1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077
//! Slice management and manipulation.
//!
//! For more details see [`std::slice`].
//!
//! [`std::slice`]: ../../std/slice/index.html
#![stable(feature = "rust1", since = "1.0.0")]
use crate::cmp::Ordering::{self, Greater, Less};
use crate::marker::Copy;
use crate::mem;
use crate::num::NonZeroUsize;
use crate::ops::{Bound, FnMut, OneSidedRange, Range, RangeBounds};
use crate::option::Option;
use crate::option::Option::{None, Some};
use crate::ptr;
use crate::result::Result;
use crate::result::Result::{Err, Ok};
use crate::simd::{self, Simd};
use crate::slice;
#[unstable(
feature = "slice_internals",
issue = "none",
reason = "exposed from core to be reused in std; use the memchr crate"
)]
/// Pure rust memchr implementation, taken from rust-memchr
pub mod memchr;
mod ascii;
mod cmp;
mod index;
mod iter;
mod raw;
mod rotate;
mod sort;
mod specialize;
#[stable(feature = "rust1", since = "1.0.0")]
pub use iter::{Chunks, ChunksMut, Windows};
#[stable(feature = "rust1", since = "1.0.0")]
pub use iter::{Iter, IterMut};
#[stable(feature = "rust1", since = "1.0.0")]
pub use iter::{RSplitN, RSplitNMut, Split, SplitMut, SplitN, SplitNMut};
#[stable(feature = "slice_rsplit", since = "1.27.0")]
pub use iter::{RSplit, RSplitMut};
#[stable(feature = "chunks_exact", since = "1.31.0")]
pub use iter::{ChunksExact, ChunksExactMut};
#[stable(feature = "rchunks", since = "1.31.0")]
pub use iter::{RChunks, RChunksExact, RChunksExactMut, RChunksMut};
#[unstable(feature = "array_chunks", issue = "74985")]
pub use iter::{ArrayChunks, ArrayChunksMut};
#[unstable(feature = "array_windows", issue = "75027")]
pub use iter::ArrayWindows;
#[unstable(feature = "slice_group_by", issue = "80552")]
pub use iter::{GroupBy, GroupByMut};
#[stable(feature = "split_inclusive", since = "1.51.0")]
pub use iter::{SplitInclusive, SplitInclusiveMut};
#[stable(feature = "rust1", since = "1.0.0")]
pub use raw::{from_raw_parts, from_raw_parts_mut};
#[stable(feature = "from_ref", since = "1.28.0")]
pub use raw::{from_mut, from_ref};
#[unstable(feature = "slice_from_ptr_range", issue = "89792")]
pub use raw::{from_mut_ptr_range, from_ptr_range};
// This function is public only because there is no other way to unit test heapsort.
#[unstable(feature = "sort_internals", reason = "internal to sort module", issue = "none")]
pub use sort::heapsort;
#[stable(feature = "slice_get_slice", since = "1.28.0")]
pub use index::SliceIndex;
#[unstable(feature = "slice_range", issue = "76393")]
pub use index::range;
#[stable(feature = "inherent_ascii_escape", since = "1.60.0")]
pub use ascii::EscapeAscii;
/// Calculates the direction and split point of a one-sided range.
///
/// This is a helper function for `take` and `take_mut` that returns
/// the direction of the split (front or back) as well as the index at
/// which to split. Returns `None` if the split index would overflow.
#[inline]
fn split_point_of(range: impl OneSidedRange<usize>) -> Option<(Direction, usize)> {
use Bound::*;
Some(match (range.start_bound(), range.end_bound()) {
(Unbounded, Excluded(i)) => (Direction::Front, *i),
(Unbounded, Included(i)) => (Direction::Front, i.checked_add(1)?),
(Excluded(i), Unbounded) => (Direction::Back, i.checked_add(1)?),
(Included(i), Unbounded) => (Direction::Back, *i),
_ => unreachable!(),
})
}
enum Direction {
Front,
Back,
}
#[cfg_attr(bootstrap, lang = "slice")]
#[cfg(not(test))]
impl<T> [T] {
/// Returns the number of elements in the slice.
///
/// # Examples
///
/// ```
/// let a = [1, 2, 3];
/// assert_eq!(a.len(), 3);
/// ```
#[lang = "slice_len_fn"]
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_const_stable(feature = "const_slice_len", since = "1.39.0")]
#[inline]
#[must_use]
// SAFETY: const sound because we transmute out the length field as a usize (which it must be)
pub const fn len(&self) -> usize {
// FIXME: Replace with `crate::ptr::metadata(self)` when that is const-stable.
// As of this writing this causes a "Const-stable functions can only call other
// const-stable functions" error.
// SAFETY: Accessing the value from the `PtrRepr` union is safe since *const T
// and PtrComponents<T> have the same memory layouts. Only std can make this
// guarantee.
unsafe { crate::ptr::PtrRepr { const_ptr: self }.components.metadata }
}
/// Returns `true` if the slice has a length of 0.
///
/// # Examples
///
/// ```
/// let a = [1, 2, 3];
/// assert!(!a.is_empty());
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_const_stable(feature = "const_slice_is_empty", since = "1.39.0")]
#[inline]
#[must_use]
pub const fn is_empty(&self) -> bool {
self.len() == 0
}
/// Returns the first element of the slice, or `None` if it is empty.
///
/// # Examples
///
/// ```
/// let v = [10, 40, 30];
/// assert_eq!(Some(&10), v.first());
///
/// let w: &[i32] = &[];
/// assert_eq!(None, w.first());
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_const_stable(feature = "const_slice_first_last_not_mut", since = "1.56.0")]
#[inline]
#[must_use]
pub const fn first(&self) -> Option<&T> {
if let [first, ..] = self { Some(first) } else { None }
}
/// Returns a mutable pointer to the first element of the slice, or `None` if it is empty.
///
/// # Examples
///
/// ```
/// let x = &mut [0, 1, 2];
///
/// if let Some(first) = x.first_mut() {
/// *first = 5;
/// }
/// assert_eq!(x, &[5, 1, 2]);
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_const_unstable(feature = "const_slice_first_last", issue = "83570")]
#[inline]
#[must_use]
pub const fn first_mut(&mut self) -> Option<&mut T> {
if let [first, ..] = self { Some(first) } else { None }
}
/// Returns the first and all the rest of the elements of the slice, or `None` if it is empty.
///
/// # Examples
///
/// ```
/// let x = &[0, 1, 2];
///
/// if let Some((first, elements)) = x.split_first() {
/// assert_eq!(first, &0);
/// assert_eq!(elements, &[1, 2]);
/// }
/// ```
#[stable(feature = "slice_splits", since = "1.5.0")]
#[rustc_const_stable(feature = "const_slice_first_last_not_mut", since = "1.56.0")]
#[inline]
#[must_use]
pub const fn split_first(&self) -> Option<(&T, &[T])> {
if let [first, tail @ ..] = self { Some((first, tail)) } else { None }
}
/// Returns the first and all the rest of the elements of the slice, or `None` if it is empty.
///
/// # Examples
///
/// ```
/// let x = &mut [0, 1, 2];
///
/// if let Some((first, elements)) = x.split_first_mut() {
/// *first = 3;
/// elements[0] = 4;
/// elements[1] = 5;
/// }
/// assert_eq!(x, &[3, 4, 5]);
/// ```
#[stable(feature = "slice_splits", since = "1.5.0")]
#[rustc_const_unstable(feature = "const_slice_first_last", issue = "83570")]
#[inline]
#[must_use]
pub const fn split_first_mut(&mut self) -> Option<(&mut T, &mut [T])> {
if let [first, tail @ ..] = self { Some((first, tail)) } else { None }
}
/// Returns the last and all the rest of the elements of the slice, or `None` if it is empty.
///
/// # Examples
///
/// ```
/// let x = &[0, 1, 2];
///
/// if let Some((last, elements)) = x.split_last() {
/// assert_eq!(last, &2);
/// assert_eq!(elements, &[0, 1]);
/// }
/// ```
#[stable(feature = "slice_splits", since = "1.5.0")]
#[rustc_const_stable(feature = "const_slice_first_last_not_mut", since = "1.56.0")]
#[inline]
#[must_use]
pub const fn split_last(&self) -> Option<(&T, &[T])> {
if let [init @ .., last] = self { Some((last, init)) } else { None }
}
/// Returns the last and all the rest of the elements of the slice, or `None` if it is empty.
///
/// # Examples
///
/// ```
/// let x = &mut [0, 1, 2];
///
/// if let Some((last, elements)) = x.split_last_mut() {
/// *last = 3;
/// elements[0] = 4;
/// elements[1] = 5;
/// }
/// assert_eq!(x, &[4, 5, 3]);
/// ```
#[stable(feature = "slice_splits", since = "1.5.0")]
#[rustc_const_unstable(feature = "const_slice_first_last", issue = "83570")]
#[inline]
#[must_use]
pub const fn split_last_mut(&mut self) -> Option<(&mut T, &mut [T])> {
if let [init @ .., last] = self { Some((last, init)) } else { None }
}
/// Returns the last element of the slice, or `None` if it is empty.
///
/// # Examples
///
/// ```
/// let v = [10, 40, 30];
/// assert_eq!(Some(&30), v.last());
///
/// let w: &[i32] = &[];
/// assert_eq!(None, w.last());
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_const_stable(feature = "const_slice_first_last_not_mut", since = "1.56.0")]
#[inline]
#[must_use]
pub const fn last(&self) -> Option<&T> {
if let [.., last] = self { Some(last) } else { None }
}
/// Returns a mutable pointer to the last item in the slice.
///
/// # Examples
///
/// ```
/// let x = &mut [0, 1, 2];
///
/// if let Some(last) = x.last_mut() {
/// *last = 10;
/// }
/// assert_eq!(x, &[0, 1, 10]);
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_const_unstable(feature = "const_slice_first_last", issue = "83570")]
#[inline]
#[must_use]
pub const fn last_mut(&mut self) -> Option<&mut T> {
if let [.., last] = self { Some(last) } else { None }
}
/// Returns a reference to an element or subslice depending on the type of
/// index.
///
/// - If given a position, returns a reference to the element at that
/// position or `None` if out of bounds.
/// - If given a range, returns the subslice corresponding to that range,
/// or `None` if out of bounds.
///
/// # Examples
///
/// ```
/// let v = [10, 40, 30];
/// assert_eq!(Some(&40), v.get(1));
/// assert_eq!(Some(&[10, 40][..]), v.get(0..2));
/// assert_eq!(None, v.get(3));
/// assert_eq!(None, v.get(0..4));
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_const_unstable(feature = "const_slice_index", issue = "none")]
#[inline]
#[must_use]
pub const fn get<I>(&self, index: I) -> Option<&I::Output>
where
I: ~const SliceIndex<Self>,
{
index.get(self)
}
/// Returns a mutable reference to an element or subslice depending on the
/// type of index (see [`get`]) or `None` if the index is out of bounds.
///
/// [`get`]: slice::get
///
/// # Examples
///
/// ```
/// let x = &mut [0, 1, 2];
///
/// if let Some(elem) = x.get_mut(1) {
/// *elem = 42;
/// }
/// assert_eq!(x, &[0, 42, 2]);
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_const_unstable(feature = "const_slice_index", issue = "none")]
#[inline]
#[must_use]
pub const fn get_mut<I>(&mut self, index: I) -> Option<&mut I::Output>
where
I: ~const SliceIndex<Self>,
{
index.get_mut(self)
}
/// Returns a reference to an element or subslice, without doing bounds
/// checking.
///
/// For a safe alternative see [`get`].
///
/// # Safety
///
/// Calling this method with an out-of-bounds index is *[undefined behavior]*
/// even if the resulting reference is not used.
///
/// [`get`]: slice::get
/// [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
///
/// # Examples
///
/// ```
/// let x = &[1, 2, 4];
///
/// unsafe {
/// assert_eq!(x.get_unchecked(1), &2);
/// }
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_const_unstable(feature = "const_slice_index", issue = "none")]
#[inline]
#[must_use]
pub const unsafe fn get_unchecked<I>(&self, index: I) -> &I::Output
where
I: ~const SliceIndex<Self>,
{
// SAFETY: the caller must uphold most of the safety requirements for `get_unchecked`;
// the slice is dereferenceable because `self` is a safe reference.
// The returned pointer is safe because impls of `SliceIndex` have to guarantee that it is.
unsafe { &*index.get_unchecked(self) }
}
/// Returns a mutable reference to an element or subslice, without doing
/// bounds checking.
///
/// For a safe alternative see [`get_mut`].
///
/// # Safety
///
/// Calling this method with an out-of-bounds index is *[undefined behavior]*
/// even if the resulting reference is not used.
///
/// [`get_mut`]: slice::get_mut
/// [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
///
/// # Examples
///
/// ```
/// let x = &mut [1, 2, 4];
///
/// unsafe {
/// let elem = x.get_unchecked_mut(1);
/// *elem = 13;
/// }
/// assert_eq!(x, &[1, 13, 4]);
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_const_unstable(feature = "const_slice_index", issue = "none")]
#[inline]
#[must_use]
pub const unsafe fn get_unchecked_mut<I>(&mut self, index: I) -> &mut I::Output
where
I: ~const SliceIndex<Self>,
{
// SAFETY: the caller must uphold the safety requirements for `get_unchecked_mut`;
// the slice is dereferenceable because `self` is a safe reference.
// The returned pointer is safe because impls of `SliceIndex` have to guarantee that it is.
unsafe { &mut *index.get_unchecked_mut(self) }
}
/// Returns a raw pointer to the slice's buffer.
///
/// The caller must ensure that the slice outlives the pointer this
/// function returns, or else it will end up pointing to garbage.
///
/// The caller must also ensure that the memory the pointer (non-transitively) points to
/// is never written to (except inside an `UnsafeCell`) using this pointer or any pointer
/// derived from it. If you need to mutate the contents of the slice, use [`as_mut_ptr`].
///
/// Modifying the container referenced by this slice may cause its buffer
/// to be reallocated, which would also make any pointers to it invalid.
///
/// # Examples
///
/// ```
/// let x = &[1, 2, 4];
/// let x_ptr = x.as_ptr();
///
/// unsafe {
/// for i in 0..x.len() {
/// assert_eq!(x.get_unchecked(i), &*x_ptr.add(i));
/// }
/// }
/// ```
///
/// [`as_mut_ptr`]: slice::as_mut_ptr
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_const_stable(feature = "const_slice_as_ptr", since = "1.32.0")]
#[inline]
#[must_use]
pub const fn as_ptr(&self) -> *const T {
self as *const [T] as *const T
}
/// Returns an unsafe mutable pointer to the slice's buffer.
///
/// The caller must ensure that the slice outlives the pointer this
/// function returns, or else it will end up pointing to garbage.
///
/// Modifying the container referenced by this slice may cause its buffer
/// to be reallocated, which would also make any pointers to it invalid.
///
/// # Examples
///
/// ```
/// let x = &mut [1, 2, 4];
/// let x_ptr = x.as_mut_ptr();
///
/// unsafe {
/// for i in 0..x.len() {
/// *x_ptr.add(i) += 2;
/// }
/// }
/// assert_eq!(x, &[3, 4, 6]);
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_const_stable(feature = "const_ptr_offset", since = "1.61.0")]
#[rustc_allow_const_fn_unstable(const_mut_refs)]
#[inline]
#[must_use]
pub const fn as_mut_ptr(&mut self) -> *mut T {
self as *mut [T] as *mut T
}
/// Returns the two raw pointers spanning the slice.
///
/// The returned range is half-open, which means that the end pointer
/// points *one past* the last element of the slice. This way, an empty
/// slice is represented by two equal pointers, and the difference between
/// the two pointers represents the size of the slice.
///
/// See [`as_ptr`] for warnings on using these pointers. The end pointer
/// requires extra caution, as it does not point to a valid element in the
/// slice.
///
/// This function is useful for interacting with foreign interfaces which
/// use two pointers to refer to a range of elements in memory, as is
/// common in C++.
///
/// It can also be useful to check if a pointer to an element refers to an
/// element of this slice:
///
/// ```
/// let a = [1, 2, 3];
/// let x = &a[1] as *const _;
/// let y = &5 as *const _;
///
/// assert!(a.as_ptr_range().contains(&x));
/// assert!(!a.as_ptr_range().contains(&y));
/// ```
///
/// [`as_ptr`]: slice::as_ptr
#[stable(feature = "slice_ptr_range", since = "1.48.0")]
#[rustc_const_stable(feature = "const_ptr_offset", since = "1.61.0")]
#[inline]
#[must_use]
pub const fn as_ptr_range(&self) -> Range<*const T> {
let start = self.as_ptr();
// SAFETY: The `add` here is safe, because:
//
// - Both pointers are part of the same object, as pointing directly
// past the object also counts.
//
// - The size of the slice is never larger than isize::MAX bytes, as
// noted here:
// - https://github.com/rust-lang/unsafe-code-guidelines/issues/102#issuecomment-473340447
// - https://doc.rust-lang.org/reference/behavior-considered-undefined.html
// - https://doc.rust-lang.org/core/slice/fn.from_raw_parts.html#safety
// (This doesn't seem normative yet, but the very same assumption is
// made in many places, including the Index implementation of slices.)
