1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
//! Shareable mutable containers.
//!
//! Rust memory safety is based on this rule: Given an object `T`, it is only possible to
//! have one of the following:
//!
//! - Having several immutable references (`&T`) to the object (also known as **aliasing**).
//! - Having one mutable reference (`&mut T`) to the object (also known as **mutability**).
//!
//! This is enforced by the Rust compiler. However, there are situations where this rule is not
//! flexible enough. Sometimes it is required to have multiple references to an object and yet
//! mutate it.
//!
//! Shareable mutable containers exist to permit mutability in a controlled manner, even in the
//! presence of aliasing. Both [`Cell<T>`] and [`RefCell<T>`] allow doing this in a single-threaded
//! way. However, neither `Cell<T>` nor `RefCell<T>` are thread safe (they do not implement
//! [`Sync`]). If you need to do aliasing and mutation between multiple threads it is possible to
//! use [`Mutex<T>`], [`RwLock<T>`] or [`atomic`] types.
//!
//! Values of the `Cell<T>` and `RefCell<T>` types may be mutated through shared references (i.e.
//! the common `&T` type), whereas most Rust types can only be mutated through unique (`&mut T`)
//! references. We say that `Cell<T>` and `RefCell<T>` provide 'interior mutability', in contrast
//! with typical Rust types that exhibit 'inherited mutability'.
//!
//! Cell types come in two flavors: `Cell<T>` and `RefCell<T>`. `Cell<T>` implements interior
//! mutability by moving values in and out of the `Cell<T>`. To use references instead of values,
//! one must use the `RefCell<T>` type, acquiring a write lock before mutating. `Cell<T>` provides
//! methods to retrieve and change the current interior value:
//!
//!  - For types that implement [`Copy`], the [`get`](Cell::get) method retrieves the current
//!    interior value.
//!  - For types that implement [`Default`], the [`take`](Cell::take) method replaces the current
//!    interior value with [`Default::default()`] and returns the replaced value.
//!  - For all types, the [`replace`](Cell::replace) method replaces the current interior value and
//!    returns the replaced value and the [`into_inner`](Cell::into_inner) method consumes the
//!    `Cell<T>` and returns the interior value. Additionally, the [`set`](Cell::set) method
//!    replaces the interior value, dropping the replaced value.
//!
//! `RefCell<T>` uses Rust's lifetimes to implement 'dynamic borrowing', a process whereby one can
//! claim temporary, exclusive, mutable access to the inner value. Borrows for `RefCell<T>`s are
//! tracked 'at runtime', unlike Rust's native reference types which are entirely tracked
//! statically, at compile time. Because `RefCell<T>` borrows are dynamic it is possible to attempt
//! to borrow a value that is already mutably borrowed; when this happens it results in thread
//! panic.
//!
//! # When to choose interior mutability
//!
//! The more common inherited mutability, where one must have unique access to mutate a value, is
//! one of the key language elements that enables Rust to reason strongly about pointer aliasing,
//! statically preventing crash bugs. Because of that, inherited mutability is preferred, and
//! interior mutability is something of a last resort. Since cell types enable mutation where it
//! would otherwise be disallowed though, there are occasions when interior mutability might be
//! appropriate, or even *must* be used, e.g.
//!
//! * Introducing mutability 'inside' of something immutable
//! * Implementation details of logically-immutable methods.
//! * Mutating implementations of [`Clone`].
//!
//! ## Introducing mutability 'inside' of something immutable
//!
//! Many shared smart pointer types, including [`Rc<T>`] and [`Arc<T>`], provide containers that can
//! be cloned and shared between multiple parties. Because the contained values may be
//! multiply-aliased, they can only be borrowed with `&`, not `&mut`. Without cells it would be
//! impossible to mutate data inside of these smart pointers at all.
//!
//! It's very common then to put a `RefCell<T>` inside shared pointer types to reintroduce
//! mutability:
//!
//! ```
//! use std::cell::{RefCell, RefMut};
//! use std::collections::HashMap;
//! use std::rc::Rc;
//!
//! fn main() {
//!     let shared_map: Rc<RefCell<_>> = Rc::new(RefCell::new(HashMap::new()));
//!     // Create a new block to limit the scope of the dynamic borrow
//!     {
//!         let mut map: RefMut<_> = shared_map.borrow_mut();
//!         map.insert("africa", 92388);
//!         map.insert("kyoto", 11837);
//!         map.insert("piccadilly", 11826);
//!         map.insert("marbles", 38);
//!     }
//!
//!     // Note that if we had not let the previous borrow of the cache fall out
//!     // of scope then the subsequent borrow would cause a dynamic thread panic.
//!     // This is the major hazard of using `RefCell`.
//!     let total: i32 = shared_map.borrow().values().sum();
//!     println!("{total}");
//! }
//! ```
//!
//! Note that this example uses `Rc<T>` and not `Arc<T>`. `RefCell<T>`s are for single-threaded
//! scenarios. Consider using [`RwLock<T>`] or [`Mutex<T>`] if you need shared mutability in a
//! multi-threaded situation.
//!
//! ## Implementation details of logically-immutable methods
//!
//! Occasionally it may be desirable not to expose in an API that there is mutation happening
//! "under the hood". This may be because logically the operation is immutable, but e.g., caching
//! forces the implementation to perform mutation; or because you must employ mutation to implement
//! a trait method that was originally defined to take `&self`.
//!
//! ```
//! # #![allow(dead_code)]
//! use std::cell::RefCell;
//!
//! struct Graph {
//!     edges: Vec<(i32, i32)>,
//!     span_tree_cache: RefCell<Option<Vec<(i32, i32)>>>
//! }
//!
//! impl Graph {
//!     fn minimum_spanning_tree(&self) -> Vec<(i32, i32)> {
//!         self.span_tree_cache.borrow_mut()
//!             .get_or_insert_with(|| self.calc_span_tree())
//!             .clone()
//!     }
//!
//!     fn calc_span_tree(&self) -> Vec<(i32, i32)> {
//!         // Expensive computation goes here
//!         vec![]
//!     }
//! }
//! ```
//!
//! ## Mutating implementations of `Clone`
//!
//! This is simply a special - but common - case of the previous: hiding mutability for operations
//! that appear to be immutable. The [`clone`](Clone::clone) method is expected to not change the
//! source value, and is declared to take `&self`, not `&mut self`. Therefore, any mutation that
//! happens in the `clone` method must use cell types. For example, [`Rc<T>`] maintains its
//! reference counts within a `Cell<T>`.
//!
//! ```
//! use std::cell::Cell;
//! use std::ptr::NonNull;
//! use std::process::abort;
//! use std::marker::PhantomData;
//!
//! struct Rc<T: ?Sized> {
//!     ptr: NonNull<RcBox<T>>,
//!     phantom: PhantomData<RcBox<T>>,
//! }
//!
//! struct RcBox<T: ?Sized> {
//!     strong: Cell<usize>,
//!     refcount: Cell<usize>,
//!     value: T,
//! }
//!
//! impl<T: ?Sized> Clone for Rc<T> {
//!     fn clone(&self) -> Rc<T> {
//!         self.inc_strong();
//!         Rc {
//!             ptr: self.ptr,
//!             phantom: PhantomData,
//!         }
//!     }
//! }
//!
//! trait RcBoxPtr<T: ?Sized> {
//!
//!     fn inner(&self) -> &RcBox<T>;
//!
//!     fn strong(&self) -> usize {
//!         self.inner().strong.get()
//!     }
//!
//!     fn inc_strong(&self) {
//!         self.inner()
//!             .strong
//!             .set(self.strong()
//!                      .checked_add(1)
//!                      .unwrap_or_else(|| abort() ));
//!     }
//! }
//!
//! impl<T: ?Sized> RcBoxPtr<T> for Rc<T> {
//!    fn inner(&self) -> &RcBox<T> {
//!        unsafe {
//!            self.ptr.as_ref()
//!        }
//!    }
//! }
//! ```
//!
//! [`Arc<T>`]: ../../std/sync/struct.Arc.html
//! [`Rc<T>`]: ../../std/rc/struct.Rc.html
//! [`RwLock<T>`]: ../../std/sync/struct.RwLock.html
//! [`Mutex<T>`]: ../../std/sync/struct.Mutex.html
//! [`atomic`]: crate::sync::atomic

