafe {
                    // discontiguous, insert is closer to tail, head section,
                    // and is at index zero in the internal buffer:
                    //
                    //       I                   H     T
                    //      [A o o o o o o o o o . . . o o o]
                    //
                    //                           H   T
                    //      [A o o o o o o o o o . . o o o I]
                    //                               M M M

                    // copy elements up to new tail
                    self.copy(self.tail - 1, self.tail, self.cap() - self.tail);

                    // copy last element into empty spot at bottom of buffer
                    self.copy(self.cap() - 1, 0, 1);

                    self.tail -= 1;
                }
            }
            (false, true, false) => {
                unsafe {
                    // discontiguous, insert closer to tail, head section:
                    //
                    //             I             H     T
                    //      [o o o A o o o o o o . . . o o o]
                    //
                    //                           H   T
                    //      [o o I A o o o o o o . . o o o o]
                    //       M M                     M M M M

                    // copy elements up to new tail
                    self.copy(self.tail - 1, self.tail, self.cap() - self.tail);

                    // copy last element into empty spot at bottom of buffer
                    self.copy(self.cap() - 1, 0, 1);

                    // move elements from idx-1 to end forward not including ^ element
                    self.copy(0, 1, idx - 1);

                    self.tail -= 1;
                }
            }
            (false, false, false) => {
                unsafe {
                    // discontiguous, insert closer to head, head section:
                    //
                    //               I     H           T
                    //      [o o o o A o o . . . . . . o o o]
                    //
                    //                     H           T
                    //      [o o o o I A o o . . . . . o o o]
                    //                 M M M

                    self.copy(idx + 1, idx, self.head - idx);
                    self.head += 1;
                }
            }
        }

        // tail might've been changed so we need to recalculate
        let new_idx = self.wrap_add(self.tail, index);
        unsafe {
            self.buffer_write(new_idx, value);
        }
    }

    /// Removes and returns the element at `index` from the deque.
    /// Whichever end is closer to the removal point will be moved to make
    /// room, and all the affected elements will be moved to new positions.
    /// Returns `None` if `index` is out of bounds.
    ///
    /// Element at index 0 is the front of the queue.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::collections::VecDeque;
    ///
    /// let mut buf = VecDeque::new();
    /// buf.push_back(1);
    /// buf.push_back(2);
    /// buf.push_back(3);
    /// assert_eq!(buf, [1, 2, 3]);
    ///
    /// assert_eq!(buf.remove(1), Some(2));
    /// assert_eq!(buf, [1, 3]);
    /// ```
    #[stable(feature = "rust1", since = "1.0.0")]
    pub fn remove(&mut self, index: usize) -> Option<T> {
        if self.is_empty() || self.len() <= index {
            return None;
        }

        // There are three main cases:
        //  Elements are contiguous
        //  Elements are discontiguous and the removal is in the tail section
        //  Elements are discontiguous and the removal is in the head section
        //      - special case when elements are technically contiguous,
        //        but self.head = 0
        //
        // For each of those there are two more cases:
        //  Insert is closer to tail
        //  Insert is closer to head
        //
        // Key: H - self.head
        //      T - self.tail
        //      o - Valid element
        //      x - Element marked for removal
        //      R - Indicates element that is being removed
        //      M - Indicates element was moved

        let idx = self.wrap_add(self.tail, index);

        let elem = unsafe { Some(self.buffer_read(idx)) };

        let distance_to_tail = index;
        let distance_to_head = self.len() - index;

        let contiguous = self.is_contiguous();

        match (contiguous, distance_to_tail <= distance_to_head, idx >= self.tail) {
            (true, true, _) => {
                unsafe {
                    // contiguous, remove closer to tail:
                    //
                    //             T   R         H
                    //      [. . . o o x o o o o . . . . . .]
                    //
                    //               T           H
                    //      [. . . . o o o o o o . . . . . .]
                    //               M M

                    self.copy(self.tail + 1, self.tail, index);
                    self.tail += 1;
                }
            }
            (true, false, _) => {
                unsafe {
                    // contiguous, remove closer to head:
                    //
                    //             T       R     H
                    //      [. . . o o o o x o o . . . . . .]
                    //
                    //             T           H
                    //      [. . . o o o o o o . . . . . . .]
                    //                     M M

                    self.copy(idx, idx + 1, self.head - idx - 1);
                    self.head -= 1;
                }
            }
            (false, true, true) => {
                unsafe {
                    // discontiguous, remove closer to tail, tail section:
                    //
                    //                   H         T   R
                    //      [o o o o o o . . . . . o o x o o]
                    //
                    //                   H           T
                    //      [o o o o o o . . . . . . o o o o]
                    //                               M M

                    self.copy(self.tail + 1, self.tail, index);
                    self.tail = self.wrap_add(self.tail, 1);
                }
            }
            (false, false, false) => {
                unsafe {
                    // discontiguous, remove closer to head, head section:
                    //
                    //               R     H           T
                    //      [o o o o x o o . . . . . . o o o]
                    //
                    //                   H             T
                    //      [o o o o o o . . . . . . . o o o]
                    //               M M

                    self.copy(idx, idx + 1, self.head - idx - 1);
                    self.head -= 1;
                }
            }
            (false, false, true) => {
                unsafe {
                    // discontiguous, remove closer to head, tail section:
                    //
                    //             H           T         R
                    //      [o o o . . . . . . o o o o o x o]
                    //
                    //           H             T
                    //      [o o . . . . . . . o o o o o o o]
                    //       M M                         M M
                    //
                    // or quasi-discontiguous, remove next to head, tail section:
                    //
                    //       H                 T         R
                    //      [. . . . . . . . . o o o o o x o]
                    //
                    //                         T           H
                    //      [. . . . . . . . . o o o o o o .]
                    //                                   M