//
// - There is no wrapping around involved, as slices do not wrap past
// the end of the address space.
//
// See the documentation of pointer::add.
let end = unsafe { start.add(self.len()) };
start..end
}
/// Returns the two unsafe mutable pointers spanning the slice.
///
/// The returned range is half-open, which means that the end pointer
/// points *one past* the last element of the slice. This way, an empty
/// slice is represented by two equal pointers, and the difference between
/// the two pointers represents the size of the slice.
///
/// See [`as_mut_ptr`] for warnings on using these pointers. The end
/// pointer requires extra caution, as it does not point to a valid element
/// in the slice.
///
/// This function is useful for interacting with foreign interfaces which
/// use two pointers to refer to a range of elements in memory, as is
/// common in C++.
///
/// [`as_mut_ptr`]: slice::as_mut_ptr
#[stable(feature = "slice_ptr_range", since = "1.48.0")]
#[rustc_const_stable(feature = "const_ptr_offset", since = "1.61.0")]
#[rustc_allow_const_fn_unstable(const_mut_refs)]
#[inline]
#[must_use]
pub const fn as_mut_ptr_range(&mut self) -> Range<*mut T> {
let start = self.as_mut_ptr();
// SAFETY: See as_ptr_range() above for why `add` here is safe.
let end = unsafe { start.add(self.len()) };
start..end
}
/// Swaps two elements in the slice.
///
/// # Arguments
///
/// * a - The index of the first element
/// * b - The index of the second element
///
/// # Panics
///
/// Panics if `a` or `b` are out of bounds.
///
/// # Examples
///
/// ```
/// let mut v = ["a", "b", "c", "d", "e"];
/// v.swap(2, 4);
/// assert!(v == ["a", "b", "e", "d", "c"]);
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_const_unstable(feature = "const_swap", issue = "83163")]
#[inline]
#[track_caller]
pub const fn swap(&mut self, a: usize, b: usize) {
// FIXME: use swap_unchecked here (https://github.com/rust-lang/rust/pull/88540#issuecomment-944344343)
// Can't take two mutable loans from one vector, so instead use raw pointers.
let pa = ptr::addr_of_mut!(self[a]);
let pb = ptr::addr_of_mut!(self[b]);
// SAFETY: `pa` and `pb` have been created from safe mutable references and refer
// to elements in the slice and therefore are guaranteed to be valid and aligned.
// Note that accessing the elements behind `a` and `b` is checked and will
// panic when out of bounds.
unsafe {
ptr::swap(pa, pb);
}
}
/// Swaps two elements in the slice, without doing bounds checking.
///
/// For a safe alternative see [`swap`].
///
/// # Arguments
///
/// * a - The index of the first element
/// * b - The index of the second element
///
/// # Safety
///
/// Calling this method with an out-of-bounds index is *[undefined behavior]*.
/// The caller has to ensure that `a < self.len()` and `b < self.len()`.
///
/// # Examples
///
/// ```
/// #![feature(slice_swap_unchecked)]
///
/// let mut v = ["a", "b", "c", "d"];
/// // SAFETY: we know that 1 and 3 are both indices of the slice
/// unsafe { v.swap_unchecked(1, 3) };
/// assert!(v == ["a", "d", "c", "b"]);
/// ```
///
/// [`swap`]: slice::swap
/// [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
#[unstable(feature = "slice_swap_unchecked", issue = "88539")]
#[rustc_const_unstable(feature = "const_swap", issue = "83163")]
pub const unsafe fn swap_unchecked(&mut self, a: usize, b: usize) {
#[cfg(debug_assertions)]
{
let _ = &self[a];
let _ = &self[b];
}
let ptr = self.as_mut_ptr();
// SAFETY: caller has to guarantee that `a < self.len()` and `b < self.len()`
unsafe {
ptr::swap(ptr.add(a), ptr.add(b));
}
}
/// Reverses the order of elements in the slice, in place.
///
/// # Examples
///
/// ```
/// let mut v = [1, 2, 3];
/// v.reverse();
/// assert!(v == [3, 2, 1]);
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[inline]
pub fn reverse(&mut self) {
let half_len = self.len() / 2;
let Range { start, end } = self.as_mut_ptr_range();
// These slices will skip the middle item for an odd length,
// since that one doesn't need to move.
let (front_half, back_half) =
// SAFETY: Both are subparts of the original slice, so the memory
// range is valid, and they don't overlap because they're each only
// half (or less) of the original slice.
unsafe {
(
slice::from_raw_parts_mut(start, half_len),
slice::from_raw_parts_mut(end.sub(half_len), half_len),
)
};
// Introducing a function boundary here means that the two halves
// get `noalias` markers, allowing better optimization as LLVM
// knows that they're disjoint, unlike in the original slice.
revswap(front_half, back_half, half_len);
#[inline]
fn revswap<T>(a: &mut [T], b: &mut [T], n: usize) {
debug_assert_eq!(a.len(), n);
debug_assert_eq!(b.len(), n);
// Because this function is first compiled in isolation,
// this check tells LLVM that the indexing below is
// in-bounds. Then after inlining -- once the actual
// lengths of the slices are known -- it's removed.
let (a, b) = (&mut a[..n], &mut b[..n]);
for i in 0..n {
mem::swap(&mut a[i], &mut b[n - 1 - i]);
}
}
}
/// Returns an iterator over the slice.
///
/// # Examples
///
/// ```
/// let x = &[1, 2, 4];
/// let mut iterator = x.iter();
///
/// assert_eq!(iterator.next(), Some(&1));
/// assert_eq!(iterator.next(), Some(&2));
/// assert_eq!(iterator.next(), Some(&4));
/// assert_eq!(iterator.next(), None);
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[inline]
pub fn iter(&self) -> Iter<'_, T> {
Iter::new(self)
}
/// Returns an iterator that allows modifying each value.
///
/// # Examples
///
/// ```
/// let x = &mut [1, 2, 4];
/// for elem in x.iter_mut() {
/// *elem += 2;
/// }
/// assert_eq!(x, &[3, 4, 6]);
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[inline]
pub fn iter_mut(&mut self) -> IterMut<'_, T> {
IterMut::new(self)
}
/// Returns an iterator over all contiguous windows of length
/// `size`. The windows overlap. If the slice is shorter than
/// `size`, the iterator returns no values.
///
/// # Panics
///
/// Panics if `size` is 0.
///
/// # Examples
///
/// ```
/// let slice = ['r', 'u', 's', 't'];
/// let mut iter = slice.windows(2);
/// assert_eq!(iter.next().unwrap(), &['r', 'u']);
/// assert_eq!(iter.next().unwrap(), &['u', 's']);
/// assert_eq!(iter.next().unwrap(), &['s', 't']);
/// assert!(iter.next().is_none());
/// ```
///
/// If the slice is shorter than `size`:
///
/// ```
/// let slice = ['f', 'o', 'o'];
/// let mut iter = slice.windows(4);
/// assert!(iter.next().is_none());
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[inline]
pub fn windows(&self, size: usize) -> Windows<'_, T> {
let size = NonZeroUsize::new(size).expect("size is zero");
Windows::new(self, size)
}
/// Returns an iterator over `chunk_size` elements of the slice at a time, starting at the
/// beginning of the slice.
///
/// The chunks are slices and do not overlap. If `chunk_size` does not divide the length of the
/// slice, then the last chunk will not have length `chunk_size`.
///
/// See [`chunks_exact`] for a variant of this iterator that returns chunks of always exactly
/// `chunk_size` elements, and [`rchunks`] for the same iterator but starting at the end of the
/// slice.
///
/// # Panics
///
/// Panics if `chunk_size` is 0.
///
/// # Examples
///
/// ```
/// let slice = ['l', 'o', 'r', 'e', 'm'];
/// let mut iter = slice.chunks(2);
/// assert_eq!(iter.next().unwrap(), &['l', 'o']);
/// assert_eq!(iter.next().unwrap(), &['r', 'e']);
/// assert_eq!(iter.next().unwrap(), &['m']);
/// assert!(iter.next().is_none());
/// ```
///
/// [`chunks_exact`]: slice::chunks_exact
/// [`rchunks`]: slice::rchunks
#[stable(feature = "rust1", since = "1.0.0")]
#[inline]
pub fn chunks(&self, chunk_size: usize) -> Chunks<'_, T> {
assert_ne!(chunk_size, 0);
Chunks::new(self, chunk_size)
}
/// Returns an iterator over `chunk_size` elements of the slice at a time, starting at the
/// beginning of the slice.
///
/// The chunks are mutable slices, and do not overlap. If `chunk_size` does not divide the
/// length of the slice, then the last chunk will not have length `chunk_size`.
///
/// See [`chunks_exact_mut`] for a variant of this iterator that returns chunks of always
/// exactly `chunk_size` elements, and [`rchunks_mut`] for the same iterator but starting at
/// the end of the slice.
///
/// # Panics
///
/// Panics if `chunk_size` is 0.
///
/// # Examples
///
/// ```
/// let v = &mut [0, 0, 0, 0, 0];
/// let mut count = 1;
///
/// for chunk in v.chunks_mut(2) {
/// for elem in chunk.iter_mut() {
/// *elem += count;
/// }
/// count += 1;
/// }
/// assert_eq!(v, &[1, 1, 2, 2, 3]);
/// ```
///
/// [`chunks_exact_mut`]: slice::chunks_exact_mut
/// [`rchunks_mut`]: slice::rchunks_mut
#[stable(feature = "rust1", since = "1.0.0")]
#[inline]
pub fn chunks_mut(&mut self, chunk_size: usize) -> ChunksMut<'_, T> {
assert_ne!(chunk_size, 0);
ChunksMut::new(self, chunk_size)
}
/// Returns an iterator over `chunk_size` elements of the slice at a time, starting at the
/// beginning of the slice.
///
/// The chunks are slices and do not overlap. If `chunk_size` does not divide the length of the
/// slice, then the last up to `chunk_size-1` elements will be omitted and can be retrieved
/// from the `remainder` function of the iterator.
///
/// Due to each chunk having exactly `chunk_size` elements, the compiler can often optimize the
/// resulting code better than in the case of [`chunks`].
///
/// See [`chunks`] for a variant of this iterator that also returns the remainder as a smaller
/// chunk, and [`rchunks_exact`] for the same iterator but starting at the end of the slice.
///
/// # Panics
///
/// Panics if `chunk_size` is 0.
///
/// # Examples
///
/// ```
/// let slice = ['l', 'o', 'r', 'e', 'm'];
/// let mut iter = slice.chunks_exact(2);
/// assert_eq!(iter.next().unwrap(), &['l', 'o']);
/// assert_eq!(iter.next().unwrap(), &['r', 'e']);
/// assert!(iter.next().is_none());
/// assert_eq!(iter.remainder(), &['m']);
/// ```
///
/// [`chunks`]: slice::chunks
/// [`rchunks_exact`]: slice::rchunks_exact
#[stable(feature = "chunks_exact", since = "1.31.0")]
#[inline]
pub fn chunks_exact(&self, chunk_size: usize) -> ChunksExact<'_, T> {
assert_ne!(chunk_size, 0);
ChunksExact::new(self, chunk_size)
}
/// Returns an iterator over `chunk_size` elements of the slice at a time, starting at the
/// beginning of the slice.
///
/// The chunks are mutable slices, and do not overlap. If `chunk_size` does not divide the
/// length of the slice, then the last up to `chunk_size-1` elements will be omitted and can be
/// retrieved from the `into_remainder` function of the iterator.
///
/// Due to each chunk having exactly `chunk_size` elements, the compiler can often optimize the
/// resulting code better than in the case of [`chunks_mut`].
///
/// See [`chunks_mut`] for a variant of this iterator that also returns the remainder as a
/// smaller chunk, and [`rchunks_exact_mut`] for the same iterator but starting at the end of
/// the slice.
///
/// # Panics
///
/// Panics if `chunk_size` is 0.
///
/// # Examples
///
/// ```
/// let v = &mut [0, 0, 0, 0, 0];
/// let mut count = 1;
///
/// for chunk in v.chunks_exact_mut(2) {
/// for elem in chunk.iter_mut() {
/// *elem += count;
/// }
/// count += 1;
/// }
/// assert_eq!(v, &[1, 1, 2, 2, 0]);
/// ```
///
/// [`chunks_mut`]: slice::chunks_mut
/// [`rchunks_exact_mut`]: slice::rchunks_exact_mut
#[stable(feature = "chunks_exact", since = "1.31.0")]
#[inline]
pub fn chunks_exact_mut(&mut self, chunk_size: usize) -> ChunksExactMut<'_, T> {
assert_ne!(chunk_size, 0);
ChunksExactMut::new(self, chunk_size)
}
/// Splits the slice into a slice of `N`-element arrays,
/// assuming that there's no remainder.
///
/// # Safety
///
/// This may only be called when
/// - The slice splits exactly into `N`-element chunks (aka `self.len() % N == 0`).
/// - `N != 0`.
///
/// # Examples
///
/// ```
/// #![feature(slice_as_chunks)]
/// let slice: &[char] = &['l', 'o', 'r', 'e', 'm', '!'];
/// let chunks: &[[char; 1]] =
/// // SAFETY: 1-element chunks never have remainder
/// unsafe { slice.as_chunks_unchecked() };
/// assert_eq!(chunks, &[['l'], ['o'], ['r'], ['e'], ['m'], ['!']]);
/// let chunks: &[[char; 3]] =
/// // SAFETY: The slice length (6) is a multiple of 3
/// unsafe { slice.as_chunks_unchecked() };
/// assert_eq!(chunks, &[['l', 'o', 'r'], ['e', 'm', '!']]);
///
/// // These would be unsound:
/// // let chunks: &[[_; 5]] = slice.as_chunks_unchecked() // The slice length is not a multiple of 5
/// // let chunks: &[[_; 0]] = slice.as_chunks_unchecked() // Zero-length chunks are never allowed
/// ```
#[unstable(feature = "slice_as_chunks", issue = "74985")]
#[inline]
#[must_use]
pub unsafe fn as_chunks_unchecked<const N: usize>(&self) -> &[[T; N]] {
debug_assert_ne!(N, 0);
debug_assert_eq!(self.len() % N, 0);
let new_len =
// SAFETY: Our precondition is exactly what's needed to call this
unsafe { crate::intrinsics::exact_div(self.len(), N) };
// SAFETY: We cast a slice of `new_len * N` elements into
// a slice of `new_len` many `N` elements chunks.
unsafe { from_raw_parts(self.as_ptr().cast(), new_len) }
}
/// Splits the slice into a slice of `N`-element arrays,
/// starting at the beginning of the slice,
/// and a remainder slice with length strictly less than `N`.
///
/// # Panics
///
/// Panics if `N` is 0. This check will most probably get changed to a compile time
/// error before this method gets stabilized.
///
/// # Examples
///
/// ```
/// #![feature(slice_as_chunks)]
/// let slice = ['l', 'o', 'r', 'e', 'm'];
/// let (chunks, remainder) = slice.as_chunks();
/// assert_eq!(chunks, &[['l', 'o'], ['r', 'e']]);
/// assert_eq!(remainder, &['m']);
/// ```
#[unstable(feature = "slice_as_chunks", issue = "74985")]
#[inline]
#[must_use]
pub fn as_chunks<const N: usize>(&self) -> (&[[T; N]], &[T]) {
assert_ne!(N, 0);
let len = self.len() / N;
let (multiple_of_n, remainder) = self.split_at(len * N);
// SAFETY: We already panicked for zero, and ensured by construction
// that the length of the subslice is a multiple of N.
let array_slice = unsafe { multiple_of_n.as_chunks_unchecked() };
(array_slice, remainder)
}
/// Splits the slice into a slice of `N`-element arrays,
/// starting at the end of the slice,
/// and a remainder slice with length strictly less than `N`.
///
/// # Panics
///
/// Panics if `N` is 0. This check will most probably get changed to a compile time
/// error before this method gets stabilized.
///
/// # Examples
///
/// ```
/// #![feature(slice_as_chunks)]
/// let slice = ['l', 'o', 'r', 'e', 'm'];
/// let (remainder, chunks) = slice.as_rchunks();
/// assert_eq!(remainder, &['l']);
/// assert_eq!(chunks, &[['o', 'r'], ['e', 'm']]);
/// ```
#[unstable(feature = "slice_as_chunks", issue = "74985")]
#[inline]
#[must_use]
pub fn as_rchunks<const N: usize>(&self) -> (&[T], &[[T; N]]) {
assert_ne!(N, 0);
let len = self.len() / N;
let (remainder, multiple_of_n) = self.split_at(self.len() - len * N);
// SAFETY: We already panicked for zero, and ensured by construction
// that the length of the subslice is a multiple of N.
let array_slice = unsafe { multiple_of_n.as_chunks_unchecked() };
(remainder, array_slice)
}
/// Returns an iterator over `N` elements of the slice at a time, starting at the
/// beginning of the slice.
///
/// The chunks are array references and do not overlap. If `N` does not divide the
/// length of the slice, then the last up to `N-1` elements will be omitted and can be
/// retrieved from the `remainder` function of the iterator.
///
/// This method is the const generic equivalent of [`chunks_exact`].
///
/// # Panics
///
/// Panics if `N` is 0. This check will most probably get changed to a compile time
/// error before this method gets stabilized.