#![stable(feature = "rust1", since = "1.0.0")]

use crate::cmp::Ordering;
use crate::fmt::{self, Debug, Display};
use crate::marker::Unsize;
use crate::mem;
use crate::ops::{CoerceUnsized, Deref, DerefMut};
use crate::ptr;

/// A mutable memory location.
///
/// # Examples
///
/// In this example, you can see that `Cell<T>` enables mutation inside an
/// immutable struct. In other words, it enables "interior mutability".
///
/// ```
/// use std::cell::Cell;
///
/// struct SomeStruct {
///     regular_field: u8,
///     special_field: Cell<u8>,
/// }
///
/// let my_struct = SomeStruct {
///     regular_field: 0,
///     special_field: Cell::new(1),
/// };
///
/// let new_value = 100;
///
/// // ERROR: `my_struct` is immutable
/// // my_struct.regular_field = new_value;
///
/// // WORKS: although `my_struct` is immutable, `special_field` is a `Cell`,
/// // which can always be mutated
/// my_struct.special_field.set(new_value);
/// assert_eq!(my_struct.special_field.get(), new_value);
/// ```
///
/// See the [module-level documentation](self) for more.
#[stable(feature = "rust1", since = "1.0.0")]
#[repr(transparent)]
pub struct Cell<T: ?Sized> {
    value: UnsafeCell<T>,
}

#[stable(feature = "rust1", since = "1.0.0")]
unsafe impl<T: ?Sized> Send for Cell<T> where T: Send {}

// Note that this negative impl isn't strictly necessary for correctness,
// as `Cell` wraps `UnsafeCell`, which is itself `!Sync`.
// However, given how important `Cell`'s `!Sync`-ness is,
// having an explicit negative impl is nice for documentation purposes
// and results in nicer error messages.
#[stable(feature = "rust1", since = "1.0.0")]
impl<T: ?Sized> !Sync for Cell<T> {}

#[stable(feature = "rust1", since = "1.0.0")]
impl<T: Copy> Clone for Cell<T> {
    #[inline]
    fn clone(&self) -> Cell<T> {
        Cell::new(self.get())
    }
}

#[stable(feature = "rust1", since = "1.0.0")]
impl<T: Default> Default for Cell<T> {
    /// Creates a `Cell<T>`, with the `Default` value for T.
    #[inline]
    fn default() -> Cell<T> {
        Cell::new(Default::default())
    }
}

#[stable(feature = "rust1", since = "1.0.0")]
impl<T: PartialEq + Copy> PartialEq for Cell<T> {
    #[inline]
    fn eq(&self, other: &Cell<T>) -> bool {
        self.get() == other.get()
    }
}

#[stable(feature = "cell_eq", since = "1.2.0")]
impl<T: Eq + Copy> Eq for Cell<T> {}

#[stable(feature = "cell_ord", since = "1.10.0")]
impl<T: PartialOrd + Copy> PartialOrd for Cell<T> {
    #[inline]
    fn partial_cmp(&self, other: &Cell<T>) -> Option<Ordering> {
        self.get().partial_cmp(&other.get())
    }

    #[inline]
    fn lt(&self, other: &Cell<T>) -> bool {
        self.get() < other.get()
    }

    #[inline]
    fn le(&self, other: &Cell<T>) -> bool {
        self.get() <= other.get()
    }

    #[inline]
    fn gt(&self, other: &Cell<T>) -> bool {
        self.get() > other.get()
    }

    #[inline]
    fn ge(&self, other: &Cell<T>) -> bool {
        self.get() >= other.get()
    }
}

#[stable(feature = "cell_ord", since = "1.10.0")]
impl<T: Ord + Copy> Ord for Cell<T> {
    #[inline]
    fn cmp(&self, other: &Cell<T>) -> Ordering {
        self.get().cmp(&other.get())
    }
}

#[stable(feature = "cell_from", since = "1.12.0")]
#[rustc_const_unstable(feature = "const_convert", issue = "88674")]
impl<T> const From<T> for Cell<T> {
    /// Creates a new `Cell<T>` containing the given value.
    fn from(t: T) -> Cell<T> {
        Cell::new(t)
    }
}

impl<T> Cell<T> {
    /// Creates a new `Cell` containing the given value.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::cell::Cell;
    ///
    /// let c = Cell::new(5);
    /// ```
    #[stable(feature = "rust1", since = "1.0.0")]
    #[rustc_const_stable(feature = "const_cell_new", since = "1.24.0")]
    #[inline]
    pub const fn new(value: T) -> Cell<T> {
        Cell { value: UnsafeCell::new(value) }
    }

    /// Sets the contained value.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::cell::Cell;
    ///
    /// let c = Cell::new(5);
    ///
    /// c.set(10);
    /// ```
    #[inline]
    #[stable(feature = "rust1", since = "1.0.0")]
    pub fn set(&self, val: T) {
        let old = self.replace(val);
        drop(old);
    }

    /// Swaps the values of two `Cell`s.
    /// Difference with `std::mem::swap` is that this function doesn't require `&mut` reference.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::cell::Cell;
    ///
    /// let c1 = Cell::new(5i32);
    /// let c2 = Cell::new(10i32);
    /// c1.swap(&c2);
    /// assert_eq!(10, c1.get());
    /// assert_eq!(5, c2.get());
    /// ```
    #[inline]
    #[stable(feature = "move_cell", since = "1.17.0")]
    pub fn swap(&self, other: &Self) {
        if ptr::eq(self, other) {
            return;
        }
        // SAFETY: This can be risky if called from separate threads, but `Cell`
        // is `!Sync` so this won't happen. This also won't invalidate any
        // pointers since `Cell` makes sure nothing else will be pointing into
        // either of these `Cell`s.
        unsafe {
            ptr::swap(self.value.get(), other.value.get());
        }
    }

    /// Replaces the contained value with `val`, and returns the old contained value.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::cell::Cell;
    ///
    /// let cell = Cell::new(5);
    /// assert_eq!(cell.get(), 5);
    /// assert_eq!(cell.replace(10), 5);
    /// assert_eq!(cell.get(), 10);
    /// ```
    #[stable(feature = "move_cell", since = "1.17.0")]
    pub fn replace(&self, val: T) -> T {
        // SAFETY: This can cause data races if called from a separate thread,
        // but `Cell` is `!Sync` so this won't happen.
        mem::replace(unsafe { &mut *self.value.get() }, val)
    }