                    // draw in elements in the tail section
                    self.copy(idx, idx + 1, self.cap() - idx - 1);

                    // Prevents underflow.
                    if self.head != 0 {
                        // copy first element into empty spot
                        self.copy(self.cap() - 1, 0, 1);

                        // move elements in the head section backwards
                        self.copy(0, 1, self.head - 1);
                    }

                    self.head = self.wrap_sub(self.head, 1);
                }
            }
            (false, true, false) => {
                unsafe {
                    // discontiguous, remove closer to tail, head section:
                    //
                    //           R               H     T
                    //      [o o x o o o o o o o . . . o o o]
                    //
                    //                           H       T
                    //      [o o o o o o o o o o . . . . o o]
                    //       M M M                       M M

                    // draw in elements up to idx
                    self.copy(1, 0, idx);

                    // copy last element into empty spot
                    self.copy(0, self.cap() - 1, 1);

                    // move elements from tail to end forward, excluding the last one
                    self.copy(self.tail + 1, self.tail, self.cap() - self.tail - 1);

                    self.tail = self.wrap_add(self.tail, 1);
                }
            }
        }

        elem
    }

    /// Splits the deque into two at the given index.
    ///
    /// Returns a newly allocated `VecDeque`. `self` contains elements `[0, at)`,
    /// and the returned deque contains elements `[at, len)`.
    ///
    /// Note that the capacity of `self` does not change.
    ///
    /// Element at index 0 is the front of the queue.
    ///
    /// # Panics
    ///
    /// Panics if `at > len`.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::collections::VecDeque;
    ///
    /// let mut buf: VecDeque<_> = [1, 2, 3].into();
    /// let buf2 = buf.split_off(1);
    /// assert_eq!(buf, [1]);
    /// assert_eq!(buf2, [2, 3]);
    /// ```
    #[inline]
    #[must_use = "use `.truncate()` if you don't need the other half"]
    #[stable(feature = "split_off", since = "1.4.0")]
    pub fn split_off(&mut self, at: usize) -> Self
    where
        A: Clone,
    {
        let len = self.len();
        assert!(at <= len, "`at` out of bounds");

        let other_len = len - at;
        let mut other = VecDeque::with_capacity_in(other_len, self.allocator().clone());

        unsafe {
            let (first_half, second_half) = self.as_slices();

            let first_len = first_half.len();
            let second_len = second_half.len();
            if at < first_len {
                // `at` lies in the first half.
                let amount_in_first = first_len - at;

                ptr::copy_nonoverlapping(first_half.as_ptr().add(at), other.ptr(), amount_in_first);

                // just take all of the second half.
                ptr::copy_nonoverlapping(
                    second_half.as_ptr(),
                    other.ptr().add(amount_in_first),
                    second_len,
                );
            } else {
                // `at` lies in the second half, need to factor in the elements we skipped
                // in the first half.
                let offset = at - first_len;
                let amount_in_second = second_len - offset;
                ptr::copy_nonoverlapping(
                    second_half.as_ptr().add(offset),
                    other.ptr(),
                    amount_in_second,
                );
            }
        }

        // Cleanup where the ends of the buffers are
        self.head = self.wrap_sub(self.head, other_len);
        other.head = other.wrap_index(other_len);

        other
    }

    /// Moves all the elements of `other` into `self`, leaving `other` empty.
    ///
    /// # Panics
    ///
    /// Panics if the new number of elements in self overflows a `usize`.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::collections::VecDeque;
    ///
    /// let mut buf: VecDeque<_> = [1, 2].into();
    /// let mut buf2: VecDeque<_> = [3, 4].into();
    /// buf.append(&mut buf2);
    /// assert_eq!(buf, [1, 2, 3, 4]);
    /// assert_eq!(buf2, []);
    /// ```
    #[inline]
    #[stable(feature = "append", since = "1.4.0")]
    pub fn append(&mut self, other: &mut Self) {
        self.reserve(other.len());
        unsafe {
            let (left, right) = other.as_slices();
            self.copy_slice(self.head, left);
            self.copy_slice(self.wrap_add(self.head, left.len()), right);
        }
        // SAFETY: Update pointers after copying to avoid leaving doppelganger
        // in case of panics.
        self.head = self.wrap_add(self.head, other.len());
        // Silently drop values in `other`.
        other.tail = other.head;
    }

    /// Retains only the elements specified by the predicate.
    ///
    /// In other words, remove all elements `e` for which `f(&e)` returns false.
    /// This method operates in place, visiting each element exactly once in the
    /// original order, and preserves the order of the retained elements.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::collections::VecDeque;
    ///
    /// let mut buf = VecDeque::new();
    /// buf.extend(1..5);
    /// buf.retain(|&x| x % 2 == 0);
    /// assert_eq!(buf, [2, 4]);
    /// ```
    ///
    /// Because the elements are visited exactly once in the original order,
    /// external state may be used to decide which elements to keep.
    ///
    /// ```
    /// use std::collections::VecDeque;
    ///
    /// let mut buf = VecDeque::new();
    /// buf.extend(1..6);
    ///
    /// let keep = [false, true, true, false, true];
    /// let mut iter = keep.iter();
    /// buf.retain(|_| *iter.next().unwrap());
    /// assert_eq!(buf, [2, 3, 5]);
    /// ```
    #[stable(feature = "vec_deque_retain", since = "1.4.0")]
    pub fn retain<F>(&mut self, mut f: F)
    where
        F: FnMut(&T) -> bool,
    {
        self.retain_mut(|elem| f(elem));
    }