///
/// # Examples
///
/// ```
/// #![feature(array_chunks)]
/// let slice = ['l', 'o', 'r', 'e', 'm'];
/// let mut iter = slice.array_chunks();
/// assert_eq!(iter.next().unwrap(), &['l', 'o']);
/// assert_eq!(iter.next().unwrap(), &['r', 'e']);
/// assert!(iter.next().is_none());
/// assert_eq!(iter.remainder(), &['m']);
/// ```
///
/// [`chunks_exact`]: slice::chunks_exact
#[unstable(feature = "array_chunks", issue = "74985")]
#[inline]
pub fn array_chunks<const N: usize>(&self) -> ArrayChunks<'_, T, N> {
assert_ne!(N, 0);
ArrayChunks::new(self)
}
/// Splits the slice into a slice of `N`-element arrays,
/// assuming that there's no remainder.
///
/// # Safety
///
/// This may only be called when
/// - The slice splits exactly into `N`-element chunks (aka `self.len() % N == 0`).
/// - `N != 0`.
///
/// # Examples
///
/// ```
/// #![feature(slice_as_chunks)]
/// let slice: &mut [char] = &mut ['l', 'o', 'r', 'e', 'm', '!'];
/// let chunks: &mut [[char; 1]] =
/// // SAFETY: 1-element chunks never have remainder
/// unsafe { slice.as_chunks_unchecked_mut() };
/// chunks[0] = ['L'];
/// assert_eq!(chunks, &[['L'], ['o'], ['r'], ['e'], ['m'], ['!']]);
/// let chunks: &mut [[char; 3]] =
/// // SAFETY: The slice length (6) is a multiple of 3
/// unsafe { slice.as_chunks_unchecked_mut() };
/// chunks[1] = ['a', 'x', '?'];
/// assert_eq!(slice, &['L', 'o', 'r', 'a', 'x', '?']);
///
/// // These would be unsound:
/// // let chunks: &[[_; 5]] = slice.as_chunks_unchecked_mut() // The slice length is not a multiple of 5
/// // let chunks: &[[_; 0]] = slice.as_chunks_unchecked_mut() // Zero-length chunks are never allowed
/// ```
#[unstable(feature = "slice_as_chunks", issue = "74985")]
#[inline]
#[must_use]
pub unsafe fn as_chunks_unchecked_mut<const N: usize>(&mut self) -> &mut [[T; N]] {
debug_assert_ne!(N, 0);
debug_assert_eq!(self.len() % N, 0);
let new_len =
// SAFETY: Our precondition is exactly what's needed to call this
unsafe { crate::intrinsics::exact_div(self.len(), N) };
// SAFETY: We cast a slice of `new_len * N` elements into
// a slice of `new_len` many `N` elements chunks.
unsafe { from_raw_parts_mut(self.as_mut_ptr().cast(), new_len) }
}
/// Splits the slice into a slice of `N`-element arrays,
/// starting at the beginning of the slice,
/// and a remainder slice with length strictly less than `N`.
///
/// # Panics
///
/// Panics if `N` is 0. This check will most probably get changed to a compile time
/// error before this method gets stabilized.
///
/// # Examples
///
/// ```
/// #![feature(slice_as_chunks)]
/// let v = &mut [0, 0, 0, 0, 0];
/// let mut count = 1;
///
/// let (chunks, remainder) = v.as_chunks_mut();
/// remainder[0] = 9;
/// for chunk in chunks {
/// *chunk = [count; 2];
/// count += 1;
/// }
/// assert_eq!(v, &[1, 1, 2, 2, 9]);
/// ```
#[unstable(feature = "slice_as_chunks", issue = "74985")]
#[inline]
#[must_use]
pub fn as_chunks_mut<const N: usize>(&mut self) -> (&mut [[T; N]], &mut [T]) {
assert_ne!(N, 0);
let len = self.len() / N;
let (multiple_of_n, remainder) = self.split_at_mut(len * N);
// SAFETY: We already panicked for zero, and ensured by construction
// that the length of the subslice is a multiple of N.
let array_slice = unsafe { multiple_of_n.as_chunks_unchecked_mut() };
(array_slice, remainder)
}
/// Splits the slice into a slice of `N`-element arrays,
/// starting at the end of the slice,
/// and a remainder slice with length strictly less than `N`.
///
/// # Panics
///
/// Panics if `N` is 0. This check will most probably get changed to a compile time
/// error before this method gets stabilized.
///
/// # Examples
///
/// ```
/// #![feature(slice_as_chunks)]
/// let v = &mut [0, 0, 0, 0, 0];
/// let mut count = 1;
///
/// let (remainder, chunks) = v.as_rchunks_mut();
/// remainder[0] = 9;
/// for chunk in chunks {
/// *chunk = [count; 2];
/// count += 1;
/// }
/// assert_eq!(v, &[9, 1, 1, 2, 2]);
/// ```
#[unstable(feature = "slice_as_chunks", issue = "74985")]
#[inline]
#[must_use]
pub fn as_rchunks_mut<const N: usize>(&mut self) -> (&mut [T], &mut [[T; N]]) {
assert_ne!(N, 0);
let len = self.len() / N;
let (remainder, multiple_of_n) = self.split_at_mut(self.len() - len * N);
// SAFETY: We already panicked for zero, and ensured by construction
// that the length of the subslice is a multiple of N.
let array_slice = unsafe { multiple_of_n.as_chunks_unchecked_mut() };
(remainder, array_slice)
}
/// Returns an iterator over `N` elements of the slice at a time, starting at the
/// beginning of the slice.
///
/// The chunks are mutable array references and do not overlap. If `N` does not divide
/// the length of the slice, then the last up to `N-1` elements will be omitted and
/// can be retrieved from the `into_remainder` function of the iterator.
///
/// This method is the const generic equivalent of [`chunks_exact_mut`].
///
/// # Panics
///
/// Panics if `N` is 0. This check will most probably get changed to a compile time
/// error before this method gets stabilized.
///
/// # Examples
///
/// ```
/// #![feature(array_chunks)]
/// let v = &mut [0, 0, 0, 0, 0];
/// let mut count = 1;
///
/// for chunk in v.array_chunks_mut() {
/// *chunk = [count; 2];
/// count += 1;
/// }
/// assert_eq!(v, &[1, 1, 2, 2, 0]);
/// ```
///
/// [`chunks_exact_mut`]: slice::chunks_exact_mut
#[unstable(feature = "array_chunks", issue = "74985")]
#[inline]
pub fn array_chunks_mut<const N: usize>(&mut self) -> ArrayChunksMut<'_, T, N> {
assert_ne!(N, 0);
ArrayChunksMut::new(self)
}
/// Returns an iterator over overlapping windows of `N` elements of a slice,
/// starting at the beginning of the slice.
///
/// This is the const generic equivalent of [`windows`].
///
/// If `N` is greater than the size of the slice, it will return no windows.
///
/// # Panics
///
/// Panics if `N` is 0. This check will most probably get changed to a compile time
/// error before this method gets stabilized.
///
/// # Examples
///
/// ```
/// #![feature(array_windows)]
/// let slice = [0, 1, 2, 3];
/// let mut iter = slice.array_windows();
/// assert_eq!(iter.next().unwrap(), &[0, 1]);
/// assert_eq!(iter.next().unwrap(), &[1, 2]);
/// assert_eq!(iter.next().unwrap(), &[2, 3]);
/// assert!(iter.next().is_none());
/// ```
///
/// [`windows`]: slice::windows
#[unstable(feature = "array_windows", issue = "75027")]
#[inline]
pub fn array_windows<const N: usize>(&self) -> ArrayWindows<'_, T, N> {
assert_ne!(N, 0);
ArrayWindows::new(self)
}
/// Returns an iterator over `chunk_size` elements of the slice at a time, starting at the end
/// of the slice.
///
/// The chunks are slices and do not overlap. If `chunk_size` does not divide the length of the
/// slice, then the last chunk will not have length `chunk_size`.
///
/// See [`rchunks_exact`] for a variant of this iterator that returns chunks of always exactly
/// `chunk_size` elements, and [`chunks`] for the same iterator but starting at the beginning
/// of the slice.
///
/// # Panics
///
/// Panics if `chunk_size` is 0.
///
/// # Examples
///
/// ```
/// let slice = ['l', 'o', 'r', 'e', 'm'];
/// let mut iter = slice.rchunks(2);
/// assert_eq!(iter.next().unwrap(), &['e', 'm']);
/// assert_eq!(iter.next().unwrap(), &['o', 'r']);
/// assert_eq!(iter.next().unwrap(), &['l']);
/// assert!(iter.next().is_none());
/// ```
///
/// [`rchunks_exact`]: slice::rchunks_exact
/// [`chunks`]: slice::chunks
#[stable(feature = "rchunks", since = "1.31.0")]
#[inline]
pub fn rchunks(&self, chunk_size: usize) -> RChunks<'_, T> {
assert!(chunk_size != 0);
RChunks::new(self, chunk_size)
}
/// Returns an iterator over `chunk_size` elements of the slice at a time, starting at the end
/// of the slice.
///
/// The chunks are mutable slices, and do not overlap. If `chunk_size` does not divide the
/// length of the slice, then the last chunk will not have length `chunk_size`.
///
/// See [`rchunks_exact_mut`] for a variant of this iterator that returns chunks of always
/// exactly `chunk_size` elements, and [`chunks_mut`] for the same iterator but starting at the
/// beginning of the slice.
///
/// # Panics
///
/// Panics if `chunk_size` is 0.
///
/// # Examples
///
/// ```
/// let v = &mut [0, 0, 0, 0, 0];
/// let mut count = 1;
///
/// for chunk in v.rchunks_mut(2) {
/// for elem in chunk.iter_mut() {
/// *elem += count;
/// }
/// count += 1;
/// }
/// assert_eq!(v, &[3, 2, 2, 1, 1]);
/// ```
///
/// [`rchunks_exact_mut`]: slice::rchunks_exact_mut
/// [`chunks_mut`]: slice::chunks_mut
#[stable(feature = "rchunks", since = "1.31.0")]
#[inline]
pub fn rchunks_mut(&mut self, chunk_size: usize) -> RChunksMut<'_, T> {
assert!(chunk_size != 0);
RChunksMut::new(self, chunk_size)
}
/// Returns an iterator over `chunk_size` elements of the slice at a time, starting at the
/// end of the slice.
///
/// The chunks are slices and do not overlap. If `chunk_size` does not divide the length of the
/// slice, then the last up to `chunk_size-1` elements will be omitted and can be retrieved
/// from the `remainder` function of the iterator.
///
/// Due to each chunk having exactly `chunk_size` elements, the compiler can often optimize the
/// resulting code better than in the case of [`chunks`].
///
/// See [`rchunks`] for a variant of this iterator that also returns the remainder as a smaller
/// chunk, and [`chunks_exact`] for the same iterator but starting at the beginning of the
/// slice.
///
/// # Panics
///
/// Panics if `chunk_size` is 0.
///
/// # Examples
///
/// ```
/// let slice = ['l', 'o', 'r', 'e', 'm'];
/// let mut iter = slice.rchunks_exact(2);
/// assert_eq!(iter.next().unwrap(), &['e', 'm']);
/// assert_eq!(iter.next().unwrap(), &['o', 'r']);
/// assert!(iter.next().is_none());
/// assert_eq!(iter.remainder(), &['l']);
/// ```
///
/// [`chunks`]: slice::chunks
/// [`rchunks`]: slice::rchunks
/// [`chunks_exact`]: slice::chunks_exact
#[stable(feature = "rchunks", since = "1.31.0")]
#[inline]
pub fn rchunks_exact(&self, chunk_size: usize) -> RChunksExact<'_, T> {
assert!(chunk_size != 0);
RChunksExact::new(self, chunk_size)
}
/// Returns an iterator over `chunk_size` elements of the slice at a time, starting at the end
/// of the slice.
///
/// The chunks are mutable slices, and do not overlap. If `chunk_size` does not divide the
/// length of the slice, then the last up to `chunk_size-1` elements will be omitted and can be
/// retrieved from the `into_remainder` function of the iterator.
///
/// Due to each chunk having exactly `chunk_size` elements, the compiler can often optimize the
/// resulting code better than in the case of [`chunks_mut`].
///
/// See [`rchunks_mut`] for a variant of this iterator that also returns the remainder as a
/// smaller chunk, and [`chunks_exact_mut`] for the same iterator but starting at the beginning
/// of the slice.
///
/// # Panics
///
/// Panics if `chunk_size` is 0.
///
/// # Examples
///
/// ```
/// let v = &mut [0, 0, 0, 0, 0];
/// let mut count = 1;
///
/// for chunk in v.rchunks_exact_mut(2) {
/// for elem in chunk.iter_mut() {
/// *elem += count;
/// }
/// count += 1;
/// }
/// assert_eq!(v, &[0, 2, 2, 1, 1]);
/// ```
///
/// [`chunks_mut`]: slice::chunks_mut
/// [`rchunks_mut`]: slice::rchunks_mut
/// [`chunks_exact_mut`]: slice::chunks_exact_mut
#[stable(feature = "rchunks", since = "1.31.0")]
#[inline]
pub fn rchunks_exact_mut(&mut self, chunk_size: usize) -> RChunksExactMut<'_, T> {
assert!(chunk_size != 0);
RChunksExactMut::new(self, chunk_size)
}
/// Returns an iterator over the slice producing non-overlapping runs
/// of elements using the predicate to separate them.
///
/// The predicate is called on two elements following themselves,
/// it means the predicate is called on `slice[0]` and `slice[1]`
/// then on `slice[1]` and `slice[2]` and so on.
///
/// # Examples
///
/// ```
/// #![feature(slice_group_by)]
///
/// let slice = &[1, 1, 1, 3, 3, 2, 2, 2];
///
/// let mut iter = slice.group_by(|a, b| a == b);
///
/// assert_eq!(iter.next(), Some(&[1, 1, 1][..]));
/// assert_eq!(iter.next(), Some(&[3, 3][..]));
/// assert_eq!(iter.next(), Some(&[2, 2, 2][..]));
/// assert_eq!(iter.next(), None);
/// ```
///
/// This method can be used to extract the sorted subslices:
///
/// ```
/// #![feature(slice_group_by)]
///
/// let slice = &[1, 1, 2, 3, 2, 3, 2, 3, 4];
///
/// let mut iter = slice.group_by(|a, b| a <= b);
///
/// assert_eq!(iter.next(), Some(&[1, 1, 2, 3][..]));
/// assert_eq!(iter.next(), Some(&[2, 3][..]));
/// assert_eq!(iter.next(), Some(&[2, 3, 4][..]));
/// assert_eq!(iter.next(), None);
/// ```
#[unstable(feature = "slice_group_by", issue = "80552")]
#[inline]
pub fn group_by<F>(&self, pred: F) -> GroupBy<'_, T, F>
where
F: FnMut(&T, &T) -> bool,
{
GroupBy::new(self, pred)
}
/// Returns an iterator over the slice producing non-overlapping mutable
/// runs of elements using the predicate to separate them.
///
/// The predicate is called on two elements following themselves,
/// it means the predicate is called on `slice[0]` and `slice[1]`
/// then on `slice[1]` and `slice[2]` and so on.
///
/// # Examples
///
/// ```
/// #![feature(slice_group_by)]
///
/// let slice = &mut [1, 1, 1, 3, 3, 2, 2, 2];
///
/// let mut iter = slice.group_by_mut(|a, b| a == b);
///
/// assert_eq!(iter.next(), Some(&mut [1, 1, 1][..]));
/// assert_eq!(iter.next(), Some(&mut [3, 3][..]));
/// assert_eq!(iter.next(), Some(&mut [2, 2, 2][..]));
/// assert_eq!(iter.next(), None);
/// ```
///
/// This method can be used to extract the sorted subslices:
///
/// ```
/// #![feature(slice_group_by)]
///
/// let slice = &mut [1, 1, 2, 3, 2, 3, 2, 3, 4];
///
/// let mut iter = slice.group_by_mut(|a, b| a <= b);
///
/// assert_eq!(iter.next(), Some(&mut [1, 1, 2, 3][..]));
/// assert_eq!(iter.next(), Some(&mut [2, 3][..]));
/// assert_eq!(iter.next(), Some(&mut [2, 3, 4][..]));
/// assert_eq!(iter.next(), None);
/// ```
#[unstable(feature = "slice_group_by", issue = "80552")]
#[inline]
pub fn group_by_mut<F>(&mut self, pred: F) -> GroupByMut<'_, T, F>
where
F: FnMut(&T, &T) -> bool,
{
GroupByMut::new(self, pred)
}
/// Divides one slice into two at an index.
///
/// The first will contain all indices from `[0, mid)` (excluding
/// the index `mid` itself) and the second will contain all
/// indices from `[mid, len)` (excluding the index `len` itself).
///
/// # Panics
///
/// Panics if `mid > len`.