    /// Unwraps the value.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::cell::Cell;
    ///
    /// let c = Cell::new(5);
    /// let five = c.into_inner();
    ///
    /// assert_eq!(five, 5);
    /// ```
    #[stable(feature = "move_cell", since = "1.17.0")]
    #[rustc_const_unstable(feature = "const_cell_into_inner", issue = "78729")]
    pub const fn into_inner(self) -> T {
        self.value.into_inner()
    }
}

impl<T: Copy> Cell<T> {
    /// Returns a copy of the contained value.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::cell::Cell;
    ///
    /// let c = Cell::new(5);
    ///
    /// let five = c.get();
    /// ```
    #[inline]
    #[stable(feature = "rust1", since = "1.0.0")]
    pub fn get(&self) -> T {
        // SAFETY: This can cause data races if called from a separate thread,
        // but `Cell` is `!Sync` so this won't happen.
        unsafe { *self.value.get() }
    }

    /// Updates the contained value using a function and returns the new value.
    ///
    /// # Examples
    ///
    /// ```
    /// #![feature(cell_update)]
    ///
    /// use std::cell::Cell;
    ///
    /// let c = Cell::new(5);
    /// let new = c.update(|x| x + 1);
    ///
    /// assert_eq!(new, 6);
    /// assert_eq!(c.get(), 6);
    /// ```
    #[inline]
    #[unstable(feature = "cell_update", issue = "50186")]
    pub fn update<F>(&self, f: F) -> T
    where
        F: FnOnce(T) -> T,
    {
        let old = self.get();
        let new = f(old);
        self.set(new);
        new
    }
}

impl<T: ?Sized> Cell<T> {
    /// Returns a raw pointer to the underlying data in this cell.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::cell::Cell;
    ///
    /// let c = Cell::new(5);
    ///
    /// let ptr = c.as_ptr();
    /// ```
    #[inline]
    #[stable(feature = "cell_as_ptr", since = "1.12.0")]
    #[rustc_const_stable(feature = "const_cell_as_ptr", since = "1.32.0")]
    pub const fn as_ptr(&self) -> *mut T {
        self.value.get()
    }

    /// Returns a mutable reference to the underlying data.
    ///
    /// This call borrows `Cell` mutably (at compile-time) which guarantees
    /// that we possess the only reference.
    ///
    /// However be cautious: this method expects `self` to be mutable, which is
    /// generally not the case when using a `Cell`. If you require interior
    /// mutability by reference, consider using `RefCell` which provides
    /// run-time checked mutable borrows through its [`borrow_mut`] method.
    ///
    /// [`borrow_mut`]: RefCell::borrow_mut()
    ///
    /// # Examples
    ///
    /// ```
    /// use std::cell::Cell;
    ///
    /// let mut c = Cell::new(5);
    /// *c.get_mut() += 1;
    ///
    /// assert_eq!(c.get(), 6);
    /// ```
    #[inline]
    #[stable(feature = "cell_get_mut", since = "1.11.0")]
    pub fn get_mut(&mut self) -> &mut T {
        self.value.get_mut()
    }

    /// Returns a `&Cell<T>` from a `&mut T`
    ///
    /// # Examples
    ///
    /// ```
    /// use std::cell::Cell;
    ///
    /// let slice: &mut [i32] = &mut [1, 2, 3];
    /// let cell_slice: &Cell<[i32]> = Cell::from_mut(slice);
    /// let slice_cell: &[Cell<i32>] = cell_slice.as_slice_of_cells();
    ///
    /// assert_eq!(slice_cell.len(), 3);
    /// ```
    #[inline]
    #[stable(feature = "as_cell", since = "1.37.0")]
    pub fn from_mut(t: &mut T) -> &Cell<T> {
        // SAFETY: `&mut` ensures unique access.
        unsafe { &*(t as *mut T as *const Cell<T>) }
    }
}

impl<T: Default> Cell<T> {
    /// Takes the value of the cell, leaving `Default::default()` in its place.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::cell::Cell;
    ///
    /// let c = Cell::new(5);
    /// let five = c.take();
    ///
    /// assert_eq!(five, 5);
    /// assert_eq!(c.into_inner(), 0);
    /// ```
    #[stable(feature = "move_cell", since = "1.17.0")]
    pub fn take(&self) -> T {
        self.replace(Default::default())
    }
}

#[unstable(feature = "coerce_unsized", issue = "27732")]
impl<T: CoerceUnsized<U>, U> CoerceUnsized<Cell<U>> for Cell<T> {}

impl<T> Cell<[T]> {
    /// Returns a `&[Cell<T>]` from a `&Cell<[T]>`
    ///
    /// # Examples
    ///
    /// ```
    /// use std::cell::Cell;
    ///
    /// let slice: &mut [i32] = &mut [1, 2, 3];
    /// let cell_slice: &Cell<[i32]> = Cell::from_mut(slice);
    /// let slice_cell: &[Cell<i32>] = cell_slice.as_slice_of_cells();
    ///
    /// assert_eq!(slice_cell.len(), 3);
    /// ```
    #[stable(feature = "as_cell", since = "1.37.0")]
    pub fn as_slice_of_cells(&self) -> &[Cell<T>] {
        // SAFETY: `Cell<T>` has the same memory layout as `T`.
        unsafe { &*(self as *const Cell<[T]> as *const [Cell<T>]) }
    }
}

impl<T, const N: usize> Cell<[T; N]> {
    /// Returns a `&[Cell<T>; N]` from a `&Cell<[T; N]>`
    ///
    /// # Examples
    ///
    /// ```
    /// #![feature(as_array_of_cells)]
    /// use std::cell::Cell;
    ///
    /// let mut array: [i32; 3] = [1, 2, 3];
    /// let cell_array: &Cell<[i32; 3]> = Cell::from_mut(&mut array);
    /// let array_cell: &[Cell<i32>; 3] = cell_array.as_array_of_cells();
    /// ```
    #[unstable(feature = "as_array_of_cells", issue = "88248")]
    pub fn as_array_of_cells(&self) -> &[Cell<T>; N] {
        // SAFETY: `Cell<T>` has the same memory layout as `T`.
        unsafe { &*(self as *const Cell<[T; N]> as *const [Cell<T>; N]) }
    }
}

/// A mutable memory location with dynamically checked borrow rules
///
/// See the [module-level documentation](self) for more.
#[stable(feature = "rust1", since = "1.0.0")]
pub struct RefCell<T: ?Sized> {
    borrow: Cell<BorrowFlag>,
    // Stores the location of the earliest currently active borrow.
    // This gets updated whenever we go from having zero borrows
    // to having a single borrow. When a borrow occurs, this gets included
    // in the generated `BorrowError/`BorrowMutError`
    #[cfg(feature = "debug_refcell")]
    borrowed_at: Cell<Option<&'static crate::panic::Location<'static>>>,
    value: UnsafeCell<T>,
}

/// An error returned by [`RefCell::try_borrow`].
#[stable(feature = "try_borrow", since = "1.13.0")]
#[non_exhaustive]
pub struct BorrowError {
    #[cfg(feature = "debug_refcell")]
    location: &'static crate::panic::Location<'static>,
}

#[stable(feature = "try_borrow", since = "1.13.0")]
impl Debug for BorrowError {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        let mut builder = f.debug_struct("BorrowError");

        #[cfg(feature = "debug_refcell")]
        builder.field("location", self.location);

        builder.finish()
    }
}

#[stable(feature = "try_borrow", since = "1.13.0")]
impl Display for BorrowError {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        Display::fmt("already mutably borrowed", f)
    }
}