    /// Retains only the elements specified by the predicate.
    ///
    /// In other words, remove all elements `e` for which `f(&e)` returns false.
    /// This method operates in place, visiting each element exactly once in the
    /// original order, and preserves the order of the retained elements.
    ///
    /// # Examples
    ///
    /// ```
    /// #![feature(vec_retain_mut)]
    ///
    /// use std::collections::VecDeque;
    ///
    /// let mut buf = VecDeque::new();
    /// buf.extend(1..5);
    /// buf.retain_mut(|x| if *x % 2 == 0 {
    ///     *x += 1;
    ///     true
    /// } else {
    ///     false
    /// });
    /// assert_eq!(buf, [3, 5]);
    /// ```
    #[unstable(feature = "vec_retain_mut", issue = "90829")]
    pub fn retain_mut<F>(&mut self, mut f: F)
    where
        F: FnMut(&mut T) -> bool,
    {
        let len = self.len();
        let mut idx = 0;
        let mut cur = 0;

        // Stage 1: All values are retained.
        while cur < len {
            if !f(&mut self[cur]) {
                cur += 1;
                break;
            }
            cur += 1;
            idx += 1;
        }
        // Stage 2: Swap retained value into current idx.
        while cur < len {
            if !f(&mut self[cur]) {
                cur += 1;
                continue;
            }

            self.swap(idx, cur);
            cur += 1;
            idx += 1;
        }
        // Stage 3: Truncate all values after idx.
        if cur != idx {
            self.truncate(idx);
        }
    }

    // Double the buffer size. This method is inline(never), so we expect it to only
    // be called in cold paths.
    // This may panic or abort
    #[inline(never)]
    fn grow(&mut self) {
        // Extend or possibly remove this assertion when valid use-cases for growing the
        // buffer without it being full emerge
        debug_assert!(self.is_full());
        let old_cap = self.cap();
        self.buf.reserve_exact(old_cap, old_cap);
        assert!(self.cap() == old_cap * 2);
        unsafe {
            self.handle_capacity_increase(old_cap);
        }
        debug_assert!(!self.is_full());
    }

    /// Modifies the deque in-place so that `len()` is equal to `new_len`,
    /// either by removing excess elements from the back or by appending
    /// elements generated by calling `generator` to the back.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::collections::VecDeque;
    ///
    /// let mut buf = VecDeque::new();
    /// buf.push_back(5);
    /// buf.push_back(10);
    /// buf.push_back(15);
    /// assert_eq!(buf, [5, 10, 15]);
    ///
    /// buf.resize_with(5, Default::default);
    /// assert_eq!(buf, [5, 10, 15, 0, 0]);
    ///
    /// buf.resize_with(2, || unreachable!());
    /// assert_eq!(buf, [5, 10]);
    ///
    /// let mut state = 100;
    /// buf.resize_with(5, || { state += 1; state });
    /// assert_eq!(buf, [5, 10, 101, 102, 103]);
    /// ```
    #[stable(feature = "vec_resize_with", since = "1.33.0")]
    pub fn resize_with(&mut self, new_len: usize, generator: impl FnMut() -> T) {
        let len = self.len();

        if new_len > len {
            self.extend(repeat_with(generator).take(new_len - len))
        } else {
            self.truncate(new_len);
        }
    }

    /// Rearranges the internal storage of this deque so it is one contiguous
    /// slice, which is then returned.
    ///
    /// This method does not allocate and does not change the order of the
    /// inserted elements. As it returns a mutable slice, this can be used to
    /// sort a deque.
    ///
    /// Once the internal storage is contiguous, the [`as_slices`] and
    /// [`as_mut_slices`] methods will return the entire contents of the
    /// deque in a single slice.
    ///
    /// [`as_slices`]: VecDeque::as_slices
    /// [`as_mut_slices`]: VecDeque::as_mut_slices
    ///
    /// # Examples
    ///
    /// Sorting the content of a deque.
    ///
    /// ```
    /// use std::collections::VecDeque;
    ///
    /// let mut buf = VecDeque::with_capacity(15);
    ///
    /// buf.push_back(2);
    /// buf.push_back(1);
    /// buf.push_front(3);
    ///
    /// // sorting the deque
    /// buf.make_contiguous().sort();
    /// assert_eq!(buf.as_slices(), (&[1, 2, 3] as &[_], &[] as &[_]));
    ///
    /// // sorting it in reverse order
    /// buf.make_contiguous().sort_by(|a, b| b.cmp(a));
    /// assert_eq!(buf.as_slices(), (&[3, 2, 1] as &[_], &[] as &[_]));
    /// ```
    ///
    /// Getting immutable access to the contiguous slice.
    ///
    /// ```rust
    /// use std::collections::VecDeque;
    ///
    /// let mut buf = VecDeque::new();
    ///
    /// buf.push_back(2);
    /// buf.push_back(1);
    /// buf.push_front(3);
    ///
    /// buf.make_contiguous();
    /// if let (slice, &[]) = buf.as_slices() {
    ///     // we can now be sure that `slice` contains all elements of the deque,
    ///     // while still having immutable access to `buf`.
    ///     assert_eq!(buf.len(), slice.len());
    ///     assert_eq!(slice, &[3, 2, 1] as &[_]);
    /// }
    /// ```
    #[stable(feature = "deque_make_contiguous", since = "1.48.0")]
    pub fn make_contiguous(&mut self) -> &mut [T] {
        if self.is_contiguous() {
            let tail = self.tail;
            let head = self.head;
            // Safety:
            // - `self.head` and `self.tail` in a ring buffer are always valid indices.
            // - `RingSlices::ring_slices` guarantees that the slices split according to `self.head` and `self.tail` are initialized.
            return unsafe {
                MaybeUninit::slice_assume_init_mut(
                    RingSlices::ring_slices(self.buffer_as_mut_slice(), head, tail).0,
                )
            };
        }

        let buf = self.buf.ptr();
        let cap = self.cap();
        let len = self.len();

        let free = self.tail - self.head;
        let tail_len = cap - self.tail;

        if free >= tail_len {
            // there is enough free space to copy the tail in one go,
            // this means that we first shift the head backwards, and then
            // copy the tail to the correct position.
            //
            // from: DEFGH....ABC
            // to:   ABCDEFGH....
            unsafe {
                ptr::copy(buf, buf.add(tail_len), self.head);
                // ...DEFGH.ABC
                ptr::copy_nonoverlapping(buf.add(self.tail), buf, tail_len);
                // ABCDEFGH....