///
/// # Examples
///
/// ```
/// let v = [1, 2, 3, 4, 5, 6];
///
/// {
/// let (left, right) = v.split_at(0);
/// assert_eq!(left, []);
/// assert_eq!(right, [1, 2, 3, 4, 5, 6]);
/// }
///
/// {
/// let (left, right) = v.split_at(2);
/// assert_eq!(left, [1, 2]);
/// assert_eq!(right, [3, 4, 5, 6]);
/// }
///
/// {
/// let (left, right) = v.split_at(6);
/// assert_eq!(left, [1, 2, 3, 4, 5, 6]);
/// assert_eq!(right, []);
/// }
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[inline]
#[track_caller]
#[must_use]
pub fn split_at(&self, mid: usize) -> (&[T], &[T]) {
assert!(mid <= self.len());
// SAFETY: `[ptr; mid]` and `[mid; len]` are inside `self`, which
// fulfills the requirements of `from_raw_parts_mut`.
unsafe { self.split_at_unchecked(mid) }
}
/// Divides one mutable slice into two at an index.
///
/// The first will contain all indices from `[0, mid)` (excluding
/// the index `mid` itself) and the second will contain all
/// indices from `[mid, len)` (excluding the index `len` itself).
///
/// # Panics
///
/// Panics if `mid > len`.
///
/// # Examples
///
/// ```
/// let mut v = [1, 0, 3, 0, 5, 6];
/// let (left, right) = v.split_at_mut(2);
/// assert_eq!(left, [1, 0]);
/// assert_eq!(right, [3, 0, 5, 6]);
/// left[1] = 2;
/// right[1] = 4;
/// assert_eq!(v, [1, 2, 3, 4, 5, 6]);
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[inline]
#[track_caller]
#[must_use]
pub fn split_at_mut(&mut self, mid: usize) -> (&mut [T], &mut [T]) {
assert!(mid <= self.len());
// SAFETY: `[ptr; mid]` and `[mid; len]` are inside `self`, which
// fulfills the requirements of `from_raw_parts_mut`.
unsafe { self.split_at_mut_unchecked(mid) }
}
/// Divides one slice into two at an index, without doing bounds checking.
///
/// The first will contain all indices from `[0, mid)` (excluding
/// the index `mid` itself) and the second will contain all
/// indices from `[mid, len)` (excluding the index `len` itself).
///
/// For a safe alternative see [`split_at`].
///
/// # Safety
///
/// Calling this method with an out-of-bounds index is *[undefined behavior]*
/// even if the resulting reference is not used. The caller has to ensure that
/// `0 <= mid <= self.len()`.
///
/// [`split_at`]: slice::split_at
/// [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
///
/// # Examples
///
/// ```
/// #![feature(slice_split_at_unchecked)]
///
/// let v = [1, 2, 3, 4, 5, 6];
///
/// unsafe {
/// let (left, right) = v.split_at_unchecked(0);
/// assert_eq!(left, []);
/// assert_eq!(right, [1, 2, 3, 4, 5, 6]);
/// }
///
/// unsafe {
/// let (left, right) = v.split_at_unchecked(2);
/// assert_eq!(left, [1, 2]);
/// assert_eq!(right, [3, 4, 5, 6]);
/// }
///
/// unsafe {
/// let (left, right) = v.split_at_unchecked(6);
/// assert_eq!(left, [1, 2, 3, 4, 5, 6]);
/// assert_eq!(right, []);
/// }
/// ```
#[unstable(feature = "slice_split_at_unchecked", reason = "new API", issue = "76014")]
#[inline]
#[must_use]
pub unsafe fn split_at_unchecked(&self, mid: usize) -> (&[T], &[T]) {
// SAFETY: Caller has to check that `0 <= mid <= self.len()`
unsafe { (self.get_unchecked(..mid), self.get_unchecked(mid..)) }
}
/// Divides one mutable slice into two at an index, without doing bounds checking.
///
/// The first will contain all indices from `[0, mid)` (excluding
/// the index `mid` itself) and the second will contain all
/// indices from `[mid, len)` (excluding the index `len` itself).
///
/// For a safe alternative see [`split_at_mut`].
///
/// # Safety
///
/// Calling this method with an out-of-bounds index is *[undefined behavior]*
/// even if the resulting reference is not used. The caller has to ensure that
/// `0 <= mid <= self.len()`.
///
/// [`split_at_mut`]: slice::split_at_mut
/// [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
///
/// # Examples
///
/// ```
/// #![feature(slice_split_at_unchecked)]
///
/// let mut v = [1, 0, 3, 0, 5, 6];
/// // scoped to restrict the lifetime of the borrows
/// unsafe {
/// let (left, right) = v.split_at_mut_unchecked(2);
/// assert_eq!(left, [1, 0]);
/// assert_eq!(right, [3, 0, 5, 6]);
/// left[1] = 2;
/// right[1] = 4;
/// }
/// assert_eq!(v, [1, 2, 3, 4, 5, 6]);
/// ```
#[unstable(feature = "slice_split_at_unchecked", reason = "new API", issue = "76014")]
#[inline]
#[must_use]
pub unsafe fn split_at_mut_unchecked(&mut self, mid: usize) -> (&mut [T], &mut [T]) {
let len = self.len();
let ptr = self.as_mut_ptr();
// SAFETY: Caller has to check that `0 <= mid <= self.len()`.
//
// `[ptr; mid]` and `[mid; len]` are not overlapping, so returning a mutable reference
// is fine.
unsafe { (from_raw_parts_mut(ptr, mid), from_raw_parts_mut(ptr.add(mid), len - mid)) }
}
/// Divides one slice into an array and a remainder slice at an index.
///
/// The array will contain all indices from `[0, N)` (excluding
/// the index `N` itself) and the slice will contain all
/// indices from `[N, len)` (excluding the index `len` itself).
///
/// # Panics
///
/// Panics if `N > len`.
///
/// # Examples
///
/// ```
/// #![feature(split_array)]
///
/// let v = &[1, 2, 3, 4, 5, 6][..];
///
/// {
/// let (left, right) = v.split_array_ref::<0>();
/// assert_eq!(left, &[]);
/// assert_eq!(right, [1, 2, 3, 4, 5, 6]);
/// }
///
/// {
/// let (left, right) = v.split_array_ref::<2>();
/// assert_eq!(left, &[1, 2]);
/// assert_eq!(right, [3, 4, 5, 6]);
/// }
///
/// {
/// let (left, right) = v.split_array_ref::<6>();
/// assert_eq!(left, &[1, 2, 3, 4, 5, 6]);
/// assert_eq!(right, []);
/// }
/// ```
#[unstable(feature = "split_array", reason = "new API", issue = "90091")]
#[inline]
#[track_caller]
#[must_use]
pub fn split_array_ref<const N: usize>(&self) -> (&[T; N], &[T]) {
let (a, b) = self.split_at(N);
// SAFETY: a points to [T; N]? Yes it's [T] of length N (checked by split_at)
unsafe { (&*(a.as_ptr() as *const [T; N]), b) }
}
/// Divides one mutable slice into an array and a remainder slice at an index.
///
/// The array will contain all indices from `[0, N)` (excluding
/// the index `N` itself) and the slice will contain all
/// indices from `[N, len)` (excluding the index `len` itself).
///
/// # Panics
///
/// Panics if `N > len`.
///
/// # Examples
///
/// ```
/// #![feature(split_array)]
///
/// let mut v = &mut [1, 0, 3, 0, 5, 6][..];
/// let (left, right) = v.split_array_mut::<2>();
/// assert_eq!(left, &mut [1, 0]);
/// assert_eq!(right, [3, 0, 5, 6]);
/// left[1] = 2;
/// right[1] = 4;
/// assert_eq!(v, [1, 2, 3, 4, 5, 6]);
/// ```
#[unstable(feature = "split_array", reason = "new API", issue = "90091")]
#[inline]
#[track_caller]
#[must_use]
pub fn split_array_mut<const N: usize>(&mut self) -> (&mut [T; N], &mut [T]) {
let (a, b) = self.split_at_mut(N);
// SAFETY: a points to [T; N]? Yes it's [T] of length N (checked by split_at_mut)
unsafe { (&mut *(a.as_mut_ptr() as *mut [T; N]), b) }
}
/// Divides one slice into an array and a remainder slice at an index from
/// the end.
///
/// The slice will contain all indices from `[0, len - N)` (excluding
/// the index `len - N` itself) and the array will contain all
/// indices from `[len - N, len)` (excluding the index `len` itself).
///
/// # Panics
///
/// Panics if `N > len`.
///
/// # Examples
///
/// ```
/// #![feature(split_array)]
///
/// let v = &[1, 2, 3, 4, 5, 6][..];
///
/// {
/// let (left, right) = v.rsplit_array_ref::<0>();
/// assert_eq!(left, [1, 2, 3, 4, 5, 6]);
/// assert_eq!(right, &[]);
/// }
///
/// {
/// let (left, right) = v.rsplit_array_ref::<2>();
/// assert_eq!(left, [1, 2, 3, 4]);
/// assert_eq!(right, &[5, 6]);
/// }
///
/// {
/// let (left, right) = v.rsplit_array_ref::<6>();
/// assert_eq!(left, []);
/// assert_eq!(right, &[1, 2, 3, 4, 5, 6]);
/// }
/// ```
#[unstable(feature = "split_array", reason = "new API", issue = "90091")]
#[inline]
#[must_use]
pub fn rsplit_array_ref<const N: usize>(&self) -> (&[T], &[T; N]) {
assert!(N <= self.len());
let (a, b) = self.split_at(self.len() - N);
// SAFETY: b points to [T; N]? Yes it's [T] of length N (checked by split_at)
unsafe { (a, &*(b.as_ptr() as *const [T; N])) }
}
/// Divides one mutable slice into an array and a remainder slice at an
/// index from the end.
///
/// The slice will contain all indices from `[0, len - N)` (excluding
/// the index `N` itself) and the array will contain all
/// indices from `[len - N, len)` (excluding the index `len` itself).
///
/// # Panics
///
/// Panics if `N > len`.
///
/// # Examples
///
/// ```
/// #![feature(split_array)]
///
/// let mut v = &mut [1, 0, 3, 0, 5, 6][..];
/// let (left, right) = v.rsplit_array_mut::<4>();
/// assert_eq!(left, [1, 0]);
/// assert_eq!(right, &mut [3, 0, 5, 6]);
/// left[1] = 2;
/// right[1] = 4;
/// assert_eq!(v, [1, 2, 3, 4, 5, 6]);
/// ```
#[unstable(feature = "split_array", reason = "new API", issue = "90091")]
#[inline]
#[must_use]
pub fn rsplit_array_mut<const N: usize>(&mut self) -> (&mut [T], &mut [T; N]) {
assert!(N <= self.len());
let (a, b) = self.split_at_mut(self.len() - N);
// SAFETY: b points to [T; N]? Yes it's [T] of length N (checked by split_at_mut)
unsafe { (a, &mut *(b.as_mut_ptr() as *mut [T; N])) }
}
/// Returns an iterator over subslices separated by elements that match
/// `pred`. The matched element is not contained in the subslices.
///
/// # Examples
///
/// ```
/// let slice = [10, 40, 33, 20];
/// let mut iter = slice.split(|num| num % 3 == 0);
///
/// assert_eq!(iter.next().unwrap(), &[10, 40]);
/// assert_eq!(iter.next().unwrap(), &[20]);
/// assert!(iter.next().is_none());
/// ```
///
/// If the first element is matched, an empty slice will be the first item
/// returned by the iterator. Similarly, if the last element in the slice
/// is matched, an empty slice will be the last item returned by the
/// iterator:
///
/// ```
/// let slice = [10, 40, 33];
/// let mut iter = slice.split(|num| num % 3 == 0);
///
/// assert_eq!(iter.next().unwrap(), &[10, 40]);
/// assert_eq!(iter.next().unwrap(), &[]);
/// assert!(iter.next().is_none());
/// ```
///
/// If two matched elements are directly adjacent, an empty slice will be
/// present between them:
///
/// ```
/// let slice = [10, 6, 33, 20];
/// let mut iter = slice.split(|num| num % 3 == 0);
///
/// assert_eq!(iter.next().unwrap(), &[10]);
/// assert_eq!(iter.next().unwrap(), &[]);
/// assert_eq!(iter.next().unwrap(), &[20]);
/// assert!(iter.next().is_none());
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[inline]
pub fn split<F>(&self, pred: F) -> Split<'_, T, F>
where
F: FnMut(&T) -> bool,
{
Split::new(self, pred)
}
/// Returns an iterator over mutable subslices separated by elements that
/// match `pred`. The matched element is not contained in the subslices.
///
/// # Examples
///
/// ```
/// let mut v = [10, 40, 30, 20, 60, 50];
///
/// for group in v.split_mut(|num| *num % 3 == 0) {
/// group[0] = 1;
/// }
/// assert_eq!(v, [1, 40, 30, 1, 60, 1]);
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[inline]
pub fn split_mut<F>(&mut self, pred: F) -> SplitMut<'_, T, F>
where
F: FnMut(&T) -> bool,
{
SplitMut::new(self, pred)
}
/// Returns an iterator over subslices separated by elements that match
/// `pred`. The matched element is contained in the end of the previous
/// subslice as a terminator.
///
/// # Examples
///
/// ```
/// let slice = [10, 40, 33, 20];
/// let mut iter = slice.split_inclusive(|num| num % 3 == 0);
///
/// assert_eq!(iter.next().unwrap(), &[10, 40, 33]);
/// assert_eq!(iter.next().unwrap(), &[20]);
/// assert!(iter.next().is_none());
/// ```
///
/// If the last element of the slice is matched,
/// that element will be considered the terminator of the preceding slice.
/// That slice will be the last item returned by the iterator.
///
/// ```
/// let slice = [3, 10, 40, 33];
/// let mut iter = slice.split_inclusive(|num| num % 3 == 0);
///
/// assert_eq!(iter.next().unwrap(), &[3]);
/// assert_eq!(iter.next().unwrap(), &[10, 40, 33]);
/// assert!(iter.next().is_none());
/// ```
#[stable(feature = "split_inclusive", since = "1.51.0")]
#[inline]
pub fn split_inclusive<F>(&self, pred: F) -> SplitInclusive<'_, T, F>
where
F: FnMut(&T) -> bool,
{
SplitInclusive::new(self, pred)
}
/// Returns an iterator over mutable subslices separated by elements that
/// match `pred`. The matched element is contained in the previous
/// subslice as a terminator.
///
/// # Examples
///
/// ```
/// let mut v = [10, 40, 30, 20, 60, 50];
///
/// for group in v.split_inclusive_mut(|num| *num % 3 == 0) {
/// let terminator_idx = group.len()-1;
/// group[terminator_idx] = 1;
/// }
/// assert_eq!(v, [10, 40, 1, 20, 1, 1]);
/// ```
#[stable(feature = "split_inclusive", since = "1.51.0")]
#[inline]
pub fn split_inclusive_mut<F>(&mut self, pred: F) -> SplitInclusiveMut<'_, T, F>
where
F: FnMut(&T) -> bool,
{
SplitInclusiveMut::new(self, pred)
}
/// Returns an iterator over subslices separated by elements that match
/// `pred`, starting at the end of the slice and working backwards.
/// The matched element is not contained in the subslices.
///
/// # Examples
///
/// ```
/// let slice = [11, 22, 33, 0, 44, 55];
/// let mut iter = slice.rsplit(|num| *num == 0);
///
/// assert_eq!(iter.next().unwrap(), &[44, 55]);
/// assert_eq!(iter.next().unwrap(), &[11, 22, 33]);
/// assert_eq!(iter.next(), None);
/// ```
///
/// As with `split()`, if the first or last element is matched, an empty
/// slice will be the first (or last) item returned by the iterator.
///
/// ```
/// let v = &[0, 1, 1, 2, 3, 5, 8];
/// let mut it = v.rsplit(|n| *n % 2 == 0);
/// assert_eq!(it.next().unwrap(), &[]);
/// assert_eq!(it.next().unwrap(), &[3, 5]);
/// assert_eq!(it.next().unwrap(), &[1, 1]);
/// assert_eq!(it.next().unwrap(), &[]);
/// assert_eq!(it.next(), None);
/// ```
#[stable(feature = "slice_rsplit", since = "1.27.0")]
#[inline]
pub fn rsplit<F>(&self, pred: F) -> RSplit<'_, T, F>
where
F: FnMut(&T) -> bool,
{
RSplit::new(self, pred)
}
/// Returns an iterator over mutable subslices separated by elements that
/// match `pred`, starting at the end of the slice and working
/// backwards. The matched element is not contained in the subslices.
///
/// # Examples
///
/// ```
/// let mut v = [100, 400, 300, 200, 600, 500];
///
/// let mut count = 0;
/// for group in v.rsplit_mut(|num| *num % 3 == 0) {
/// count += 1;
/// group[0] = count;
/// }
/// assert_eq!(v, [3, 400, 300, 2, 600, 1]);
/// ```
///
#[stable(feature = "slice_rsplit", since = "1.27.0")]
#[inline]
pub fn rsplit_mut<F>(&mut self, pred: F) -> RSplitMut<'_, T, F>
where
F: FnMut(&T) -> bool,
{
RSplitMut::new(self, pred)
}
/// Returns an iterator over subslices separated by elements that match
/// `pred`, limited to returning at most `n` items. The matched element is
/// not contained in the subslices.
///
/// The last element returned, if any, will contain the remainder of the
/// slice.