/// An error returned by [`RefCell::try_borrow_mut`].
#[stable(feature = "try_borrow", since = "1.13.0")]
#[non_exhaustive]
pub struct BorrowMutError {
    #[cfg(feature = "debug_refcell")]
    location: &'static crate::panic::Location<'static>,
}

#[stable(feature = "try_borrow", since = "1.13.0")]
impl Debug for BorrowMutError {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        let mut builder = f.debug_struct("BorrowMutError");

        #[cfg(feature = "debug_refcell")]
        builder.field("location", self.location);

        builder.finish()
    }
}

#[stable(feature = "try_borrow", since = "1.13.0")]
impl Display for BorrowMutError {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        Display::fmt("already borrowed", f)
    }
}

// Positive values represent the number of `Ref` active. Negative values
// represent the number of `RefMut` active. Multiple `RefMut`s can only be
// active at a time if they refer to distinct, nonoverlapping components of a
// `RefCell` (e.g., different ranges of a slice).
//
// `Ref` and `RefMut` are both two words in size, and so there will likely never
// be enough `Ref`s or `RefMut`s in existence to overflow half of the `usize`
// range. Thus, a `BorrowFlag` will probably never overflow or underflow.
// However, this is not a guarantee, as a pathological program could repeatedly
// create and then mem::forget `Ref`s or `RefMut`s. Thus, all code must
// explicitly check for overflow and underflow in order to avoid unsafety, or at
// least behave correctly in the event that overflow or underflow happens (e.g.,
// see BorrowRef::new).
type BorrowFlag = isize;
const UNUSED: BorrowFlag = 0;

#[inline(always)]
fn is_writing(x: BorrowFlag) -> bool {
    x < UNUSED
}

#[inline(always)]
fn is_reading(x: BorrowFlag) -> bool {
    x > UNUSED
}

impl<T> RefCell<T> {
    /// Creates a new `RefCell` containing `value`.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::cell::RefCell;
    ///
    /// let c = RefCell::new(5);
    /// ```
    #[stable(feature = "rust1", since = "1.0.0")]
    #[rustc_const_stable(feature = "const_refcell_new", since = "1.24.0")]
    #[inline]
    pub const fn new(value: T) -> RefCell<T> {
        RefCell {
            value: UnsafeCell::new(value),
            borrow: Cell::new(UNUSED),
            #[cfg(feature = "debug_refcell")]
            borrowed_at: Cell::new(None),
        }
    }

    /// Consumes the `RefCell`, returning the wrapped value.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::cell::RefCell;
    ///
    /// let c = RefCell::new(5);
    ///
    /// let five = c.into_inner();
    /// ```
    #[stable(feature = "rust1", since = "1.0.0")]
    #[rustc_const_unstable(feature = "const_cell_into_inner", issue = "78729")]
    #[inline]
    pub const fn into_inner(self) -> T {
        // Since this function takes `self` (the `RefCell`) by value, the
        // compiler statically verifies that it is not currently borrowed.
        self.value.into_inner()
    }

    /// Replaces the wrapped value with a new one, returning the old value,
    /// without deinitializing either one.
    ///
    /// This function corresponds to [`std::mem::replace`](../mem/fn.replace.html).
    ///
    /// # Panics
    ///
    /// Panics if the value is currently borrowed.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::cell::RefCell;
    /// let cell = RefCell::new(5);
    /// let old_value = cell.replace(6);
    /// assert_eq!(old_value, 5);
    /// assert_eq!(cell, RefCell::new(6));
    /// ```
    #[inline]
    #[stable(feature = "refcell_replace", since = "1.24.0")]
    #[track_caller]
    pub fn replace(&self, t: T) -> T {
        mem::replace(&mut *self.borrow_mut(), t)
    }

    /// Replaces the wrapped value with a new one computed from `f`, returning
    /// the old value, without deinitializing either one.
    ///
    /// # Panics
    ///
    /// Panics if the value is currently borrowed.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::cell::RefCell;
    /// let cell = RefCell::new(5);
    /// let old_value = cell.replace_with(|&mut old| old + 1);
    /// assert_eq!(old_value, 5);
    /// assert_eq!(cell, RefCell::new(6));
    /// ```
    #[inline]
    #[stable(feature = "refcell_replace_swap", since = "1.35.0")]
    #[track_caller]
    pub fn replace_with<F: FnOnce(&mut T) -> T>(&self, f: F) -> T {
        let mut_borrow = &mut *self.borrow_mut();
        let replacement = f(mut_borrow);
        mem::replace(mut_borrow, replacement)
    }

    /// Swaps the wrapped value of `self` with the wrapped value of `other`,
    /// without deinitializing either one.
    ///
    /// This function corresponds to [`std::mem::swap`](../mem/fn.swap.html).
    ///
    /// # Panics
    ///
    /// Panics if the value in either `RefCell` is currently borrowed.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::cell::RefCell;
    /// let c = RefCell::new(5);
    /// let d = RefCell::new(6);
    /// c.swap(&d);
    /// assert_eq!(c, RefCell::new(6));
    /// assert_eq!(d, RefCell::new(5));
    /// ```
    #[inline]
    #[stable(feature = "refcell_swap", since = "1.24.0")]
    pub fn swap(&self, other: &Self) {
        mem::swap(&mut *self.borrow_mut(), &mut *other.borrow_mut())
    }
}

impl<T: ?Sized> RefCell<T> {
    /// Immutably borrows the wrapped value.
    ///
    /// The borrow lasts until the returned `Ref` exits scope. Multiple
    /// immutable borrows can be taken out at the same time.
    ///
    /// # Panics
    ///
    /// Panics if the value is currently mutably borrowed. For a non-panicking variant, use
    /// [`try_borrow`](#method.try_borrow).
    ///
    /// # Examples
    ///
    /// ```
    /// use std::cell::RefCell;
    ///
    /// let c = RefCell::new(5);
    ///
    /// let borrowed_five = c.borrow();
    /// let borrowed_five2 = c.borrow();
    /// ```
    ///
    /// An example of panic:
    ///
    /// ```should_panic
    /// use std::cell::RefCell;
    ///
    /// let c = RefCell::new(5);
    ///
    /// let m = c.borrow_mut();
    /// let b = c.borrow(); // this causes a panic
    /// ```
    #[stable(feature = "rust1", since = "1.0.0")]
    #[inline]
    #[track_caller]
    pub fn borrow(&self) -> Ref<'_, T> {
        self.try_borrow().expect("already mutably borrowed")
    }

    /// Immutably borrows the wrapped value, returning an error if the value is currently mutably
    /// borrowed.
    ///
    /// The borrow lasts until the returned `Ref` exits scope. Multiple immutable borrows can be
    /// taken out at the same time.
    ///
    /// This is the non-panicking variant of [`borrow`](#method.borrow).
    ///
    /// # Examples
    ///
    /// ```
    /// use std::cell::RefCell;
    ///
    /// let c = RefCell::new(5);
    ///
    /// {
    ///     let m = c.borrow_mut();
    ///     assert!(c.try_borrow().is_err());
    /// }
    ///
    /// {
    ///     let m = c.borrow();
    ///     assert!(c.try_borrow().is_ok());
    /// }
    /// ```
    #[stable(feature = "try_borrow", since = "1.13.0")]
    #[inline]
    #[cfg_attr(feature = "debug_refcell", track_caller)]
    pub fn try_borrow(&self) -> Result<Ref<'_, T>, BorrowError> {
        match BorrowRef::new(&self.borrow) {
            Some(b) => {
                #[cfg(feature = "debug_refcell")]
                {
                    // `borrowed_at` is always the *first* active borrow
                    if b.borrow.get() == 1 {
                        self.borrowed_at.set(Some(crate::panic::Location::caller()));
                    }
                }