                self.tail = 0;
                self.head = len;
            }
        } else if free > self.head {
            // FIXME: We currently do not consider ....ABCDEFGH
            // to be contiguous because `head` would be `0` in this
            // case. While we probably want to change this it
            // isn't trivial as a few places expect `is_contiguous`
            // to mean that we can just slice using `buf[tail..head]`.

            // there is enough free space to copy the head in one go,
            // this means that we first shift the tail forwards, and then
            // copy the head to the correct position.
            //
            // from: FGH....ABCDE
            // to:   ...ABCDEFGH.
            unsafe {
                ptr::copy(buf.add(self.tail), buf.add(self.head), tail_len);
                // FGHABCDE....
                ptr::copy_nonoverlapping(buf, buf.add(self.head + tail_len), self.head);
                // ...ABCDEFGH.

                self.tail = self.head;
                self.head = self.wrap_add(self.tail, len);
            }
        } else {
            // free is smaller than both head and tail,
            // this means we have to slowly "swap" the tail and the head.
            //
            // from: EFGHI...ABCD or HIJK.ABCDEFG
            // to:   ABCDEFGHI... or ABCDEFGHIJK.
            let mut left_edge: usize = 0;
            let mut right_edge: usize = self.tail;
            unsafe {
                // The general problem looks like this
                // GHIJKLM...ABCDEF - before any swaps
                // ABCDEFM...GHIJKL - after 1 pass of swaps
                // ABCDEFGHIJM...KL - swap until the left edge reaches the temp store
                //                  - then restart the algorithm with a new (smaller) store
                // Sometimes the temp store is reached when the right edge is at the end
                // of the buffer - this means we've hit the right order with fewer swaps!
                // E.g
                // EF..ABCD
                // ABCDEF.. - after four only swaps we've finished
                while left_edge < len && right_edge != cap {
                    let mut right_offset = 0;
                    for i in left_edge..right_edge {
                        right_offset = (i - left_edge) % (cap - right_edge);
                        let src: isize = (right_edge + right_offset) as isize;
                        ptr::swap(buf.add(i), buf.offset(src));
                    }
                    let n_ops = right_edge - left_edge;
                    left_edge += n_ops;
                    right_edge += right_offset + 1;
                }

                self.tail = 0;
                self.head = len;
            }
        }

        let tail = self.tail;
        let head = self.head;
        // Safety:
        // - `self.head` and `self.tail` in a ring buffer are always valid indices.
        // - `RingSlices::ring_slices` guarantees that the slices split according to `self.head` and `self.tail` are initialized.
        unsafe {
            MaybeUninit::slice_assume_init_mut(
                RingSlices::ring_slices(self.buffer_as_mut_slice(), head, tail).0,
            )
        }
    }

    /// Rotates the double-ended queue `mid` places to the left.
    ///
    /// Equivalently,
    /// - Rotates item `mid` into the first position.
    /// - Pops the first `mid` items and pushes them to the end.
    /// - Rotates `len() - mid` places to the right.
    ///
    /// # Panics
    ///
    /// If `mid` is greater than `len()`. Note that `mid == len()`
    /// does _not_ panic and is a no-op rotation.
    ///
    /// # Complexity
    ///
    /// Takes `*O*(min(mid, len() - mid))` time and no extra space.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::collections::VecDeque;
    ///
    /// let mut buf: VecDeque<_> = (0..10).collect();
    ///
    /// buf.rotate_left(3);
    /// assert_eq!(buf, [3, 4, 5, 6, 7, 8, 9, 0, 1, 2]);
    ///
    /// for i in 1..10 {
    ///     assert_eq!(i * 3 % 10, buf[0]);
    ///     buf.rotate_left(3);
    /// }
    /// assert_eq!(buf, [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]);
    /// ```
    #[stable(feature = "vecdeque_rotate", since = "1.36.0")]
    pub fn rotate_left(&mut self, mid: usize) {
        assert!(mid <= self.len());
        let k = self.len() - mid;
        if mid <= k {
            unsafe { self.rotate_left_inner(mid) }
        } else {
            unsafe { self.rotate_right_inner(k) }
        }
    }

    /// Rotates the double-ended queue `k` places to the right.
    ///
    /// Equivalently,
    /// - Rotates the first item into position `k`.
    /// - Pops the last `k` items and pushes them to the front.
    /// - Rotates `len() - k` places to the left.
    ///
    /// # Panics
    ///
    /// If `k` is greater than `len()`. Note that `k == len()`
    /// does _not_ panic and is a no-op rotation.
    ///
    /// # Complexity
    ///
    /// Takes `*O*(min(k, len() - k))` time and no extra space.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::collections::VecDeque;
    ///
    /// let mut buf: VecDeque<_> = (0..10).collect();
    ///
    /// buf.rotate_right(3);
    /// assert_eq!(buf, [7, 8, 9, 0, 1, 2, 3, 4, 5, 6]);
    ///
    /// for i in 1..10 {
    ///     assert_eq!(0, buf[i * 3 % 10]);
    ///     buf.rotate_right(3);
    /// }
    /// assert_eq!(buf, [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]);
    /// ```
    #[stable(feature = "vecdeque_rotate", since = "1.36.0")]
    pub fn rotate_right(&mut self, k: usize) {
        assert!(k <= self.len());
        let mid = self.len() - k;
        if k <= mid {
            unsafe { self.rotate_right_inner(k) }
        } else {
            unsafe { self.rotate_left_inner(mid) }
        }
    }