///
/// # Examples
///
/// Print the slice split once by numbers divisible by 3 (i.e., `[10, 40]`,
/// `[20, 60, 50]`):
///
/// ```
/// let v = [10, 40, 30, 20, 60, 50];
///
/// for group in v.splitn(2, |num| *num % 3 == 0) {
/// println!("{group:?}");
/// }
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[inline]
pub fn splitn<F>(&self, n: usize, pred: F) -> SplitN<'_, T, F>
where
F: FnMut(&T) -> bool,
{
SplitN::new(self.split(pred), n)
}
/// Returns an iterator over subslices separated by elements that match
/// `pred`, limited to returning at most `n` items. The matched element is
/// not contained in the subslices.
///
/// The last element returned, if any, will contain the remainder of the
/// slice.
///
/// # Examples
///
/// ```
/// let mut v = [10, 40, 30, 20, 60, 50];
///
/// for group in v.splitn_mut(2, |num| *num % 3 == 0) {
/// group[0] = 1;
/// }
/// assert_eq!(v, [1, 40, 30, 1, 60, 50]);
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[inline]
pub fn splitn_mut<F>(&mut self, n: usize, pred: F) -> SplitNMut<'_, T, F>
where
F: FnMut(&T) -> bool,
{
SplitNMut::new(self.split_mut(pred), n)
}
/// Returns an iterator over subslices separated by elements that match
/// `pred` limited to returning at most `n` items. This starts at the end of
/// the slice and works backwards. The matched element is not contained in
/// the subslices.
///
/// The last element returned, if any, will contain the remainder of the
/// slice.
///
/// # Examples
///
/// Print the slice split once, starting from the end, by numbers divisible
/// by 3 (i.e., `[50]`, `[10, 40, 30, 20]`):
///
/// ```
/// let v = [10, 40, 30, 20, 60, 50];
///
/// for group in v.rsplitn(2, |num| *num % 3 == 0) {
/// println!("{group:?}");
/// }
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[inline]
pub fn rsplitn<F>(&self, n: usize, pred: F) -> RSplitN<'_, T, F>
where
F: FnMut(&T) -> bool,
{
RSplitN::new(self.rsplit(pred), n)
}
/// Returns an iterator over subslices separated by elements that match
/// `pred` limited to returning at most `n` items. This starts at the end of
/// the slice and works backwards. The matched element is not contained in
/// the subslices.
///
/// The last element returned, if any, will contain the remainder of the
/// slice.
///
/// # Examples
///
/// ```
/// let mut s = [10, 40, 30, 20, 60, 50];
///
/// for group in s.rsplitn_mut(2, |num| *num % 3 == 0) {
/// group[0] = 1;
/// }
/// assert_eq!(s, [1, 40, 30, 20, 60, 1]);
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[inline]
pub fn rsplitn_mut<F>(&mut self, n: usize, pred: F) -> RSplitNMut<'_, T, F>
where
F: FnMut(&T) -> bool,
{
RSplitNMut::new(self.rsplit_mut(pred), n)
}
/// Returns `true` if the slice contains an element with the given value.
///
/// # Examples
///
/// ```
/// let v = [10, 40, 30];
/// assert!(v.contains(&30));
/// assert!(!v.contains(&50));
/// ```
///
/// If you do not have a `&T`, but some other value that you can compare
/// with one (for example, `String` implements `PartialEq<str>`), you can
/// use `iter().any`:
///
/// ```
/// let v = [String::from("hello"), String::from("world")]; // slice of `String`
/// assert!(v.iter().any(|e| e == "hello")); // search with `&str`
/// assert!(!v.iter().any(|e| e == "hi"));
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[inline]
#[must_use]
pub fn contains(&self, x: &T) -> bool
where
T: PartialEq,
{
cmp::SliceContains::slice_contains(x, self)
}
/// Returns `true` if `needle` is a prefix of the slice.
///
/// # Examples
///
/// ```
/// let v = [10, 40, 30];
/// assert!(v.starts_with(&[10]));
/// assert!(v.starts_with(&[10, 40]));
/// assert!(!v.starts_with(&[50]));
/// assert!(!v.starts_with(&[10, 50]));
/// ```
///
/// Always returns `true` if `needle` is an empty slice:
///
/// ```
/// let v = &[10, 40, 30];
/// assert!(v.starts_with(&[]));
/// let v: &[u8] = &[];
/// assert!(v.starts_with(&[]));
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[must_use]
pub fn starts_with(&self, needle: &[T]) -> bool
where
T: PartialEq,
{
let n = needle.len();
self.len() >= n && needle == &self[..n]
}
/// Returns `true` if `needle` is a suffix of the slice.
///
/// # Examples
///
/// ```
/// let v = [10, 40, 30];
/// assert!(v.ends_with(&[30]));
/// assert!(v.ends_with(&[40, 30]));
/// assert!(!v.ends_with(&[50]));
/// assert!(!v.ends_with(&[50, 30]));
/// ```
///
/// Always returns `true` if `needle` is an empty slice:
///
/// ```
/// let v = &[10, 40, 30];
/// assert!(v.ends_with(&[]));
/// let v: &[u8] = &[];
/// assert!(v.ends_with(&[]));
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[must_use]
pub fn ends_with(&self, needle: &[T]) -> bool
where
T: PartialEq,
{
let (m, n) = (self.len(), needle.len());
m >= n && needle == &self[m - n..]
}
/// Returns a subslice with the prefix removed.
///
/// If the slice starts with `prefix`, returns the subslice after the prefix, wrapped in `Some`.
/// If `prefix` is empty, simply returns the original slice.
///
/// If the slice does not start with `prefix`, returns `None`.
///
/// # Examples
///
/// ```
/// let v = &[10, 40, 30];
/// assert_eq!(v.strip_prefix(&[10]), Some(&[40, 30][..]));
/// assert_eq!(v.strip_prefix(&[10, 40]), Some(&[30][..]));
/// assert_eq!(v.strip_prefix(&[50]), None);
/// assert_eq!(v.strip_prefix(&[10, 50]), None);
///
/// let prefix : &str = "he";
/// assert_eq!(b"hello".strip_prefix(prefix.as_bytes()),
/// Some(b"llo".as_ref()));
/// ```
#[must_use = "returns the subslice without modifying the original"]
#[stable(feature = "slice_strip", since = "1.51.0")]
pub fn strip_prefix<P: SlicePattern<Item = T> + ?Sized>(&self, prefix: &P) -> Option<&[T]>
where
T: PartialEq,
{
// This function will need rewriting if and when SlicePattern becomes more sophisticated.
let prefix = prefix.as_slice();
let n = prefix.len();
if n <= self.len() {
let (head, tail) = self.split_at(n);
if head == prefix {
return Some(tail);
}
}
None
}
/// Returns a subslice with the suffix removed.
///
/// If the slice ends with `suffix`, returns the subslice before the suffix, wrapped in `Some`.
/// If `suffix` is empty, simply returns the original slice.
///
/// If the slice does not end with `suffix`, returns `None`.
///
/// # Examples
///
/// ```
/// let v = &[10, 40, 30];
/// assert_eq!(v.strip_suffix(&[30]), Some(&[10, 40][..]));
/// assert_eq!(v.strip_suffix(&[40, 30]), Some(&[10][..]));
/// assert_eq!(v.strip_suffix(&[50]), None);
/// assert_eq!(v.strip_suffix(&[50, 30]), None);
/// ```
#[must_use = "returns the subslice without modifying the original"]
#[stable(feature = "slice_strip", since = "1.51.0")]
pub fn strip_suffix<P: SlicePattern<Item = T> + ?Sized>(&self, suffix: &P) -> Option<&[T]>
where
T: PartialEq,
{
// This function will need rewriting if and when SlicePattern becomes more sophisticated.
let suffix = suffix.as_slice();
let (len, n) = (self.len(), suffix.len());
if n <= len {
let (head, tail) = self.split_at(len - n);
if tail == suffix {
return Some(head);
}
}
None
}
/// Binary searches this sorted slice for a given element.
///
/// If the value is found then [`Result::Ok`] is returned, containing the
/// index of the matching element. If there are multiple matches, then any
/// one of the matches could be returned. The index is chosen
/// deterministically, but is subject to change in future versions of Rust.
/// If the value is not found then [`Result::Err`] is returned, containing
/// the index where a matching element could be inserted while maintaining
/// sorted order.
///
/// See also [`binary_search_by`], [`binary_search_by_key`], and [`partition_point`].
///
/// [`binary_search_by`]: slice::binary_search_by
/// [`binary_search_by_key`]: slice::binary_search_by_key
/// [`partition_point`]: slice::partition_point
///
/// # Examples
///
/// Looks up a series of four elements. The first is found, with a
/// uniquely determined position; the second and third are not
/// found; the fourth could match any position in `[1, 4]`.
///
/// ```
/// let s = [0, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55];
///
/// assert_eq!(s.binary_search(&13), Ok(9));
/// assert_eq!(s.binary_search(&4), Err(7));
/// assert_eq!(s.binary_search(&100), Err(13));
/// let r = s.binary_search(&1);
/// assert!(match r { Ok(1..=4) => true, _ => false, });
/// ```
///
/// If you want to insert an item to a sorted vector, while maintaining
/// sort order:
///
/// ```
/// let mut s = vec![0, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55];
/// let num = 42;
/// let idx = s.binary_search(&num).unwrap_or_else(|x| x);
/// s.insert(idx, num);
/// assert_eq!(s, [0, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 42, 55]);
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
pub fn binary_search(&self, x: &T) -> Result<usize, usize>
where
T: Ord,
{
self.binary_search_by(|p| p.cmp(x))
}
/// Binary searches this sorted slice with a comparator function.
///
/// The comparator function should implement an order consistent
/// with the sort order of the underlying slice, returning an
/// order code that indicates whether its argument is `Less`,
/// `Equal` or `Greater` the desired target.
///
/// If the value is found then [`Result::Ok`] is returned, containing the
/// index of the matching element. If there are multiple matches, then any
/// one of the matches could be returned. The index is chosen
/// deterministically, but is subject to change in future versions of Rust.
/// If the value is not found then [`Result::Err`] is returned, containing
/// the index where a matching element could be inserted while maintaining
/// sorted order.
///
/// See also [`binary_search`], [`binary_search_by_key`], and [`partition_point`].
///
/// [`binary_search`]: slice::binary_search
/// [`binary_search_by_key`]: slice::binary_search_by_key
/// [`partition_point`]: slice::partition_point
///
/// # Examples
///
/// Looks up a series of four elements. The first is found, with a
/// uniquely determined position; the second and third are not
/// found; the fourth could match any position in `[1, 4]`.
///
/// ```
/// let s = [0, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55];
///
/// let seek = 13;
/// assert_eq!(s.binary_search_by(|probe| probe.cmp(&seek)), Ok(9));
/// let seek = 4;
/// assert_eq!(s.binary_search_by(|probe| probe.cmp(&seek)), Err(7));
/// let seek = 100;
/// assert_eq!(s.binary_search_by(|probe| probe.cmp(&seek)), Err(13));
/// let seek = 1;
/// let r = s.binary_search_by(|probe| probe.cmp(&seek));
/// assert!(match r { Ok(1..=4) => true, _ => false, });
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[inline]
pub fn binary_search_by<'a, F>(&'a self, mut f: F) -> Result<usize, usize>
where
F: FnMut(&'a T) -> Ordering,
{
let mut size = self.len();
let mut left = 0;
let mut right = size;
while left < right {
let mid = left + size / 2;
// SAFETY: the call is made safe by the following invariants:
// - `mid >= 0`
// - `mid < size`: `mid` is limited by `[left; right)` bound.
let cmp = f(unsafe { self.get_unchecked(mid) });
// The reason why we use if/else control flow rather than match
// is because match reorders comparison operations, which is perf sensitive.
// This is x86 asm for u8: https://rust.godbolt.org/z/8Y8Pra.
if cmp == Less {
left = mid + 1;
} else if cmp == Greater {
right = mid;
} else {
// SAFETY: same as the `get_unchecked` above
unsafe { crate::intrinsics::assume(mid < self.len()) };
return Ok(mid);
}
size = right - left;
}
Err(left)
}
/// Binary searches this sorted slice with a key extraction function.
///
/// Assumes that the slice is sorted by the key, for instance with
/// [`sort_by_key`] using the same key extraction function.
///
/// If the value is found then [`Result::Ok`] is returned, containing the
/// index of the matching element. If there are multiple matches, then any
/// one of the matches could be returned. The index is chosen
/// deterministically, but is subject to change in future versions of Rust.
/// If the value is not found then [`Result::Err`] is returned, containing
/// the index where a matching element could be inserted while maintaining
/// sorted order.
///
/// See also [`binary_search`], [`binary_search_by`], and [`partition_point`].
///
/// [`sort_by_key`]: slice::sort_by_key
/// [`binary_search`]: slice::binary_search
/// [`binary_search_by`]: slice::binary_search_by
/// [`partition_point`]: slice::partition_point
///
/// # Examples
///
/// Looks up a series of four elements in a slice of pairs sorted by
/// their second elements. The first is found, with a uniquely
/// determined position; the second and third are not found; the
/// fourth could match any position in `[1, 4]`.
///
/// ```
/// let s = [(0, 0), (2, 1), (4, 1), (5, 1), (3, 1),
/// (1, 2), (2, 3), (4, 5), (5, 8), (3, 13),
/// (1, 21), (2, 34), (4, 55)];
///
/// assert_eq!(s.binary_search_by_key(&13, |&(a, b)| b), Ok(9));
/// assert_eq!(s.binary_search_by_key(&4, |&(a, b)| b), Err(7));
/// assert_eq!(s.binary_search_by_key(&100, |&(a, b)| b), Err(13));
/// let r = s.binary_search_by_key(&1, |&(a, b)| b);
/// assert!(match r { Ok(1..=4) => true, _ => false, });
/// ```
// Lint rustdoc::broken_intra_doc_links is allowed as `slice::sort_by_key` is
// in crate `alloc`, and as such doesn't exists yet when building `core`: #74481.
// This breaks links when slice is displayed in core, but changing it to use relative links
// would break when the item is re-exported. So allow the core links to be broken for now.
#[allow(rustdoc::broken_intra_doc_links)]
#[stable(feature = "slice_binary_search_by_key", since = "1.10.0")]
#[inline]
pub fn binary_search_by_key<'a, B, F>(&'a self, b: &B, mut f: F) -> Result<usize, usize>
where
F: FnMut(&'a T) -> B,
B: Ord,
{
self.binary_search_by(|k| f(k).cmp(b))
}
/// Sorts the slice, but might not preserve the order of equal elements.
///
/// This sort is unstable (i.e., may reorder equal elements), in-place
/// (i.e., does not allocate), and *O*(*n* \* log(*n*)) worst-case.
///
/// # Current implementation
///
/// The current algorithm is based on [pattern-defeating quicksort][pdqsort] by Orson Peters,
/// which combines the fast average case of randomized quicksort with the fast worst case of
/// heapsort, while achieving linear time on slices with certain patterns. It uses some
/// randomization to avoid degenerate cases, but with a fixed seed to always provide
/// deterministic behavior.
///
/// It is typically faster than stable sorting, except in a few special cases, e.g., when the
/// slice consists of several concatenated sorted sequences.
///
/// # Examples
///
/// ```
/// let mut v = [-5, 4, 1, -3, 2];
///
/// v.sort_unstable();
/// assert!(v == [-5, -3, 1, 2, 4]);
/// ```
///
/// [pdqsort]: https://github.com/orlp/pdqsort
#[stable(feature = "sort_unstable", since = "1.20.0")]
#[inline]
pub fn sort_unstable(&mut self)
where
T: Ord,
{
sort::quicksort(self, |a, b| a.lt(b));
}
/// Sorts the slice with a comparator function, but might not preserve the order of equal
/// elements.
///
/// This sort is unstable (i.e., may reorder equal elements), in-place
/// (i.e., does not allocate), and *O*(*n* \* log(*n*)) worst-case.
///
/// The comparator function must define a total ordering for the elements in the slice. If
/// the ordering is not total, the order of the elements is unspecified. An order is a
/// total order if it is (for all `a`, `b` and `c`):
///
/// * total and antisymmetric: exactly one of `a < b`, `a == b` or `a > b` is true, and
/// * transitive, `a < b` and `b < c` implies `a < c`. The same must hold for both `==` and `>`.
///
/// For example, while [`f64`] doesn't implement [`Ord`] because `NaN != NaN`, we can use
/// `partial_cmp` as our sort function when we know the slice doesn't contain a `NaN`.
///
/// ```
/// let mut floats = [5f64, 4.0, 1.0, 3.0, 2.0];
/// floats.sort_unstable_by(|a, b| a.partial_cmp(b).unwrap());
/// assert_eq!(floats, [1.0, 2.0, 3.0, 4.0, 5.0]);
/// ```
///
/// # Current implementation
///
/// The current algorithm is based on [pattern-defeating quicksort][pdqsort] by Orson Peters,
/// which combines the fast average case of randomized quicksort with the fast worst case of
/// heapsort, while achieving linear time on slices with certain patterns. It uses some
/// randomization to avoid degenerate cases, but with a fixed seed to always provide
/// deterministic behavior.
///
/// It is typically faster than stable sorting, except in a few special cases, e.g., when the
/// slice consists of several concatenated sorted sequences.