                // SAFETY: `BorrowRef` ensures that there is only immutable access
                // to the value while borrowed.
                Ok(Ref { value: unsafe { &*self.value.get() }, borrow: b })
            }
            None => Err(BorrowError {
                // If a borrow occurred, then we must already have an outstanding borrow,
                // so `borrowed_at` will be `Some`
                #[cfg(feature = "debug_refcell")]
                location: self.borrowed_at.get().unwrap(),
            }),
        }
    }

    /// Mutably borrows the wrapped value.
    ///
    /// The borrow lasts until the returned `RefMut` or all `RefMut`s derived
    /// from it exit scope. The value cannot be borrowed while this borrow is
    /// active.
    ///
    /// # Panics
    ///
    /// Panics if the value is currently borrowed. For a non-panicking variant, use
    /// [`try_borrow_mut`](#method.try_borrow_mut).
    ///
    /// # Examples
    ///
    /// ```
    /// use std::cell::RefCell;
    ///
    /// let c = RefCell::new("hello".to_owned());
    ///
    /// *c.borrow_mut() = "bonjour".to_owned();
    ///
    /// assert_eq!(&*c.borrow(), "bonjour");
    /// ```
    ///
    /// An example of panic:
    ///
    /// ```should_panic
    /// use std::cell::RefCell;
    ///
    /// let c = RefCell::new(5);
    /// let m = c.borrow();
    ///
    /// let b = c.borrow_mut(); // this causes a panic
    /// ```
    #[stable(feature = "rust1", since = "1.0.0")]
    #[inline]
    #[track_caller]
    pub fn borrow_mut(&self) -> RefMut<'_, T> {
        self.try_borrow_mut().expect("already borrowed")
    }

    /// Mutably borrows the wrapped value, returning an error if the value is currently borrowed.
    ///
    /// The borrow lasts until the returned `RefMut` or all `RefMut`s derived
    /// from it exit scope. The value cannot be borrowed while this borrow is
    /// active.
    ///
    /// This is the non-panicking variant of [`borrow_mut`](#method.borrow_mut).
    ///
    /// # Examples
    ///
    /// ```
    /// use std::cell::RefCell;
    ///
    /// let c = RefCell::new(5);
    ///
    /// {
    ///     let m = c.borrow();
    ///     assert!(c.try_borrow_mut().is_err());
    /// }
    ///
    /// assert!(c.try_borrow_mut().is_ok());
    /// ```
    #[stable(feature = "try_borrow", since = "1.13.0")]
    #[inline]
    #[cfg_attr(feature = "debug_refcell", track_caller)]
    pub fn try_borrow_mut(&self) -> Result<RefMut<'_, T>, BorrowMutError> {
        match BorrowRefMut::new(&self.borrow) {
            Some(b) => {
                #[cfg(feature = "debug_refcell")]
                {
                    self.borrowed_at.set(Some(crate::panic::Location::caller()));
                }

                // SAFETY: `BorrowRef` guarantees unique access.
                Ok(RefMut { value: unsafe { &mut *self.value.get() }, borrow: b })
            }
            None => Err(BorrowMutError {
                // If a borrow occurred, then we must already have an outstanding borrow,
                // so `borrowed_at` will be `Some`
                #[cfg(feature = "debug_refcell")]
                location: self.borrowed_at.get().unwrap(),
            }),
        }
    }

    /// Returns a raw pointer to the underlying data in this cell.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::cell::RefCell;
    ///
    /// let c = RefCell::new(5);
    ///
    /// let ptr = c.as_ptr();
    /// ```
    #[inline]
    #[stable(feature = "cell_as_ptr", since = "1.12.0")]
    pub fn as_ptr(&self) -> *mut T {
        self.value.get()
    }

    /// Returns a mutable reference to the underlying data.
    ///
    /// This call borrows `RefCell` mutably (at compile-time) so there is no
    /// need for dynamic checks.
    ///
    /// However be cautious: this method expects `self` to be mutable, which is
    /// generally not the case when using a `RefCell`. Take a look at the
    /// [`borrow_mut`] method instead if `self` isn't mutable.
    ///
    /// Also, please be aware that this method is only for special circumstances and is usually
    /// not what you want. In case of doubt, use [`borrow_mut`] instead.
    ///
    /// [`borrow_mut`]: RefCell::borrow_mut()
    ///
    /// # Examples
    ///
    /// ```
    /// use std::cell::RefCell;
    ///
    /// let mut c = RefCell::new(5);
    /// *c.get_mut() += 1;
    ///
    /// assert_eq!(c, RefCell::new(6));
    /// ```
    #[inline]
    #[stable(feature = "cell_get_mut", since = "1.11.0")]
    pub fn get_mut(&mut self) -> &mut T {
        self.value.get_mut()
    }

    /// Undo the effect of leaked guards on the borrow state of the `RefCell`.
    ///
    /// This call is similar to [`get_mut`] but more specialized. It borrows `RefCell` mutably to
    /// ensure no borrows exist and then resets the state tracking shared borrows. This is relevant
    /// if some `Ref` or `RefMut` borrows have been leaked.
    ///
    /// [`get_mut`]: RefCell::get_mut()
    ///
    /// # Examples
    ///
    /// ```
    /// #![feature(cell_leak)]
    /// use std::cell::RefCell;
    ///
    /// let mut c = RefCell::new(0);
    /// std::mem::forget(c.borrow_mut());
    ///
    /// assert!(c.try_borrow().is_err());
    /// c.undo_leak();
    /// assert!(c.try_borrow().is_ok());
    /// ```
    #[unstable(feature = "cell_leak", issue = "69099")]
    pub fn undo_leak(&mut self) -> &mut T {
        *self.borrow.get_mut() = UNUSED;
        self.get_mut()
    }

    /// Immutably borrows the wrapped value, returning an error if the value is
    /// currently mutably borrowed.
    ///
    /// # Safety
    ///
    /// Unlike `RefCell::borrow`, this method is unsafe because it does not
    /// return a `Ref`, thus leaving the borrow flag untouched. Mutably
    /// borrowing the `RefCell` while the reference returned by this method
    /// is alive is undefined behaviour.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::cell::RefCell;
    ///
    /// let c = RefCell::new(5);
    ///
    /// {
    ///     let m = c.borrow_mut();
    ///     assert!(unsafe { c.try_borrow_unguarded() }.is_err());
    /// }
    ///
    /// {
    ///     let m = c.borrow();
    ///     assert!(unsafe { c.try_borrow_unguarded() }.is_ok());
    /// }
    /// ```
    #[stable(feature = "borrow_state", since = "1.37.0")]
    #[inline]
    pub unsafe fn try_borrow_unguarded(&self) -> Result<&T, BorrowError> {
        if !is_writing(self.borrow.get()) {
            // SAFETY: We check that nobody is actively writing now, but it is
            // the caller's responsibility to ensure that nobody writes until
            // the returned reference is no longer in use.
            // Also, `self.value.get()` refers to the value owned by `self`
            // and is thus guaranteed to be valid for the lifetime of `self`.
            Ok(unsafe { &*self.value.get() })
        } else {
            Err(BorrowError {
                // If a borrow occurred, then we must already have an outstanding borrow,
                // so `borrowed_at` will be `Some`
                #[cfg(feature = "debug_refcell")]
                location: self.borrowed_at.get().unwrap(),
            })
        }
    }
}

impl<T: Default> RefCell<T> {
    /// Takes the wrapped value, leaving `Default::default()` in its place.
    ///
    /// # Panics
    ///
    /// Panics if the value is currently borrowed.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::cell::RefCell;
    ///
    /// let c = RefCell::new(5);
    /// let five = c.take();
    ///
    /// assert_eq!(five, 5);
    /// assert_eq!(c.into_inner(), 0);
    /// ```
    #[stable(feature = "refcell_take", since = "1.50.0")]
    pub fn take(&self) -> T {
        self.replace(Default::default())
    }
}