    // SAFETY: the following two methods require that the rotation amount
    // be less than half the length of the deque.
    //
    // `wrap_copy` requires that `min(x, cap() - x) + copy_len <= cap()`,
    // but than `min` is never more than half the capacity, regardless of x,
    // so it's sound to call here because we're calling with something
    // less than half the length, which is never above half the capacity.

    unsafe fn rotate_left_inner(&mut self, mid: usize) {
        debug_assert!(mid * 2 <= self.len());
        unsafe {
            self.wrap_copy(self.head, self.tail, mid);
        }
        self.head = self.wrap_add(self.head, mid);
        self.tail = self.wrap_add(self.tail, mid);
    }

    unsafe fn rotate_right_inner(&mut self, k: usize) {
        debug_assert!(k * 2 <= self.len());
        self.head = self.wrap_sub(self.head, k);
        self.tail = self.wrap_sub(self.tail, k);
        unsafe {
            self.wrap_copy(self.tail, self.head, k);
        }
    }

    /// Binary searches the sorted deque for a given element.
    ///
    /// If the value is found then [`Result::Ok`] is returned, containing the
    /// index of the matching element. If there are multiple matches, then any
    /// one of the matches could be returned. If the value is not found then
    /// [`Result::Err`] is returned, containing the index where a matching
    /// element could be inserted while maintaining sorted order.
    ///
    /// See also [`binary_search_by`], [`binary_search_by_key`], and [`partition_point`].
    ///
    /// [`binary_search_by`]: VecDeque::binary_search_by
    /// [`binary_search_by_key`]: VecDeque::binary_search_by_key
    /// [`partition_point`]: VecDeque::partition_point
    ///
    /// # Examples
    ///
    /// Looks up a series of four elements. The first is found, with a
    /// uniquely determined position; the second and third are not
    /// found; the fourth could match any position in `[1, 4]`.
    ///
    /// ```
    /// use std::collections::VecDeque;
    ///
    /// let deque: VecDeque<_> = [0, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55].into();
    ///
    /// assert_eq!(deque.binary_search(&13),  Ok(9));
    /// assert_eq!(deque.binary_search(&4),   Err(7));
    /// assert_eq!(deque.binary_search(&100), Err(13));
    /// let r = deque.binary_search(&1);
    /// assert!(matches!(r, Ok(1..=4)));
    /// ```
    ///
    /// If you want to insert an item to a sorted deque, while maintaining
    /// sort order:
    ///
    /// ```
    /// use std::collections::VecDeque;
    ///
    /// let mut deque: VecDeque<_> = [0, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55].into();
    /// let num = 42;
    /// let idx = deque.binary_search(&num).unwrap_or_else(|x| x);
    /// deque.insert(idx, num);
    /// assert_eq!(deque, &[0, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 42, 55]);
    /// ```
    #[stable(feature = "vecdeque_binary_search", since = "1.54.0")]
    #[inline]
    pub fn binary_search(&self, x: &T) -> Result<usize, usize>
    where
        T: Ord,
    {
        self.binary_search_by(|e| e.cmp(x))
    }

    /// Binary searches the sorted deque with a comparator function.
    ///
    /// The comparator function should implement an order consistent
    /// with the sort order of the deque, returning an order code that
    /// indicates whether its argument is `Less`, `Equal` or `Greater`
    /// than the desired target.
    ///
    /// If the value is found then [`Result::Ok`] is returned, containing the
    /// index of the matching element. If there are multiple matches, then any
    /// one of the matches could be returned. If the value is not found then
    /// [`Result::Err`] is returned, containing the index where a matching
    /// element could be inserted while maintaining sorted order.
    ///
    /// See also [`binary_search`], [`binary_search_by_key`], and [`partition_point`].
    ///
    /// [`binary_search`]: VecDeque::binary_search
    /// [`binary_search_by_key`]: VecDeque::binary_search_by_key
    /// [`partition_point`]: VecDeque::partition_point
    ///
    /// # Examples
    ///
    /// Looks up a series of four elements. The first is found, with a
    /// uniquely determined position; the second and third are not
    /// found; the fourth could match any position in `[1, 4]`.
    ///
    /// ```
    /// use std::collections::VecDeque;
    ///
    /// let deque: VecDeque<_> = [0, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55].into();
    ///
    /// assert_eq!(deque.binary_search_by(|x| x.cmp(&13)),  Ok(9));
    /// assert_eq!(deque.binary_search_by(|x| x.cmp(&4)),   Err(7));
    /// assert_eq!(deque.binary_search_by(|x| x.cmp(&100)), Err(13));
    /// let r = deque.binary_search_by(|x| x.cmp(&1));
    /// assert!(matches!(r, Ok(1..=4)));
    /// ```
    #[stable(feature = "vecdeque_binary_search", since = "1.54.0")]
    pub fn binary_search_by<'a, F>(&'a self, mut f: F) -> Result<usize, usize>
    where
        F: FnMut(&'a T) -> Ordering,
    {
        let (front, back) = self.as_slices();
        let cmp_back = back.first().map(|elem| f(elem));

        if let Some(Ordering::Equal) = cmp_back {
            Ok(front.len())
        } else if let Some(Ordering::Less) = cmp_back {
            back.binary_search_by(f).map(|idx| idx + front.len()).map_err(|idx| idx + front.len())
        } else {
            front.binary_search_by(f)
        }
    }