///
/// # Examples
///
/// ```
/// let mut v = [5, 4, 1, 3, 2];
/// v.sort_unstable_by(|a, b| a.cmp(b));
/// assert!(v == [1, 2, 3, 4, 5]);
///
/// // reverse sorting
/// v.sort_unstable_by(|a, b| b.cmp(a));
/// assert!(v == [5, 4, 3, 2, 1]);
/// ```
///
/// [pdqsort]: https://github.com/orlp/pdqsort
#[stable(feature = "sort_unstable", since = "1.20.0")]
#[inline]
pub fn sort_unstable_by<F>(&mut self, mut compare: F)
where
F: FnMut(&T, &T) -> Ordering,
{
sort::quicksort(self, |a, b| compare(a, b) == Ordering::Less);
}
/// Sorts the slice with a key extraction function, but might not preserve the order of equal
/// elements.
///
/// This sort is unstable (i.e., may reorder equal elements), in-place
/// (i.e., does not allocate), and *O*(m \* *n* \* log(*n*)) worst-case, where the key function is
/// *O*(*m*).
///
/// # Current implementation
///
/// The current algorithm is based on [pattern-defeating quicksort][pdqsort] by Orson Peters,
/// which combines the fast average case of randomized quicksort with the fast worst case of
/// heapsort, while achieving linear time on slices with certain patterns. It uses some
/// randomization to avoid degenerate cases, but with a fixed seed to always provide
/// deterministic behavior.
///
/// Due to its key calling strategy, [`sort_unstable_by_key`](#method.sort_unstable_by_key)
/// is likely to be slower than [`sort_by_cached_key`](#method.sort_by_cached_key) in
/// cases where the key function is expensive.
///
/// # Examples
///
/// ```
/// let mut v = [-5i32, 4, 1, -3, 2];
///
/// v.sort_unstable_by_key(|k| k.abs());
/// assert!(v == [1, 2, -3, 4, -5]);
/// ```
///
/// [pdqsort]: https://github.com/orlp/pdqsort
#[stable(feature = "sort_unstable", since = "1.20.0")]
#[inline]
pub fn sort_unstable_by_key<K, F>(&mut self, mut f: F)
where
F: FnMut(&T) -> K,
K: Ord,
{
sort::quicksort(self, |a, b| f(a).lt(&f(b)));
}
/// Reorder the slice such that the element at `index` is at its final sorted position.
///
/// This reordering has the additional property that any value at position `i < index` will be
/// less than or equal to any value at a position `j > index`. Additionally, this reordering is
/// unstable (i.e. any number of equal elements may end up at position `index`), in-place
/// (i.e. does not allocate), and *O*(*n*) worst-case. This function is also/ known as "kth
/// element" in other libraries. It returns a triplet of the following values: all elements less
/// than the one at the given index, the value at the given index, and all elements greater than
/// the one at the given index.
///
/// # Current implementation
///
/// The current algorithm is based on the quickselect portion of the same quicksort algorithm
/// used for [`sort_unstable`].
///
/// [`sort_unstable`]: slice::sort_unstable
///
/// # Panics
///
/// Panics when `index >= len()`, meaning it always panics on empty slices.
///
/// # Examples
///
/// ```
/// let mut v = [-5i32, 4, 1, -3, 2];
///
/// // Find the median
/// v.select_nth_unstable(2);
///
/// // We are only guaranteed the slice will be one of the following, based on the way we sort
/// // about the specified index.
/// assert!(v == [-3, -5, 1, 2, 4] ||
/// v == [-5, -3, 1, 2, 4] ||
/// v == [-3, -5, 1, 4, 2] ||
/// v == [-5, -3, 1, 4, 2]);
/// ```
#[stable(feature = "slice_select_nth_unstable", since = "1.49.0")]
#[inline]
pub fn select_nth_unstable(&mut self, index: usize) -> (&mut [T], &mut T, &mut [T])
where
T: Ord,
{
let mut f = |a: &T, b: &T| a.lt(b);
sort::partition_at_index(self, index, &mut f)
}
/// Reorder the slice with a comparator function such that the element at `index` is at its
/// final sorted position.
///
/// This reordering has the additional property that any value at position `i < index` will be
/// less than or equal to any value at a position `j > index` using the comparator function.
/// Additionally, this reordering is unstable (i.e. any number of equal elements may end up at
/// position `index`), in-place (i.e. does not allocate), and *O*(*n*) worst-case. This function
/// is also known as "kth element" in other libraries. It returns a triplet of the following
/// values: all elements less than the one at the given index, the value at the given index,
/// and all elements greater than the one at the given index, using the provided comparator
/// function.
///
/// # Current implementation
///
/// The current algorithm is based on the quickselect portion of the same quicksort algorithm
/// used for [`sort_unstable`].
///
/// [`sort_unstable`]: slice::sort_unstable
///
/// # Panics
///
/// Panics when `index >= len()`, meaning it always panics on empty slices.
///
/// # Examples
///
/// ```
/// let mut v = [-5i32, 4, 1, -3, 2];
///
/// // Find the median as if the slice were sorted in descending order.
/// v.select_nth_unstable_by(2, |a, b| b.cmp(a));
///
/// // We are only guaranteed the slice will be one of the following, based on the way we sort
/// // about the specified index.
/// assert!(v == [2, 4, 1, -5, -3] ||
/// v == [2, 4, 1, -3, -5] ||
/// v == [4, 2, 1, -5, -3] ||
/// v == [4, 2, 1, -3, -5]);
/// ```
#[stable(feature = "slice_select_nth_unstable", since = "1.49.0")]
#[inline]
pub fn select_nth_unstable_by<F>(
&mut self,
index: usize,
mut compare: F,
) -> (&mut [T], &mut T, &mut [T])
where
F: FnMut(&T, &T) -> Ordering,
{
let mut f = |a: &T, b: &T| compare(a, b) == Less;
sort::partition_at_index(self, index, &mut f)
}
/// Reorder the slice with a key extraction function such that the element at `index` is at its
/// final sorted position.
///
/// This reordering has the additional property that any value at position `i < index` will be
/// less than or equal to any value at a position `j > index` using the key extraction function.
/// Additionally, this reordering is unstable (i.e. any number of equal elements may end up at
/// position `index`), in-place (i.e. does not allocate), and *O*(*n*) worst-case. This function
/// is also known as "kth element" in other libraries. It returns a triplet of the following
/// values: all elements less than the one at the given index, the value at the given index, and
/// all elements greater than the one at the given index, using the provided key extraction
/// function.
///
/// # Current implementation
///
/// The current algorithm is based on the quickselect portion of the same quicksort algorithm
/// used for [`sort_unstable`].
///
/// [`sort_unstable`]: slice::sort_unstable
///
/// # Panics
///
/// Panics when `index >= len()`, meaning it always panics on empty slices.
///
/// # Examples
///
/// ```
/// let mut v = [-5i32, 4, 1, -3, 2];
///
/// // Return the median as if the array were sorted according to absolute value.
/// v.select_nth_unstable_by_key(2, |a| a.abs());
///
/// // We are only guaranteed the slice will be one of the following, based on the way we sort
/// // about the specified index.
/// assert!(v == [1, 2, -3, 4, -5] ||
/// v == [1, 2, -3, -5, 4] ||
/// v == [2, 1, -3, 4, -5] ||
/// v == [2, 1, -3, -5, 4]);
/// ```
#[stable(feature = "slice_select_nth_unstable", since = "1.49.0")]
#[inline]
pub fn select_nth_unstable_by_key<K, F>(
&mut self,
index: usize,
mut f: F,
) -> (&mut [T], &mut T, &mut [T])
where
F: FnMut(&T) -> K,
K: Ord,
{
let mut g = |a: &T, b: &T| f(a).lt(&f(b));
sort::partition_at_index(self, index, &mut g)
}
/// Moves all consecutive repeated elements to the end of the slice according to the
/// [`PartialEq`] trait implementation.
///
/// Returns two slices. The first contains no consecutive repeated elements.
/// The second contains all the duplicates in no specified order.
///
/// If the slice is sorted, the first returned slice contains no duplicates.
///
/// # Examples
///
/// ```
/// #![feature(slice_partition_dedup)]
///
/// let mut slice = [1, 2, 2, 3, 3, 2, 1, 1];
///
/// let (dedup, duplicates) = slice.partition_dedup();
///
/// assert_eq!(dedup, [1, 2, 3, 2, 1]);
/// assert_eq!(duplicates, [2, 3, 1]);
/// ```
#[unstable(feature = "slice_partition_dedup", issue = "54279")]
#[inline]
pub fn partition_dedup(&mut self) -> (&mut [T], &mut [T])
where
T: PartialEq,
{
self.partition_dedup_by(|a, b| a == b)
}
/// Moves all but the first of consecutive elements to the end of the slice satisfying
/// a given equality relation.
///
/// Returns two slices. The first contains no consecutive repeated elements.
/// The second contains all the duplicates in no specified order.
///
/// The `same_bucket` function is passed references to two elements from the slice and
/// must determine if the elements compare equal. The elements are passed in opposite order
/// from their order in the slice, so if `same_bucket(a, b)` returns `true`, `a` is moved
/// at the end of the slice.
///
/// If the slice is sorted, the first returned slice contains no duplicates.
///
/// # Examples
///
/// ```
/// #![feature(slice_partition_dedup)]
///
/// let mut slice = ["foo", "Foo", "BAZ", "Bar", "bar", "baz", "BAZ"];
///
/// let (dedup, duplicates) = slice.partition_dedup_by(|a, b| a.eq_ignore_ascii_case(b));
///
/// assert_eq!(dedup, ["foo", "BAZ", "Bar", "baz"]);
/// assert_eq!(duplicates, ["bar", "Foo", "BAZ"]);
/// ```
#[unstable(feature = "slice_partition_dedup", issue = "54279")]
#[inline]
pub fn partition_dedup_by<F>(&mut self, mut same_bucket: F) -> (&mut [T], &mut [T])
where
F: FnMut(&mut T, &mut T) -> bool,
{
// Although we have a mutable reference to `self`, we cannot make
// *arbitrary* changes. The `same_bucket` calls could panic, so we
// must ensure that the slice is in a valid state at all times.
//
// The way that we handle this is by using swaps; we iterate
// over all the elements, swapping as we go so that at the end
// the elements we wish to keep are in the front, and those we
// wish to reject are at the back. We can then split the slice.
// This operation is still `O(n)`.
//
// Example: We start in this state, where `r` represents "next
// read" and `w` represents "next_write`.
//
// r
// +---+---+---+---+---+---+
// | 0 | 1 | 1 | 2 | 3 | 3 |
// +---+---+---+---+---+---+
// w
//
// Comparing self[r] against self[w-1], this is not a duplicate, so
// we swap self[r] and self[w] (no effect as r==w) and then increment both
// r and w, leaving us with:
//
// r
// +---+---+---+---+---+---+
// | 0 | 1 | 1 | 2 | 3 | 3 |
// +---+---+---+---+---+---+
// w
//
// Comparing self[r] against self[w-1], this value is a duplicate,
// so we increment `r` but leave everything else unchanged:
//
// r
// +---+---+---+---+---+---+
// | 0 | 1 | 1 | 2 | 3 | 3 |
// +---+---+---+---+---+---+
// w
//
// Comparing self[r] against self[w-1], this is not a duplicate,
// so swap self[r] and self[w] and advance r and w:
//
// r
// +---+---+---+---+---+---+
// | 0 | 1 | 2 | 1 | 3 | 3 |
// +---+---+---+---+---+---+
// w
//
// Not a duplicate, repeat:
//
// r
// +---+---+---+---+---+---+
// | 0 | 1 | 2 | 3 | 1 | 3 |
// +---+---+---+---+---+---+
// w
//
// Duplicate, advance r. End of slice. Split at w.
let len = self.len();
if len <= 1 {
return (self, &mut []);
}
let ptr = self.as_mut_ptr();
let mut next_read: usize = 1;
let mut next_write: usize = 1;
// SAFETY: the `while` condition guarantees `next_read` and `next_write`
// are less than `len`, thus are inside `self`. `prev_ptr_write` points to
// one element before `ptr_write`, but `next_write` starts at 1, so
// `prev_ptr_write` is never less than 0 and is inside the slice.
// This fulfils the requirements for dereferencing `ptr_read`, `prev_ptr_write`
// and `ptr_write`, and for using `ptr.add(next_read)`, `ptr.add(next_write - 1)`
// and `prev_ptr_write.offset(1)`.
//
// `next_write` is also incremented at most once per loop at most meaning
// no element is skipped when it may need to be swapped.
//
// `ptr_read` and `prev_ptr_write` never point to the same element. This
// is required for `&mut *ptr_read`, `&mut *prev_ptr_write` to be safe.
// The explanation is simply that `next_read >= next_write` is always true,
// thus `next_read > next_write - 1` is too.
unsafe {
// Avoid bounds checks by using raw pointers.
while next_read < len {
let ptr_read = ptr.add(next_read);
let prev_ptr_write = ptr.add(next_write - 1);
if !same_bucket(&mut *ptr_read, &mut *prev_ptr_write) {
if next_read != next_write {
let ptr_write = prev_ptr_write.offset(1);
mem::swap(&mut *ptr_read, &mut *ptr_write);
}
next_write += 1;
}
next_read += 1;
}
}
self.split_at_mut(next_write)
}
/// Moves all but the first of consecutive elements to the end of the slice that resolve
/// to the same key.
///
/// Returns two slices. The first contains no consecutive repeated elements.
/// The second contains all the duplicates in no specified order.
///
/// If the slice is sorted, the first returned slice contains no duplicates.
///
/// # Examples
///
/// ```
/// #![feature(slice_partition_dedup)]
///
/// let mut slice = [10, 20, 21, 30, 30, 20, 11, 13];
///
/// let (dedup, duplicates) = slice.partition_dedup_by_key(|i| *i / 10);
///
/// assert_eq!(dedup, [10, 20, 30, 20, 11]);
/// assert_eq!(duplicates, [21, 30, 13]);
/// ```
#[unstable(feature = "slice_partition_dedup", issue = "54279")]
#[inline]
pub fn partition_dedup_by_key<K, F>(&mut self, mut key: F) -> (&mut [T], &mut [T])
where
F: FnMut(&mut T) -> K,
K: PartialEq,
{
self.partition_dedup_by(|a, b| key(a) == key(b))
}
/// Rotates the slice in-place such that the first `mid` elements of the
/// slice move to the end while the last `self.len() - mid` elements move to
/// the front. After calling `rotate_left`, the element previously at index
/// `mid` will become the first element in the slice.
///
/// # Panics
///
/// This function will panic if `mid` is greater than the length of the
/// slice. Note that `mid == self.len()` does _not_ panic and is a no-op
/// rotation.
///
/// # Complexity
///
/// Takes linear (in `self.len()`) time.
///
/// # Examples
///
/// ```
/// let mut a = ['a', 'b', 'c', 'd', 'e', 'f'];
/// a.rotate_left(2);
/// assert_eq!(a, ['c', 'd', 'e', 'f', 'a', 'b']);
/// ```
///
/// Rotating a subslice:
///
/// ```
/// let mut a = ['a', 'b', 'c', 'd', 'e', 'f'];
/// a[1..5].rotate_left(1);
/// assert_eq!(a, ['a', 'c', 'd', 'e', 'b', 'f']);
/// ```
#[stable(feature = "slice_rotate", since = "1.26.0")]
pub fn rotate_left(&mut self, mid: usize) {
assert!(mid <= self.len());
let k = self.len() - mid;
let p = self.as_mut_ptr();
// SAFETY: The range `[p.add(mid) - mid, p.add(mid) + k)` is trivially
// valid for reading and writing, as required by `ptr_rotate`.
unsafe {
rotate::ptr_rotate(mid, p.add(mid), k);
}
}
/// Rotates the slice in-place such that the first `self.len() - k`
/// elements of the slice move to the end while the last `k` elements move
/// to the front. After calling `rotate_right`, the element previously at
/// index `self.len() - k` will become the first element in the slice.
///
/// # Panics
///
/// This function will panic if `k` is greater than the length of the
/// slice. Note that `k == self.len()` does _not_ panic and is a no-op
/// rotation.
///
/// # Complexity
///
/// Takes linear (in `self.len()`) time.
///
/// # Examples
///
/// ```
/// let mut a = ['a', 'b', 'c', 'd', 'e', 'f'];
/// a.rotate_right(2);
/// assert_eq!(a, ['e', 'f', 'a', 'b', 'c', 'd']);
/// ```
///
/// Rotate a subslice:
///
/// ```
/// let mut a = ['a', 'b', 'c', 'd', 'e', 'f'];
/// a[1..5].rotate_right(1);
/// assert_eq!(a, ['a', 'e', 'b', 'c', 'd', 'f']);
/// ```
#[stable(feature = "slice_rotate", since = "1.26.0")]
pub fn rotate_right(&mut self, k: usize) {
assert!(k <= self.len());
let mid = self.len() - k;
let p = self.as_mut_ptr();
// SAFETY: The range `[p.add(mid) - mid, p.add(mid) + k)` is trivially
// valid for reading and writing, as required by `ptr_rotate`.
unsafe {
rotate::ptr_rotate(mid, p.add(mid), k);
}
}
/// Fills `self` with elements by cloning `value`.