#[stable(feature = "rust1", since = "1.0.0")]
unsafe impl<T: ?Sized> Send for RefCell<T> where T: Send {}

#[stable(feature = "rust1", since = "1.0.0")]
impl<T: ?Sized> !Sync for RefCell<T> {}

#[stable(feature = "rust1", since = "1.0.0")]
impl<T: Clone> Clone for RefCell<T> {
    /// # Panics
    ///
    /// Panics if the value is currently mutably borrowed.
    #[inline]
    #[track_caller]
    fn clone(&self) -> RefCell<T> {
        RefCell::new(self.borrow().clone())
    }

    /// # Panics
    ///
    /// Panics if `other` is currently mutably borrowed.
    #[inline]
    #[track_caller]
    fn clone_from(&mut self, other: &Self) {
        self.get_mut().clone_from(&other.borrow())
    }
}

#[stable(feature = "rust1", since = "1.0.0")]
impl<T: Default> Default for RefCell<T> {
    /// Creates a `RefCell<T>`, with the `Default` value for T.
    #[inline]
    fn default() -> RefCell<T> {
        RefCell::new(Default::default())
    }
}

#[stable(feature = "rust1", since = "1.0.0")]
impl<T: ?Sized + PartialEq> PartialEq for RefCell<T> {
    /// # Panics
    ///
    /// Panics if the value in either `RefCell` is currently borrowed.
    #[inline]
    fn eq(&self, other: &RefCell<T>) -> bool {
        *self.borrow() == *other.borrow()
    }
}

#[stable(feature = "cell_eq", since = "1.2.0")]
impl<T: ?Sized + Eq> Eq for RefCell<T> {}

#[stable(feature = "cell_ord", since = "1.10.0")]
impl<T: ?Sized + PartialOrd> PartialOrd for RefCell<T> {
    /// # Panics
    ///
    /// Panics if the value in either `RefCell` is currently borrowed.
    #[inline]
    fn partial_cmp(&self, other: &RefCell<T>) -> Option<Ordering> {
        self.borrow().partial_cmp(&*other.borrow())
    }

    /// # Panics
    ///
    /// Panics if the value in either `RefCell` is currently borrowed.
    #[inline]
    fn lt(&self, other: &RefCell<T>) -> bool {
        *self.borrow() < *other.borrow()
    }

    /// # Panics
    ///
    /// Panics if the value in either `RefCell` is currently borrowed.
    #[inline]
    fn le(&self, other: &RefCell<T>) -> bool {
        *self.borrow() <= *other.borrow()
    }

    /// # Panics
    ///
    /// Panics if the value in either `RefCell` is currently borrowed.
    #[inline]
    fn gt(&self, other: &RefCell<T>) -> bool {
        *self.borrow() > *other.borrow()
    }

    /// # Panics
    ///
    /// Panics if the value in either `RefCell` is currently borrowed.
    #[inline]
    fn ge(&self, other: &RefCell<T>) -> bool {
        *self.borrow() >= *other.borrow()
    }
}

#[stable(feature = "cell_ord", since = "1.10.0")]
impl<T: ?Sized + Ord> Ord for RefCell<T> {
    /// # Panics
    ///
    /// Panics if the value in either `RefCell` is currently borrowed.
    #[inline]
    fn cmp(&self, other: &RefCell<T>) -> Ordering {
        self.borrow().cmp(&*other.borrow())
    }
}

#[stable(feature = "cell_from", since = "1.12.0")]
#[rustc_const_unstable(feature = "const_convert", issue = "88674")]
impl<T> const From<T> for RefCell<T> {
    /// Creates a new `RefCell<T>` containing the given value.
    fn from(t: T) -> RefCell<T> {
        RefCell::new(t)
    }
}

#[unstable(feature = "coerce_unsized", issue = "27732")]
impl<T: CoerceUnsized<U>, U> CoerceUnsized<RefCell<U>> for RefCell<T> {}

struct BorrowRef<'b> {
    borrow: &'b Cell<BorrowFlag>,
}

impl<'b> BorrowRef<'b> {
    #[inline]
    fn new(borrow: &'b Cell<BorrowFlag>) -> Option<BorrowRef<'b>> {
        let b = borrow.get().wrapping_add(1);
        if !is_reading(b) {
            // Incrementing borrow can result in a non-reading value (<= 0) in these cases:
            // 1. It was < 0, i.e. there are writing borrows, so we can't allow a read borrow
            //    due to Rust's reference aliasing rules
            // 2. It was isize::MAX (the max amount of reading borrows) and it overflowed
            //    into isize::MIN (the max amount of writing borrows) so we can't allow
            //    an additional read borrow because isize can't represent so many read borrows
            //    (this can only happen if you mem::forget more than a small constant amount of
            //    `Ref`s, which is not good practice)
            None
        } else {
            // Incrementing borrow can result in a reading value (> 0) in these cases:
            // 1. It was = 0, i.e. it wasn't borrowed, and we are taking the first read borrow
            // 2. It was > 0 and < isize::MAX, i.e. there were read borrows, and isize
            //    is large enough to represent having one more read borrow
            borrow.set(b);
            Some(BorrowRef { borrow })
        }
    }
}

impl Drop for BorrowRef<'_> {
    #[inline]
    fn drop(&mut self) {
        let borrow = self.borrow.get();
        debug_assert!(is_reading(borrow));
        self.borrow.set(borrow - 1);
    }
}

impl Clone for BorrowRef<'_> {
    #[inline]
    fn clone(&self) -> Self {
        // Since this Ref exists, we know the borrow flag
        // is a reading borrow.
        let borrow = self.borrow.get();
        debug_assert!(is_reading(borrow));
        // Prevent the borrow counter from overflowing into
        // a writing borrow.
        assert!(borrow != isize::MAX);
        self.borrow.set(borrow + 1);
        BorrowRef { borrow: self.borrow }
    }
}

/// Wraps a borrowed reference to a value in a `RefCell` box.
/// A wrapper type for an immutably borrowed value from a `RefCell<T>`.
///
/// See the [module-level documentation](self) for more.
#[stable(feature = "rust1", since = "1.0.0")]
#[must_not_suspend = "holding a Ref across suspend points can cause BorrowErrors"]
pub struct Ref<'b, T: ?Sized + 'b> {
    value: &'b T,
    borrow: BorrowRef<'b>,
}

#[stable(feature = "rust1", since = "1.0.0")]
impl<T: ?Sized> Deref for Ref<'_, T> {
    type Target = T;