    /// Binary searches the sorted deque with a key extraction function.
    ///
    /// Assumes that the deque is sorted by the key, for instance with
    /// [`make_contiguous().sort_by_key()`] using the same key extraction function.
    ///
    /// If the value is found then [`Result::Ok`] is returned, containing the
    /// index of the matching element. If there are multiple matches, then any
    /// one of the matches could be returned. If the value is not found then
    /// [`Result::Err`] is returned, containing the index where a matching
    /// element could be inserted while maintaining sorted order.
    ///
    /// See also [`binary_search`], [`binary_search_by`], and [`partition_point`].
    ///
    /// [`make_contiguous().sort_by_key()`]: VecDeque::make_contiguous
    /// [`binary_search`]: VecDeque::binary_search
    /// [`binary_search_by`]: VecDeque::binary_search_by
    /// [`partition_point`]: VecDeque::partition_point
    ///
    /// # Examples
    ///
    /// Looks up a series of four elements in a slice of pairs sorted by
    /// their second elements. The first is found, with a uniquely
    /// determined position; the second and third are not found; the
    /// fourth could match any position in `[1, 4]`.
    ///
    /// ```
    /// use std::collections::VecDeque;
    ///
    /// let deque: VecDeque<_> = [(0, 0), (2, 1), (4, 1), (5, 1),
    ///          (3, 1), (1, 2), (2, 3), (4, 5), (5, 8), (3, 13),
    ///          (1, 21), (2, 34), (4, 55)].into();
    ///
    /// assert_eq!(deque.binary_search_by_key(&13, |&(a, b)| b),  Ok(9));
    /// assert_eq!(deque.binary_search_by_key(&4, |&(a, b)| b),   Err(7));
    /// assert_eq!(deque.binary_search_by_key(&100, |&(a, b)| b), Err(13));
    /// let r = deque.binary_search_by_key(&1, |&(a, b)| b);
    /// assert!(matches!(r, Ok(1..=4)));
    /// ```
    #[stable(feature = "vecdeque_binary_search", since = "1.54.0")]
    #[inline]
    pub fn binary_search_by_key<'a, B, F>(&'a self, b: &B, mut f: F) -> Result<usize, usize>
    where
        F: FnMut(&'a T) -> B,
        B: Ord,
    {
        self.binary_search_by(|k| f(k).cmp(b))
    }

    /// Returns the index of the partition point according to the given predicate
    /// (the index of the first element of the second partition).
    ///
    /// The deque is assumed to be partitioned according to the given predicate.
    /// This means that all elements for which the predicate returns true are at the start of the deque
    /// and all elements for which the predicate returns false are at the end.
    /// For example, [7, 15, 3, 5, 4, 12, 6] is a partitioned under the predicate x % 2 != 0
    /// (all odd numbers are at the start, all even at the end).
    ///
    /// If the deque is not partitioned, the returned result is unspecified and meaningless,
    /// as this method performs a kind of binary search.
    ///
    /// See also [`binary_search`], [`binary_search_by`], and [`binary_search_by_key`].
    ///
    /// [`binary_search`]: VecDeque::binary_search
    /// [`binary_search_by`]: VecDeque::binary_search_by
    /// [`binary_search_by_key`]: VecDeque::binary_search_by_key
    ///
    /// # Examples
    ///
    /// ```
    /// use std::collections::VecDeque;
    ///
    /// let deque: VecDeque<_> = [1, 2, 3, 3, 5, 6, 7].into();
    /// let i = deque.partition_point(|&x| x < 5);
    ///
    /// assert_eq!(i, 4);
    /// assert!(deque.iter().take(i).all(|&x| x < 5));
    /// assert!(deque.iter().skip(i).all(|&x| !(x < 5)));
    /// ```
    #[stable(feature = "vecdeque_binary_search", since = "1.54.0")]
    pub fn partition_point<P>(&self, mut pred: P) -> usize
    where
        P: FnMut(&T) -> bool,
    {
        let (front, back) = self.as_slices();

        if let Some(true) = back.first().map(|v| pred(v)) {
            back.partition_point(pred) + front.len()
        } else {
            front.partition_point(pred)
        }
    }
}

impl<T: Clone, A: Allocator> VecDeque<T, A> {
    /// Modifies the deque in-place so that `len()` is equal to new_len,
    /// either by removing excess elements from the back or by appending clones of `value`
    /// to the back.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::collections::VecDeque;
    ///
    /// let mut buf = VecDeque::new();
    /// buf.push_back(5);
    /// buf.push_back(10);
    /// buf.push_back(15);
    /// assert_eq!(buf, [5, 10, 15]);
    ///
    /// buf.resize(2, 0);
    /// assert_eq!(buf, [5, 10]);
    ///
    /// buf.resize(5, 20);
    /// assert_eq!(buf, [5, 10, 20, 20, 20]);
    /// ```
    #[stable(feature = "deque_extras", since = "1.16.0")]
    pub fn resize(&mut self, new_len: usize, value: T) {
        self.resize_with(new_len, || value.clone());
    }
}

/// Returns the index in the underlying buffer for a given logical element index.
#[inline]
fn wrap_index(index: usize, size: usize) -> usize {
    // size is always a power of 2
    debug_assert!(size.is_power_of_two());
    index & (size - 1)
}

/// Calculate the number of elements left to be read in the buffer
#[inline]
fn count(tail: usize, head: usize, size: usize) -> usize {
    // size is always a power of 2
    (head.wrapping_sub(tail)) & (size - 1)
}