///
/// # Examples
///
/// ```
/// let mut buf = vec![0; 10];
/// buf.fill(1);
/// assert_eq!(buf, vec![1; 10]);
/// ```
#[doc(alias = "memset")]
#[stable(feature = "slice_fill", since = "1.50.0")]
pub fn fill(&mut self, value: T)
where
T: Clone,
{
specialize::SpecFill::spec_fill(self, value);
}
/// Fills `self` with elements returned by calling a closure repeatedly.
///
/// This method uses a closure to create new values. If you'd rather
/// [`Clone`] a given value, use [`fill`]. If you want to use the [`Default`]
/// trait to generate values, you can pass [`Default::default`] as the
/// argument.
///
/// [`fill`]: slice::fill
///
/// # Examples
///
/// ```
/// let mut buf = vec![1; 10];
/// buf.fill_with(Default::default);
/// assert_eq!(buf, vec![0; 10]);
/// ```
#[doc(alias = "memset")]
#[stable(feature = "slice_fill_with", since = "1.51.0")]
pub fn fill_with<F>(&mut self, mut f: F)
where
F: FnMut() -> T,
{
for el in self {
*el = f();
}
}
/// Copies the elements from `src` into `self`.
///
/// The length of `src` must be the same as `self`.
///
/// # Panics
///
/// This function will panic if the two slices have different lengths.
///
/// # Examples
///
/// Cloning two elements from a slice into another:
///
/// ```
/// let src = [1, 2, 3, 4];
/// let mut dst = [0, 0];
///
/// // Because the slices have to be the same length,
/// // we slice the source slice from four elements
/// // to two. It will panic if we don't do this.
/// dst.clone_from_slice(&src[2..]);
///
/// assert_eq!(src, [1, 2, 3, 4]);
/// assert_eq!(dst, [3, 4]);
/// ```
///
/// Rust enforces that there can only be one mutable reference with no
/// immutable references to a particular piece of data in a particular
/// scope. Because of this, attempting to use `clone_from_slice` on a
/// single slice will result in a compile failure:
///
/// ```compile_fail
/// let mut slice = [1, 2, 3, 4, 5];
///
/// slice[..2].clone_from_slice(&slice[3..]); // compile fail!
/// ```
///
/// To work around this, we can use [`split_at_mut`] to create two distinct
/// sub-slices from a slice:
///
/// ```
/// let mut slice = [1, 2, 3, 4, 5];
///
/// {
/// let (left, right) = slice.split_at_mut(2);
/// left.clone_from_slice(&right[1..]);
/// }
///
/// assert_eq!(slice, [4, 5, 3, 4, 5]);
/// ```
///
/// [`copy_from_slice`]: slice::copy_from_slice
/// [`split_at_mut`]: slice::split_at_mut
#[stable(feature = "clone_from_slice", since = "1.7.0")]
#[track_caller]
pub fn clone_from_slice(&mut self, src: &[T])
where
T: Clone,
{
self.spec_clone_from(src);
}
/// Copies all elements from `src` into `self`, using a memcpy.
///
/// The length of `src` must be the same as `self`.
///
/// If `T` does not implement `Copy`, use [`clone_from_slice`].
///
/// # Panics
///
/// This function will panic if the two slices have different lengths.
///
/// # Examples
///
/// Copying two elements from a slice into another:
///
/// ```
/// let src = [1, 2, 3, 4];
/// let mut dst = [0, 0];
///
/// // Because the slices have to be the same length,
/// // we slice the source slice from four elements
/// // to two. It will panic if we don't do this.
/// dst.copy_from_slice(&src[2..]);
///
/// assert_eq!(src, [1, 2, 3, 4]);
/// assert_eq!(dst, [3, 4]);
/// ```
///
/// Rust enforces that there can only be one mutable reference with no
/// immutable references to a particular piece of data in a particular
/// scope. Because of this, attempting to use `copy_from_slice` on a
/// single slice will result in a compile failure:
///
/// ```compile_fail
/// let mut slice = [1, 2, 3, 4, 5];
///
/// slice[..2].copy_from_slice(&slice[3..]); // compile fail!
/// ```
///
/// To work around this, we can use [`split_at_mut`] to create two distinct
/// sub-slices from a slice:
///
/// ```
/// let mut slice = [1, 2, 3, 4, 5];
///
/// {
/// let (left, right) = slice.split_at_mut(2);
/// left.copy_from_slice(&right[1..]);
/// }
///
/// assert_eq!(slice, [4, 5, 3, 4, 5]);
/// ```
///
/// [`clone_from_slice`]: slice::clone_from_slice
/// [`split_at_mut`]: slice::split_at_mut
#[doc(alias = "memcpy")]
#[stable(feature = "copy_from_slice", since = "1.9.0")]
#[track_caller]
pub fn copy_from_slice(&mut self, src: &[T])
where
T: Copy,
{
// The panic code path was put into a cold function to not bloat the
// call site.
#[inline(never)]
#[cold]
#[track_caller]
fn len_mismatch_fail(dst_len: usize, src_len: usize) -> ! {
panic!(
"source slice length ({}) does not match destination slice length ({})",
src_len, dst_len,
);
}
if self.len() != src.len() {
len_mismatch_fail(self.len(), src.len());
}
// SAFETY: `self` is valid for `self.len()` elements by definition, and `src` was
// checked to have the same length. The slices cannot overlap because
// mutable references are exclusive.
unsafe {
ptr::copy_nonoverlapping(src.as_ptr(), self.as_mut_ptr(), self.len());
}
}
/// Copies elements from one part of the slice to another part of itself,
/// using a memmove.
///
/// `src` is the range within `self` to copy from. `dest` is the starting
/// index of the range within `self` to copy to, which will have the same
/// length as `src`. The two ranges may overlap. The ends of the two ranges
/// must be less than or equal to `self.len()`.
///
/// # Panics
///
/// This function will panic if either range exceeds the end of the slice,
/// or if the end of `src` is before the start.
///
/// # Examples
///
/// Copying four bytes within a slice:
///
/// ```
/// let mut bytes = *b"Hello, World!";
///
/// bytes.copy_within(1..5, 8);
///
/// assert_eq!(&bytes, b"Hello, Wello!");
/// ```
#[stable(feature = "copy_within", since = "1.37.0")]
#[track_caller]
pub fn copy_within<R: RangeBounds<usize>>(&mut self, src: R, dest: usize)
where
T: Copy,
{
let Range { start: src_start, end: src_end } = slice::range(src, ..self.len());
let count = src_end - src_start;
assert!(dest <= self.len() - count, "dest is out of bounds");
// SAFETY: the conditions for `ptr::copy` have all been checked above,
// as have those for `ptr::add`.
unsafe {
// Derive both `src_ptr` and `dest_ptr` from the same loan
let ptr = self.as_mut_ptr();
let src_ptr = ptr.add(src_start);
let dest_ptr = ptr.add(dest);
ptr::copy(src_ptr, dest_ptr, count);
}
}
/// Swaps all elements in `self` with those in `other`.
///
/// The length of `other` must be the same as `self`.
///
/// # Panics
///
/// This function will panic if the two slices have different lengths.
///
/// # Example
///
/// Swapping two elements across slices:
///
/// ```
/// let mut slice1 = [0, 0];
/// let mut slice2 = [1, 2, 3, 4];
///
/// slice1.swap_with_slice(&mut slice2[2..]);
///
/// assert_eq!(slice1, [3, 4]);
/// assert_eq!(slice2, [1, 2, 0, 0]);
/// ```
///
/// Rust enforces that there can only be one mutable reference to a
/// particular piece of data in a particular scope. Because of this,
/// attempting to use `swap_with_slice` on a single slice will result in
/// a compile failure:
///
/// ```compile_fail
/// let mut slice = [1, 2, 3, 4, 5];
/// slice[..2].swap_with_slice(&mut slice[3..]); // compile fail!
/// ```
///
/// To work around this, we can use [`split_at_mut`] to create two distinct
/// mutable sub-slices from a slice:
///
/// ```
/// let mut slice = [1, 2, 3, 4, 5];
///
/// {
/// let (left, right) = slice.split_at_mut(2);
/// left.swap_with_slice(&mut right[1..]);
/// }
///
/// assert_eq!(slice, [4, 5, 3, 1, 2]);
/// ```
///
/// [`split_at_mut`]: slice::split_at_mut
#[stable(feature = "swap_with_slice", since = "1.27.0")]
#[track_caller]
pub fn swap_with_slice(&mut self, other: &mut [T]) {
assert!(self.len() == other.len(), "destination and source slices have different lengths");
// SAFETY: `self` is valid for `self.len()` elements by definition, and `src` was
// checked to have the same length. The slices cannot overlap because
// mutable references are exclusive.
unsafe {
ptr::swap_nonoverlapping(self.as_mut_ptr(), other.as_mut_ptr(), self.len());
}
}
/// Function to calculate lengths of the middle and trailing slice for `align_to{,_mut}`.
fn align_to_offsets<U>(&self) -> (usize, usize) {
// What we gonna do about `rest` is figure out what multiple of `U`s we can put in a
// lowest number of `T`s. And how many `T`s we need for each such "multiple".
//
// Consider for example T=u8 U=u16. Then we can put 1 U in 2 Ts. Simple. Now, consider
// for example a case where size_of::<T> = 16, size_of::<U> = 24. We can put 2 Us in
// place of every 3 Ts in the `rest` slice. A bit more complicated.
//
// Formula to calculate this is:
//
// Us = lcm(size_of::<T>, size_of::<U>) / size_of::<U>
// Ts = lcm(size_of::<T>, size_of::<U>) / size_of::<T>
//
// Expanded and simplified:
//
// Us = size_of::<T> / gcd(size_of::<T>, size_of::<U>)
// Ts = size_of::<U> / gcd(size_of::<T>, size_of::<U>)
//
// Luckily since all this is constant-evaluated... performance here matters not!
#[inline]
fn gcd(a: usize, b: usize) -> usize {
use crate::intrinsics;
// iterative stein’s algorithm
// We should still make this `const fn` (and revert to recursive algorithm if we do)
// because relying on llvm to consteval all this is… well, it makes me uncomfortable.
// SAFETY: `a` and `b` are checked to be non-zero values.
let (ctz_a, mut ctz_b) = unsafe {
if a == 0 {
return b;
}
if b == 0 {
return a;
}
(intrinsics::cttz_nonzero(a), intrinsics::cttz_nonzero(b))
};
let k = ctz_a.min(ctz_b);
let mut a = a >> ctz_a;
let mut b = b;
loop {
// remove all factors of 2 from b
b >>= ctz_b;
if a > b {
mem::swap(&mut a, &mut b);
}
b = b - a;
// SAFETY: `b` is checked to be non-zero.
unsafe {
if b == 0 {
break;
}
ctz_b = intrinsics::cttz_nonzero(b);
}
}
a << k
}
let gcd: usize = gcd(mem::size_of::<T>(), mem::size_of::<U>());
let ts: usize = mem::size_of::<U>() / gcd;
let us: usize = mem::size_of::<T>() / gcd;
// Armed with this knowledge, we can find how many `U`s we can fit!
let us_len = self.len() / ts * us;
// And how many `T`s will be in the trailing slice!
let ts_len = self.len() % ts;
(us_len, ts_len)
}
/// Transmute the slice to a slice of another type, ensuring alignment of the types is
/// maintained.
///
/// This method splits the slice into three distinct slices: prefix, correctly aligned middle
/// slice of a new type, and the suffix slice. The method may make the middle slice the greatest
/// length possible for a given type and input slice, but only your algorithm's performance
/// should depend on that, not its correctness. It is permissible for all of the input data to
/// be returned as the prefix or suffix slice.
///
/// This method has no purpose when either input element `T` or output element `U` are
/// zero-sized and will return the original slice without splitting anything.
///
/// # Safety
///
/// This method is essentially a `transmute` with respect to the elements in the returned
/// middle slice, so all the usual caveats pertaining to `transmute::<T, U>` also apply here.
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// unsafe {
/// let bytes: [u8; 7] = [1, 2, 3, 4, 5, 6, 7];
/// let (prefix, shorts, suffix) = bytes.align_to::<u16>();
/// // less_efficient_algorithm_for_bytes(prefix);
/// // more_efficient_algorithm_for_aligned_shorts(shorts);
/// // less_efficient_algorithm_for_bytes(suffix);
/// }
/// ```
#[stable(feature = "slice_align_to", since = "1.30.0")]
#[must_use]
pub unsafe fn align_to<U>(&self) -> (&[T], &[U], &[T]) {
// Note that most of this function will be constant-evaluated,
if mem::size_of::<U>() == 0 || mem::size_of::<T>() == 0 {
// handle ZSTs specially, which is – don't handle them at all.
return (self, &[], &[]);
}
// First, find at what point do we split between the first and 2nd slice. Easy with
// ptr.align_offset.
let ptr = self.as_ptr();
// SAFETY: See the `align_to_mut` method for the detailed safety comment.
let offset = unsafe { crate::ptr::align_offset(ptr, mem::align_of::<U>()) };
if offset > self.len() {
(self, &[], &[])
} else {
let (left, rest) = self.split_at(offset);
let (us_len, ts_len) = rest.align_to_offsets::<U>();
// SAFETY: now `rest` is definitely aligned, so `from_raw_parts` below is okay,
// since the caller guarantees that we can transmute `T` to `U` safely.
unsafe {
(
left,
from_raw_parts(rest.as_ptr() as *const U, us_len),
from_raw_parts(rest.as_ptr().add(rest.len() - ts_len), ts_len),
)
}
}
}
/// Transmute the slice to a slice of another type, ensuring alignment of the types is
/// maintained.
///
/// This method splits the slice into three distinct slices: prefix, correctly aligned middle
/// slice of a new type, and the suffix slice. The method may make the middle slice the greatest
/// length possible for a given type and input slice, but only your algorithm's performance
/// should depend on that, not its correctness. It is permissible for all of the input data to
/// be returned as the prefix or suffix slice.
///
/// This method has no purpose when either input element `T` or output element `U` are
/// zero-sized and will return the original slice without splitting anything.
///
/// # Safety
///
/// This method is essentially a `transmute` with respect to the elements in the returned
/// middle slice, so all the usual caveats pertaining to `transmute::<T, U>` also apply here.
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// unsafe {
/// let mut bytes: [u8; 7] = [1, 2, 3, 4, 5, 6, 7];
/// let (prefix, shorts, suffix) = bytes.align_to_mut::<u16>();
/// // less_efficient_algorithm_for_bytes(prefix);
/// // more_efficient_algorithm_for_aligned_shorts(shorts);
/// // less_efficient_algorithm_for_bytes(suffix);
/// }
/// ```
#[stable(feature = "slice_align_to", since = "1.30.0")]
#[must_use]
pub unsafe fn align_to_mut<U>(&mut self) -> (&mut [T], &mut [U], &mut [T]) {
// Note that most of this function will be constant-evaluated,
if mem::size_of::<U>() == 0 || mem::size_of::<T>() == 0 {
// handle ZSTs specially, which is – don't handle them at all.
return (self, &mut [], &mut []);
}
// First, find at what point do we split between the first and 2nd slice. Easy with
// ptr.align_offset.
let ptr = self.as_ptr();
// SAFETY: Here we are ensuring we will use aligned pointers for U for the
// rest of the method. This is done by passing a pointer to &[T] with an
// alignment targeted for U.
// `crate::ptr::align_offset` is called with a correctly aligned and
// valid pointer `ptr` (it comes from a reference to `self`) and with
// a size that is a power of two (since it comes from the alignement for U),
// satisfying its safety constraints.
let offset = unsafe { crate::ptr::align_offset(ptr, mem::align_of::<U>()) };
if offset > self.len() {
(self, &mut [], &mut [])
} else {
let (left, rest) = self.split_at_mut(offset);
let (us_len, ts_len) = rest.align_to_offsets::<U>();
let rest_len = rest.len();
let mut_ptr = rest.as_mut_ptr();
// We can't use `rest` again after this, that would invalidate its alias `mut_ptr`!
// SAFETY: see comments for `align_to`.
unsafe {
(
left,
from_raw_parts_mut(mut_ptr as *mut U, us_len),
from_raw_parts_mut(mut_ptr.add(rest_len - ts_len), ts_len),
)
}
}
}
/// Split a slice into a prefix, a middle of aligned SIMD types, and a suffix.
///
/// This is a safe wrapper around [`slice::align_to`], so has the same weak
/// postconditions as that method. You're only assured that
/// `self.len() == prefix.len() + middle.len() * LANES + suffix.len()`.
///
/// Notably, all of the following are possible:
/// - `prefix.len() >= LANES`.
/// - `middle.is_empty()` despite `self.len() >= 3 * LANES`.
/// - `suffix.len() >= LANES`.
///
/// That said, this is a safe method, so if you're only writing safe code,
/// then this can at most cause incorrect logic, not unsoundness.
///
/// # Panics
///
/// This will panic if the size of the SIMD type is different from
/// `LANES` times that of the scalar.
///
/// At the time of writing, the trait restrictions on `Simd<T, LANES>` keeps
/// that from ever happening, as only power-of-two numbers of lanes are
/// supported. It's possible that, in the future, those restrictions might
/// be lifted in a way that would make it possible to see panics from this
/// method for something like `LANES == 3`.