    #[inline]
    fn deref(&self) -> &T {
        self.value
    }
}

impl<'b, T: ?Sized> Ref<'b, T> {
    /// Copies a `Ref`.
    ///
    /// The `RefCell` is already immutably borrowed, so this cannot fail.
    ///
    /// This is an associated function that needs to be used as
    /// `Ref::clone(...)`. A `Clone` implementation or a method would interfere
    /// with the widespread use of `r.borrow().clone()` to clone the contents of
    /// a `RefCell`.
    #[stable(feature = "cell_extras", since = "1.15.0")]
    #[must_use]
    #[inline]
    pub fn clone(orig: &Ref<'b, T>) -> Ref<'b, T> {
        Ref { value: orig.value, borrow: orig.borrow.clone() }
    }

    /// Makes a new `Ref` for a component of the borrowed data.
    ///
    /// The `RefCell` is already immutably borrowed, so this cannot fail.
    ///
    /// This is an associated function that needs to be used as `Ref::map(...)`.
    /// A method would interfere with methods of the same name on the contents
    /// of a `RefCell` used through `Deref`.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::cell::{RefCell, Ref};
    ///
    /// let c = RefCell::new((5, 'b'));
    /// let b1: Ref<(u32, char)> = c.borrow();
    /// let b2: Ref<u32> = Ref::map(b1, |t| &t.0);
    /// assert_eq!(*b2, 5)
    /// ```
    #[stable(feature = "cell_map", since = "1.8.0")]
    #[inline]
    pub fn map<U: ?Sized, F>(orig: Ref<'b, T>, f: F) -> Ref<'b, U>
    where
        F: FnOnce(&T) -> &U,
    {
        Ref { value: f(orig.value), borrow: orig.borrow }
    }

    /// Makes a new `Ref` for an optional component of the borrowed data. The
    /// original guard is returned as an `Err(..)` if the closure returns
    /// `None`.
    ///
    /// The `RefCell` is already immutably borrowed, so this cannot fail.
    ///
    /// This is an associated function that needs to be used as
    /// `Ref::filter_map(...)`. A method would interfere with methods of the same
    /// name on the contents of a `RefCell` used through `Deref`.
    ///
    /// # Examples
    ///
    /// ```
    /// #![feature(cell_filter_map)]
    ///
    /// use std::cell::{RefCell, Ref};
    ///
    /// let c = RefCell::new(vec![1, 2, 3]);
    /// let b1: Ref<Vec<u32>> = c.borrow();
    /// let b2: Result<Ref<u32>, _> = Ref::filter_map(b1, |v| v.get(1));
    /// assert_eq!(*b2.unwrap(), 2);
    /// ```
    #[unstable(feature = "cell_filter_map", reason = "recently added", issue = "81061")]
    #[inline]
    pub fn filter_map<U: ?Sized, F>(orig: Ref<'b, T>, f: F) -> Result<Ref<'b, U>, Self>
    where
        F: FnOnce(&T) -> Option<&U>,
    {
        match f(orig.value) {
            Some(value) => Ok(Ref { value, borrow: orig.borrow }),
            None => Err(orig),
        }
    }

    /// Splits a `Ref` into multiple `Ref`s for different components of the
    /// borrowed data.
    ///
    /// The `RefCell` is already immutably borrowed, so this cannot fail.
    ///
    /// This is an associated function that needs to be used as
    /// `Ref::map_split(...)`. A method would interfere with methods of the same
    /// name on the contents of a `RefCell` used through `Deref`.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::cell::{Ref, RefCell};
    ///
    /// let cell = RefCell::new([1, 2, 3, 4]);
    /// let borrow = cell.borrow();
    /// let (begin, end) = Ref::map_split(borrow, |slice| slice.split_at(2));
    /// assert_eq!(*begin, [1, 2]);
    /// assert_eq!(*end, [3, 4]);
    /// ```
    #[stable(feature = "refcell_map_split", since = "1.35.0")]
    #[inline]
    pub fn map_split<U: ?Sized, V: ?Sized, F>(orig: Ref<'b, T>, f: F) -> (Ref<'b, U>, Ref<'b, V>)
    where
        F: FnOnce(&T) -> (&U, &V),
    {
        let (a, b) = f(orig.value);
        let borrow = orig.borrow.clone();
        (Ref { value: a, borrow }, Ref { value: b, borrow: orig.borrow })
    }

    /// Convert into a reference to the underlying data.
    ///
    /// The underlying `RefCell` can never be mutably borrowed from again and will always appear
    /// already immutably borrowed. It is not a good idea to leak more than a constant number of
    /// references. The `RefCell` can be immutably borrowed again if only a smaller number of leaks
    /// have occurred in total.
    ///
    /// This is an associated function that needs to be used as
    /// `Ref::leak(...)`. A method would interfere with methods of the
    /// same name on the contents of a `RefCell` used through `Deref`.
    ///
    /// # Examples
    ///
    /// ```
    /// #![feature(cell_leak)]
    /// use std::cell::{RefCell, Ref};
    /// let cell = RefCell::new(0);
    ///
    /// let value = Ref::leak(cell.borrow());
    /// assert_eq!(*value, 0);
    ///
    /// assert!(cell.try_borrow().is_ok());
    /// assert!(cell.try_borrow_mut().is_err());
    /// ```
    #[unstable(feature = "cell_leak", issue = "69099")]
    pub fn leak(orig: Ref<'b, T>) -> &'b T {
        // By forgetting this Ref we ensure that the borrow counter in the RefCell can't go back to
        // UNUSED within the lifetime `'b`. Resetting the reference tracking state would require a
        // unique reference to the borrowed RefCell. No further mutable references can be created
        // from the original cell.
        mem::forget(orig.borrow);
        orig.value
    }
}

#[unstable(feature = "coerce_unsized", issue = "27732")]
impl<'b, T: ?Sized + Unsize<U>, U: ?Sized> CoerceUnsized<Ref<'b, U>> for Ref<'b, T> {}

#[stable(feature = "std_guard_impls", since = "1.20.0")]
impl<T: ?Sized + fmt::Display> fmt::Display for Ref<'_, T> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        self.value.fmt(f)
    }
}

impl<'b, T: ?Sized> RefMut<'b, T> {
    /// Makes a new `RefMut` for a component of the borrowed data, e.g., an enum
    /// variant.
    ///
    /// The `RefCell` is already mutably borrowed, so this cannot fail.
    ///
    /// This is an associated function that needs to be used as
    /// `RefMut::map(...)`. A method would interfere with methods of the same
    /// name on the contents of a `RefCell` used through `Deref`.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::cell::{RefCell, RefMut};
    ///
    /// let c = RefCell::new((5, 'b'));
    /// {
    ///     let b1: RefMut<(u32, char)> = c.borrow_mut();
    ///     let mut b2: RefMut<u32> = RefMut::map(b1, |t| &mut t.0);
    ///     assert_eq!(*b2, 5);
    ///     *b2 = 42;
    /// }
    /// assert_eq!(*c.borrow(), (42, 'b'));
    /// ```
    #[stable(feature = "cell_map", since = "1.8.0")]
    #[inline]
    pub fn map<U: ?Sized, F>(orig: RefMut<'b, T>, f: F) -> RefMut<'b, U>
    where
        F: FnOnce(&mut T) -> &mut U,
    {
        // FIXME(nll-rfc#40): fix borrow-check
        let RefMut { value, borrow } = orig;
        RefMut { value: f(value), borrow }
    }