#[stable(feature = "rust1", since = "1.0.0")]
impl<T: PartialEq, A: Allocator> PartialEq for VecDeque<T, A> {
    fn eq(&self, other: &Self) -> bool {
        if self.len() != other.len() {
            return false;
        }
        let (sa, sb) = self.as_slices();
        let (oa, ob) = other.as_slices();
        if sa.len() == oa.len() {
            sa == oa && sb == ob
        } else if sa.len() < oa.len() {
            // Always divisible in three sections, for example:
            // self:  [a b c|d e f]
            // other: [0 1 2 3|4 5]
            // front = 3, mid = 1,
            // [a b c] == [0 1 2] && [d] == [3] && [e f] == [4 5]
            let front = sa.len();
            let mid = oa.len() - front;

            let (oa_front, oa_mid) = oa.split_at(front);
            let (sb_mid, sb_back) = sb.split_at(mid);
            debug_assert_eq!(sa.len(), oa_front.len());
            debug_assert_eq!(sb_mid.len(), oa_mid.len());
            debug_assert_eq!(sb_back.len(), ob.len());
            sa == oa_front && sb_mid == oa_mid && sb_back == ob
        } else {
            let front = oa.len();
            let mid = sa.len() - front;

            let (sa_front, sa_mid) = sa.split_at(front);
            let (ob_mid, ob_back) = ob.split_at(mid);
            debug_assert_eq!(sa_front.len(), oa.len());
            debug_assert_eq!(sa_mid.len(), ob_mid.len());
            debug_assert_eq!(sb.len(), ob_back.len());
            sa_front == oa && sa_mid == ob_mid && sb == ob_back
        }
    }
}

#[stable(feature = "rust1", since = "1.0.0")]
impl<T: Eq, A: Allocator> Eq for VecDeque<T, A> {}

__impl_slice_eq1! { [] VecDeque<T, A>, Vec<U, A>, }
__impl_slice_eq1! { [] VecDeque<T, A>, &[U], }
__impl_slice_eq1! { [] VecDeque<T, A>, &mut [U], }
__impl_slice_eq1! { [const N: usize] VecDeque<T, A>, [U; N], }
__impl_slice_eq1! { [const N: usize] VecDeque<T, A>, &[U; N], }
__impl_slice_eq1! { [const N: usize] VecDeque<T, A>, &mut [U; N], }

#[stable(feature = "rust1", since = "1.0.0")]
impl<T: PartialOrd, A: Allocator> PartialOrd for VecDeque<T, A> {
    fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
        self.iter().partial_cmp(other.iter())
    }
}

#[stable(feature = "rust1", since = "1.0.0")]
impl<T: Ord, A: Allocator> Ord for VecDeque<T, A> {
    #[inline]
    fn cmp(&self, other: &Self) -> Ordering {
        self.iter().cmp(other.iter())
    }
}

#[stable(feature = "rust1", since = "1.0.0")]
impl<T: Hash, A: Allocator> Hash for VecDeque<T, A> {
    fn hash<H: Hasher>(&self, state: &mut H) {
        self.len().hash(state);
        // It's not possible to use Hash::hash_slice on slices
        // returned by as_slices method as their length can vary
        // in otherwise identical deques.
        //
        // Hasher only guarantees equivalence for the exact same
        // set of calls to its methods.
        self.iter().for_each(|elem| elem.hash(state));
    }
}

#[stable(feature = "rust1", since = "1.0.0")]
impl<T, A: Allocator> Index<usize> for VecDeque<T, A> {
    type Output = T;

    #[inline]
    fn index(&self, index: usize) -> &T {
        self.get(index).expect("Out of bounds access")
    }
}

#[stable(feature = "rust1", since = "1.0.0")]
impl<T, A: Allocator> IndexMut<usize> for VecDeque<T, A> {
    #[inline]
    fn index_mut(&mut self, index: usize) -> &mut T {
        self.get_mut(index).expect("Out of bounds access")
    }
}

#[stable(feature = "rust1", since = "1.0.0")]
impl<T> FromIterator<T> for VecDeque<T> {
    fn from_iter<I: IntoIterator<Item = T>>(iter: I) -> VecDeque<T> {
        let iterator = iter.into_iter();
        let (lower, _) = iterator.size_hint();
        let mut deq = VecDeque::with_capacity(lower);
        deq.extend(iterator);
        deq
    }
}

#[stable(feature = "rust1", since = "1.0.0")]
impl<T, A: Allocator> IntoIterator for VecDeque<T, A> {
    type Item = T;
    type IntoIter = IntoIter<T, A>;

    /// Consumes the deque into a front-to-back iterator yielding elements by
    /// value.
    fn into_iter(self) -> IntoIter<T, A> {
        IntoIter::new(self)
    }
}

#[stable(feature = "rust1", since = "1.0.0")]
impl<'a, T, A: Allocator> IntoIterator for &'a VecDeque<T, A> {
    type Item = &'a T;
    type IntoIter = Iter<'a, T>;

    fn into_iter(self) -> Iter<'a, T> {
        self.iter()
    }
}

#[stable(feature = "rust1", since = "1.0.0")]
impl<'a, T, A: Allocator> IntoIterator for &'a mut VecDeque<T, A> {
    type Item = &'a mut T;
    type IntoIter = IterMut<'a, T>;

    fn into_iter(self) -> IterMut<'a, T> {
        self.iter_mut()
    }
}

#[stable(feature = "rust1", since = "1.0.0")]
impl<T, A: Allocator> Extend<T> for VecDeque<T, A> {
    fn extend<I: IntoIterator<Item = T>>(&mut self, iter: I) {
        // This function should be the moral equivalent of:
        //
        //      for item in iter.into_iter() {
        //          self.push_back(item);
        //      }
        let mut iter = iter.into_iter();
        while let Some(element) = iter.next() {
            if self.len() == self.capacity() {
                let (lower, _) = iter.size_hint();
                self.reserve(lower.saturating_add(1));
            }

            let head = self.head;
            self.head = self.wrap_add(self.head, 1);
            unsafe {
                self.buffer_write(head, element);
            }
        }
    }