///
/// # Examples
///
/// ```
/// #![feature(portable_simd)]
///
/// let short = &[1, 2, 3];
/// let (prefix, middle, suffix) = short.as_simd::<4>();
/// assert_eq!(middle, []); // Not enough elements for anything in the middle
///
/// // They might be split in any possible way between prefix and suffix
/// let it = prefix.iter().chain(suffix).copied();
/// assert_eq!(it.collect::<Vec<_>>(), vec![1, 2, 3]);
///
/// fn basic_simd_sum(x: &[f32]) -> f32 {
/// use std::ops::Add;
/// use std::simd::f32x4;
/// let (prefix, middle, suffix) = x.as_simd();
/// let sums = f32x4::from_array([
/// prefix.iter().copied().sum(),
/// 0.0,
/// 0.0,
/// suffix.iter().copied().sum(),
/// ]);
/// let sums = middle.iter().copied().fold(sums, f32x4::add);
/// sums.reduce_sum()
/// }
///
/// let numbers: Vec<f32> = (1..101).map(|x| x as _).collect();
/// assert_eq!(basic_simd_sum(&numbers[1..99]), 4949.0);
/// ```
#[unstable(feature = "portable_simd", issue = "86656")]
#[must_use]
pub fn as_simd<const LANES: usize>(&self) -> (&[T], &[Simd<T, LANES>], &[T])
where
Simd<T, LANES>: AsRef<[T; LANES]>,
T: simd::SimdElement,
simd::LaneCount<LANES>: simd::SupportedLaneCount,
{
// These are expected to always match, as vector types are laid out like
// arrays per <https://llvm.org/docs/LangRef.html#vector-type>, but we
// might as well double-check since it'll optimize away anyhow.
assert_eq!(mem::size_of::<Simd<T, LANES>>(), mem::size_of::<[T; LANES]>());
// SAFETY: The simd types have the same layout as arrays, just with
// potentially-higher alignment, so the de-facto transmutes are sound.
unsafe { self.align_to() }
}
/// Split a slice into a prefix, a middle of aligned SIMD types, and a suffix.
///
/// This is a safe wrapper around [`slice::align_to_mut`], so has the same weak
/// postconditions as that method. You're only assured that
/// `self.len() == prefix.len() + middle.len() * LANES + suffix.len()`.
///
/// Notably, all of the following are possible:
/// - `prefix.len() >= LANES`.
/// - `middle.is_empty()` despite `self.len() >= 3 * LANES`.
/// - `suffix.len() >= LANES`.
///
/// That said, this is a safe method, so if you're only writing safe code,
/// then this can at most cause incorrect logic, not unsoundness.
///
/// This is the mutable version of [`slice::as_simd`]; see that for examples.
///
/// # Panics
///
/// This will panic if the size of the SIMD type is different from
/// `LANES` times that of the scalar.
///
/// At the time of writing, the trait restrictions on `Simd<T, LANES>` keeps
/// that from ever happening, as only power-of-two numbers of lanes are
/// supported. It's possible that, in the future, those restrictions might
/// be lifted in a way that would make it possible to see panics from this
/// method for something like `LANES == 3`.
#[unstable(feature = "portable_simd", issue = "86656")]
#[must_use]
pub fn as_simd_mut<const LANES: usize>(&mut self) -> (&mut [T], &mut [Simd<T, LANES>], &mut [T])
where
Simd<T, LANES>: AsMut<[T; LANES]>,
T: simd::SimdElement,
simd::LaneCount<LANES>: simd::SupportedLaneCount,
{
// These are expected to always match, as vector types are laid out like
// arrays per <https://llvm.org/docs/LangRef.html#vector-type>, but we
// might as well double-check since it'll optimize away anyhow.
assert_eq!(mem::size_of::<Simd<T, LANES>>(), mem::size_of::<[T; LANES]>());
// SAFETY: The simd types have the same layout as arrays, just with
// potentially-higher alignment, so the de-facto transmutes are sound.
unsafe { self.align_to_mut() }
}
/// Checks if the elements of this slice are sorted.
///
/// That is, for each element `a` and its following element `b`, `a <= b` must hold. If the
/// slice yields exactly zero or one element, `true` is returned.
///
/// Note that if `Self::Item` is only `PartialOrd`, but not `Ord`, the above definition
/// implies that this function returns `false` if any two consecutive items are not
/// comparable.
///
/// # Examples
///
/// ```
/// #![feature(is_sorted)]
/// let empty: [i32; 0] = [];
///
/// assert!([1, 2, 2, 9].is_sorted());
/// assert!(![1, 3, 2, 4].is_sorted());
/// assert!([0].is_sorted());
/// assert!(empty.is_sorted());
/// assert!(![0.0, 1.0, f32::NAN].is_sorted());
/// ```
#[inline]
#[unstable(feature = "is_sorted", reason = "new API", issue = "53485")]
#[must_use]
pub fn is_sorted(&self) -> bool
where
T: PartialOrd,
{
self.is_sorted_by(|a, b| a.partial_cmp(b))
}
/// Checks if the elements of this slice are sorted using the given comparator function.
///
/// Instead of using `PartialOrd::partial_cmp`, this function uses the given `compare`
/// function to determine the ordering of two elements. Apart from that, it's equivalent to
/// [`is_sorted`]; see its documentation for more information.
///
/// [`is_sorted`]: slice::is_sorted
#[unstable(feature = "is_sorted", reason = "new API", issue = "53485")]
#[must_use]
pub fn is_sorted_by<F>(&self, mut compare: F) -> bool
where
F: FnMut(&T, &T) -> Option<Ordering>,
{
self.iter().is_sorted_by(|a, b| compare(*a, *b))
}
/// Checks if the elements of this slice are sorted using the given key extraction function.
///
/// Instead of comparing the slice's elements directly, this function compares the keys of the
/// elements, as determined by `f`. Apart from that, it's equivalent to [`is_sorted`]; see its
/// documentation for more information.
///
/// [`is_sorted`]: slice::is_sorted
///
/// # Examples
///
/// ```
/// #![feature(is_sorted)]
///
/// assert!(["c", "bb", "aaa"].is_sorted_by_key(|s| s.len()));
/// assert!(![-2i32, -1, 0, 3].is_sorted_by_key(|n| n.abs()));
/// ```
#[inline]
#[unstable(feature = "is_sorted", reason = "new API", issue = "53485")]
#[must_use]
pub fn is_sorted_by_key<F, K>(&self, f: F) -> bool
where
F: FnMut(&T) -> K,
K: PartialOrd,
{
self.iter().is_sorted_by_key(f)
}
/// Returns the index of the partition point according to the given predicate
/// (the index of the first element of the second partition).
///
/// The slice is assumed to be partitioned according to the given predicate.
/// This means that all elements for which the predicate returns true are at the start of the slice
/// and all elements for which the predicate returns false are at the end.
/// For example, [7, 15, 3, 5, 4, 12, 6] is a partitioned under the predicate x % 2 != 0
/// (all odd numbers are at the start, all even at the end).
///
/// If this slice is not partitioned, the returned result is unspecified and meaningless,
/// as this method performs a kind of binary search.
///
/// See also [`binary_search`], [`binary_search_by`], and [`binary_search_by_key`].
///
/// [`binary_search`]: slice::binary_search
/// [`binary_search_by`]: slice::binary_search_by
/// [`binary_search_by_key`]: slice::binary_search_by_key
///
/// # Examples
///
/// ```
/// let v = [1, 2, 3, 3, 5, 6, 7];
/// let i = v.partition_point(|&x| x < 5);
///
/// assert_eq!(i, 4);
/// assert!(v[..i].iter().all(|&x| x < 5));
/// assert!(v[i..].iter().all(|&x| !(x < 5)));
/// ```
#[stable(feature = "partition_point", since = "1.52.0")]
#[must_use]
pub fn partition_point<P>(&self, mut pred: P) -> usize
where
P: FnMut(&T) -> bool,
{
self.binary_search_by(|x| if pred(x) { Less } else { Greater }).unwrap_or_else(|i| i)
}
/// Removes the subslice corresponding to the given range
/// and returns a reference to it.
///
/// Returns `None` and does not modify the slice if the given
/// range is out of bounds.
///
/// Note that this method only accepts one-sided ranges such as
/// `2..` or `..6`, but not `2..6`.
///
/// # Examples
///
/// Taking the first three elements of a slice:
///
/// ```
/// #![feature(slice_take)]
///
/// let mut slice: &[_] = &['a', 'b', 'c', 'd'];
/// let mut first_three = slice.take(..3).unwrap();
///
/// assert_eq!(slice, &['d']);
/// assert_eq!(first_three, &['a', 'b', 'c']);
/// ```
///
/// Taking the last two elements of a slice:
///
/// ```
/// #![feature(slice_take)]
///
/// let mut slice: &[_] = &['a', 'b', 'c', 'd'];
/// let mut tail = slice.take(2..).unwrap();
///
/// assert_eq!(slice, &['a', 'b']);
/// assert_eq!(tail, &['c', 'd']);
/// ```
///
/// Getting `None` when `range` is out of bounds:
///
/// ```
/// #![feature(slice_take)]
///
/// let mut slice: &[_] = &['a', 'b', 'c', 'd'];
///
/// assert_eq!(None, slice.take(5..));
/// assert_eq!(None, slice.take(..5));
/// assert_eq!(None, slice.take(..=4));
/// let expected: &[char] = &['a', 'b', 'c', 'd'];
/// assert_eq!(Some(expected), slice.take(..4));
/// ```
#[inline]
#[must_use = "method does not modify the slice if the range is out of bounds"]
#[unstable(feature = "slice_take", issue = "62280")]
pub fn take<'a, R: OneSidedRange<usize>>(self: &mut &'a Self, range: R) -> Option<&'a Self> {
let (direction, split_index) = split_point_of(range)?;
if split_index > self.len() {
return None;
}
let (front, back) = self.split_at(split_index);
match direction {
Direction::Front => {
*self = back;
Some(front)
}
Direction::Back => {
*self = front;
Some(back)
}
}
}
/// Removes the subslice corresponding to the given range
/// and returns a mutable reference to it.
///
/// Returns `None` and does not modify the slice if the given
/// range is out of bounds.
///
/// Note that this method only accepts one-sided ranges such as
/// `2..` or `..6`, but not `2..6`.
///
/// # Examples
///
/// Taking the first three elements of a slice:
///
/// ```
/// #![feature(slice_take)]
///
/// let mut slice: &mut [_] = &mut ['a', 'b', 'c', 'd'];
/// let mut first_three = slice.take_mut(..3).unwrap();
///
/// assert_eq!(slice, &mut ['d']);
/// assert_eq!(first_three, &mut ['a', 'b', 'c']);
/// ```
///
/// Taking the last two elements of a slice:
///
/// ```
/// #![feature(slice_take)]
///
/// let mut slice: &mut [_] = &mut ['a', 'b', 'c', 'd'];
/// let mut tail = slice.take_mut(2..).unwrap();
///
/// assert_eq!(slice, &mut ['a', 'b']);
/// assert_eq!(tail, &mut ['c', 'd']);
/// ```
///
/// Getting `None` when `range` is out of bounds:
///
/// ```
/// #![feature(slice_take)]
///
/// let mut slice: &mut [_] = &mut ['a', 'b', 'c', 'd'];
///
/// assert_eq!(None, slice.take_mut(5..));
/// assert_eq!(None, slice.take_mut(..5));
/// assert_eq!(None, slice.take_mut(..=4));
/// let expected: &mut [_] = &mut ['a', 'b', 'c', 'd'];
/// assert_eq!(Some(expected), slice.take_mut(..4));
/// ```
#[inline]
#[must_use = "method does not modify the slice if the range is out of bounds"]
#[unstable(feature = "slice_take", issue = "62280")]
pub fn take_mut<'a, R: OneSidedRange<usize>>(
self: &mut &'a mut Self,
range: R,
) -> Option<&'a mut Self> {
let (direction, split_index) = split_point_of(range)?;
if split_index > self.len() {
return None;
}
let (front, back) = mem::take(self).split_at_mut(split_index);
match direction {
Direction::Front => {
*self = back;
Some(front)
}
Direction::Back => {
*self = front;
Some(back)
}
}
}
/// Removes the first element of the slice and returns a reference
/// to it.
///
/// Returns `None` if the slice is empty.
///
/// # Examples
///
/// ```
/// #![feature(slice_take)]
///
/// let mut slice: &[_] = &['a', 'b', 'c'];
/// let first = slice.take_first().unwrap();
///
/// assert_eq!(slice, &['b', 'c']);
/// assert_eq!(first, &'a');
/// ```
#[inline]
#[unstable(feature = "slice_take", issue = "62280")]
pub fn take_first<'a>(self: &mut &'a Self) -> Option<&'a T> {
let (first, rem) = self.split_first()?;
*self = rem;
Some(first)
}
/// Removes the first element of the slice and returns a mutable
/// reference to it.
///
/// Returns `None` if the slice is empty.
///
/// # Examples
///
/// ```
/// #![feature(slice_take)]
///
/// let mut slice: &mut [_] = &mut ['a', 'b', 'c'];
/// let first = slice.take_first_mut().unwrap();
/// *first = 'd';
///
/// assert_eq!(slice, &['b', 'c']);
/// assert_eq!(first, &'d');
/// ```
#[inline]
#[unstable(feature = "slice_take", issue = "62280")]
pub fn take_first_mut<'a>(self: &mut &'a mut Self) -> Option<&'a mut T> {
let (first, rem) = mem::take(self).split_first_mut()?;
*self = rem;
Some(first)
}
/// Removes the last element of the slice and returns a reference
/// to it.
///
/// Returns `None` if the slice is empty.
///
/// # Examples
///
/// ```
/// #![feature(slice_take)]
///
/// let mut slice: &[_] = &['a', 'b', 'c'];
/// let last = slice.take_last().unwrap();
///
/// assert_eq!(slice, &['a', 'b']);
/// assert_eq!(last, &'c');
/// ```
#[inline]
#[unstable(feature = "slice_take", issue = "62280")]
pub fn take_last<'a>(self: &mut &'a Self) -> Option<&'a T> {
let (last, rem) = self.split_last()?;
*self = rem;
Some(last)
}
/// Removes the last element of the slice and returns a mutable
/// reference to it.
///
/// Returns `None` if the slice is empty.
///
/// # Examples
///
/// ```
/// #![feature(slice_take)]
///
/// let mut slice: &mut [_] = &mut ['a', 'b', 'c'];
/// let last = slice.take_last_mut().unwrap();
/// *last = 'd';
///
/// assert_eq!(slice, &['a', 'b']);
/// assert_eq!(last, &'d');
/// ```
#[inline]
#[unstable(feature = "slice_take", issue = "62280")]
pub fn take_last_mut<'a>(self: &mut &'a mut Self) -> Option<&'a mut T> {
let (last, rem) = mem::take(self).split_last_mut()?;
*self = rem;
Some(last)
}
}
trait CloneFromSpec<T> {
fn spec_clone_from(&mut self, src: &[T]);
}
impl<T> CloneFromSpec<T> for [T]
where
T: Clone,
{
#[track_caller]
default fn spec_clone_from(&mut self, src: &[T]) {
assert!(self.len() == src.len(), "destination and source slices have different lengths");
// NOTE: We need to explicitly slice them to the same length
// to make it easier for the optimizer to elide bounds checking.
// But since it can't be relied on we also have an explicit specialization for T: Copy.
let len = self.len();
let src = &src[..len];
for i in 0..len {
self[i].clone_from(&src[i]);
}
}
}
impl<T> CloneFromSpec<T> for [T]
where
T: Copy,
{
#[track_caller]
fn spec_clone_from(&mut self, src: &[T]) {
self.copy_from_slice(src);
}
}
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_const_unstable(feature = "const_default_impls", issue = "87864")]
impl<T> const Default for &[T] {
/// Creates an empty slice.
fn default() -> Self {
&[]
}
}
#[stable(feature = "mut_slice_default", since = "1.5.0")]
#[rustc_const_unstable(feature = "const_default_impls", issue = "87864")]
impl<T> const Default for &mut [T] {
/// Creates a mutable empty slice.
fn default() -> Self {
&mut []
}
}
#[unstable(feature = "slice_pattern", reason = "stopgap trait for slice patterns", issue = "56345")]
/// Patterns in slices - currently, only used by `strip_prefix` and `strip_suffix`. At a future
/// point, we hope to generalise `core::str::Pattern` (which at the time of writing is limited to
/// `str`) to slices, and then this trait will be replaced or abolished.
pub trait SlicePattern {
/// The element type of the slice being matched on.
type Item;
/// Currently, the consumers of `SlicePattern` need a slice.
fn as_slice(&self) -> &[Self::Item];
}
#[stable(feature = "slice_strip", since = "1.51.0")]
impl<T> SlicePattern for [T] {
type Item = T;
#[inline]
fn as_slice(&self) -> &[Self::Item] {
self
}
}
#[stable(feature = "slice_strip", since = "1.51.0")]
impl<T, const N: usize> SlicePattern for [T; N] {
type Item = T;
#[inline]
fn as_slice(&self) -> &[Self::Item] {
self
}
}