    #[inline]
    fn extend_one(&mut self, elem: T) {
        self.push_back(elem);
    }

    #[inline]
    fn extend_reserve(&mut self, additional: usize) {
        self.reserve(additional);
    }
}

#[stable(feature = "extend_ref", since = "1.2.0")]
impl<'a, T: 'a + Copy, A: Allocator> Extend<&'a T> for VecDeque<T, A> {
    fn extend<I: IntoIterator<Item = &'a T>>(&mut self, iter: I) {
        self.extend(iter.into_iter().cloned());
    }

    #[inline]
    fn extend_one(&mut self, &elem: &T) {
        self.push_back(elem);
    }

    #[inline]
    fn extend_reserve(&mut self, additional: usize) {
        self.reserve(additional);
    }
}

#[stable(feature = "rust1", since = "1.0.0")]
impl<T: fmt::Debug, A: Allocator> fmt::Debug for VecDeque<T, A> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.debug_list().entries(self).finish()
    }
}

#[stable(feature = "vecdeque_vec_conversions", since = "1.10.0")]
impl<T, A: Allocator> From<Vec<T, A>> for VecDeque<T, A> {
    /// Turn a [`Vec<T>`] into a [`VecDeque<T>`].
    ///
    /// [`Vec<T>`]: crate::vec::Vec
    /// [`VecDeque<T>`]: crate::collections::VecDeque
    ///
    /// This avoids reallocating where possible, but the conditions for that are
    /// strict, and subject to change, and so shouldn't be relied upon unless the
    /// `Vec<T>` came from `From<VecDeque<T>>` and hasn't been reallocated.
    fn from(mut other: Vec<T, A>) -> Self {
        let len = other.len();
        if mem::size_of::<T>() == 0 {
            // There's no actual allocation for ZSTs to worry about capacity,
            // but `VecDeque` can't handle as much length as `Vec`.
            assert!(len < MAXIMUM_ZST_CAPACITY, "capacity overflow");
        } else {
            // We need to resize if the capacity is not a power of two, too small or
            // doesn't have at least one free space. We do this while it's still in
            // the `Vec` so the items will drop on panic.
            let min_cap = cmp::max(MINIMUM_CAPACITY, len) + 1;
            let cap = cmp::max(min_cap, other.capacity()).next_power_of_two();
            if other.capacity() != cap {
                other.reserve_exact(cap - len);
            }
        }

        unsafe {
            let (other_buf, len, capacity, alloc) = other.into_raw_parts_with_alloc();
            let buf = RawVec::from_raw_parts_in(other_buf, capacity, alloc);
            VecDeque { tail: 0, head: len, buf }
        }
    }
}

#[stable(feature = "vecdeque_vec_conversions", since = "1.10.0")]
impl<T, A: Allocator> From<VecDeque<T, A>> for Vec<T, A> {
    /// Turn a [`VecDeque<T>`] into a [`Vec<T>`].
    ///
    /// [`Vec<T>`]: crate::vec::Vec
    /// [`VecDeque<T>`]: crate::collections::VecDeque
    ///
    /// This never needs to re-allocate, but does need to do *O*(*n*) data movement if
    /// the circular buffer doesn't happen to be at the beginning of the allocation.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::collections::VecDeque;
    ///
    /// // This one is *O*(1).
    /// let deque: VecDeque<_> = (1..5).collect();
    /// let ptr = deque.as_slices().0.as_ptr();
    /// let vec = Vec::from(deque);
    /// assert_eq!(vec, [1, 2, 3, 4]);
    /// assert_eq!(vec.as_ptr(), ptr);
    ///
    /// // This one needs data rearranging.
    /// let mut deque: VecDeque<_> = (1..5).collect();
    /// deque.push_front(9);
    /// deque.push_front(8);
    /// let ptr = deque.as_slices().1.as_ptr();
    /// let vec = Vec::from(deque);
    /// assert_eq!(vec, [8, 9, 1, 2, 3, 4]);
    /// assert_eq!(vec.as_ptr(), ptr);
    /// ```
    fn from(mut other: VecDeque<T, A>) -> Self {
        other.make_contiguous();

        unsafe {
            let other = ManuallyDrop::new(other);
            let buf = other.buf.ptr();
            let len = other.len();
            let cap = other.cap();
            let alloc = ptr::read(other.allocator());

            if other.tail != 0 {
                ptr::copy(buf.add(other.tail), buf, len);
            }
            Vec::from_raw_parts_in(buf, len, cap, alloc)
        }
    }
}

#[stable(feature = "std_collections_from_array", since = "1.56.0")]
impl<T, const N: usize> From<[T; N]> for VecDeque<T> {
    /// Converts a `[T; N]` into a `VecDeque<T>`.
    ///
    /// ```
    /// use std::collections::VecDeque;
    ///
    /// let deq1 = VecDeque::from([1, 2, 3, 4]);
    /// let deq2: VecDeque<_> = [1, 2, 3, 4].into();
    /// assert_eq!(deq1, deq2);
    /// ```
    fn from(arr: [T; N]) -> Self {
        let mut deq = VecDeque::with_capacity(N);
        let arr = ManuallyDrop::new(arr);
        if mem::size_of::<T>() != 0 {
            // SAFETY: VecDeque::with_capacity ensures that there is enough capacity.
            unsafe {
                ptr::copy_nonoverlapping(arr.as_ptr(), deq.ptr(), N);
            }
        }
        deq.tail = 0;
        deq.head = N;
        deq
    }
}