    /// Makes a new `RefMut` for an optional component of the borrowed data. The
    /// original guard is returned as an `Err(..)` if the closure returns
    /// `None`.
    ///
    /// The `RefCell` is already mutably borrowed, so this cannot fail.
    ///
    /// This is an associated function that needs to be used as
    /// `RefMut::filter_map(...)`. A method would interfere with methods of the
    /// same name on the contents of a `RefCell` used through `Deref`.
    ///
    /// # Examples
    ///
    /// ```
    /// #![feature(cell_filter_map)]
    ///
    /// use std::cell::{RefCell, RefMut};
    ///
    /// let c = RefCell::new(vec![1, 2, 3]);
    ///
    /// {
    ///     let b1: RefMut<Vec<u32>> = c.borrow_mut();
    ///     let mut b2: Result<RefMut<u32>, _> = RefMut::filter_map(b1, |v| v.get_mut(1));
    ///
    ///     if let Ok(mut b2) = b2 {
    ///         *b2 += 2;
    ///     }
    /// }
    ///
    /// assert_eq!(*c.borrow(), vec![1, 4, 3]);
    /// ```
    #[unstable(feature = "cell_filter_map", reason = "recently added", issue = "81061")]
    #[inline]
    pub fn filter_map<U: ?Sized, F>(orig: RefMut<'b, T>, f: F) -> Result<RefMut<'b, U>, Self>
    where
        F: FnOnce(&mut T) -> Option<&mut U>,
    {
        // FIXME(nll-rfc#40): fix borrow-check
        let RefMut { value, borrow } = orig;
        let value = value as *mut T;
        // SAFETY: function holds onto an exclusive reference for the duration
        // of its call through `orig`, and the pointer is only de-referenced
        // inside of the function call never allowing the exclusive reference to
        // escape.
        match f(unsafe { &mut *value }) {
            Some(value) => Ok(RefMut { value, borrow }),
            None => {
                // SAFETY: same as above.
                Err(RefMut { value: unsafe { &mut *value }, borrow })
            }
        }
    }

    /// Splits a `RefMut` into multiple `RefMut`s for different components of the
    /// borrowed data.
    ///
    /// The underlying `RefCell` will remain mutably borrowed until both
    /// returned `RefMut`s go out of scope.
    ///
    /// The `RefCell` is already mutably borrowed, so this cannot fail.
    ///
    /// This is an associated function that needs to be used as
    /// `RefMut::map_split(...)`. A method would interfere with methods of the
    /// same name on the contents of a `RefCell` used through `Deref`.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::cell::{RefCell, RefMut};
    ///
    /// let cell = RefCell::new([1, 2, 3, 4]);
    /// let borrow = cell.borrow_mut();
    /// let (mut begin, mut end) = RefMut::map_split(borrow, |slice| slice.split_at_mut(2));
    /// assert_eq!(*begin, [1, 2]);
    /// assert_eq!(*end, [3, 4]);
    /// begin.copy_from_slice(&[4, 3]);
    /// end.copy_from_slice(&[2, 1]);
    /// ```
    #[stable(feature = "refcell_map_split", since = "1.35.0")]
    #[inline]
    pub fn map_split<U: ?Sized, V: ?Sized, F>(
        orig: RefMut<'b, T>,
        f: F,
    ) -> (RefMut<'b, U>, RefMut<'b, V>)
    where
        F: FnOnce(&mut T) -> (&mut U, &mut V),
    {
        let (a, b) = f(orig.value);
        let borrow = orig.borrow.clone();
        (RefMut { value: a, borrow }, RefMut { value: b, borrow: orig.borrow })
    }

    /// Convert into a mutable reference to the underlying data.
    ///
    /// The underlying `RefCell` can not be borrowed from again and will always appear already
    /// mutably borrowed, making the returned reference the only to the interior.
    ///
    /// This is an associated function that needs to be used as
    /// `RefMut::leak(...)`. A method would interfere with methods of the
    /// same name on the contents of a `RefCell` used through `Deref`.
    ///
    /// # Examples
    ///
    /// ```
    /// #![feature(cell_leak)]
    /// use std::cell::{RefCell, RefMut};
    /// let cell = RefCell::new(0);
    ///
    /// let value = RefMut::leak(cell.borrow_mut());
    /// assert_eq!(*value, 0);
    /// *value = 1;
    ///
    /// assert!(cell.try_borrow_mut().is_err());
    /// ```
    #[unstable(feature = "cell_leak", issue = "69099")]
    pub fn leak(orig: RefMut<'b, T>) -> &'b mut T {
        // By forgetting this BorrowRefMut we ensure that the borrow counter in the RefCell can't
        // go back to UNUSED within the lifetime `'b`. Resetting the reference tracking state would
        // require a unique reference to the borrowed RefCell. No further references can be created
        // from the original cell within that lifetime, making the current borrow the only
        // reference for the remaining lifetime.
        mem::forget(orig.borrow);
        orig.value
    }
}

struct BorrowRefMut<'b> {
    borrow: &'b Cell<BorrowFlag>,
}

impl Drop for BorrowRefMut<'_> {
    #[inline]
    fn drop(&mut self) {
        let borrow = self.borrow.get();
        debug_assert!(is_writing(borrow));
        self.borrow.set(borrow + 1);
    }
}

impl<'b> BorrowRefMut<'b> {
    #[inline]
    fn new(borrow: &'b Cell<BorrowFlag>) -> Option<BorrowRefMut<'b>> {
        // NOTE: Unlike BorrowRefMut::clone, new is called to create the initial
        // mutable reference, and so there must currently be no existing
        // references. Thus, while clone increments the mutable refcount, here
        // we explicitly only allow going from UNUSED to UNUSED - 1.
        match borrow.get() {
            UNUSED => {
                borrow.set(UNUSED - 1);
                Some(BorrowRefMut { borrow })
            }
            _ => None,
        }
    }

    // Clones a `BorrowRefMut`.
    //
    // This is only valid if each `BorrowRefMut` is used to track a mutable
    // reference to a distinct, nonoverlapping range of the original object.
    // This isn't in a Clone impl so that code doesn't call this implicitly.
    #[inline]
    fn clone(&self) -> BorrowRefMut<'b> {
        let borrow = self.borrow.get();
        debug_assert!(is_writing(borrow));
        // Prevent the borrow counter from underflowing.
        assert!(borrow != isize::MIN);
        self.borrow.set(borrow - 1);
        BorrowRefMut { borrow: self.borrow }
    }
}

/// A wrapper type for a mutably borrowed value from a `RefCell<T>`.
///
/// See the [module-level documentation](self) for more.
#[stable(feature = "rust1", since = "1.0.0")]
#[must_not_suspend = "holding a RefMut across suspend points can cause BorrowErrors"]
pub struct RefMut<'b, T: ?Sized + 'b> {
    value: &'b mut T,
    borrow: BorrowRefMut<'b>,
}

#[stable(feature = "rust1", since = "1.0.0")]
impl<T: ?Sized> Deref for RefMut<'_, T> {
    type Target = T;

    #[inline]
    fn deref(&self) -> &T {
        self.value
    }
}

#[stable(feature = "rust1", since = "1.0.0")]
impl<T: ?Sized> DerefMut for RefMut<'_, T> {
    #[inline]
    fn deref_mut(&mut self) -> &mut T {
        self.value
    }
}

#[unstable(feature = "coerce_unsized", issue = "27732")]
impl<'b, T: ?Sized + Unsize<U>, U: ?Sized> CoerceUnsized<RefMut<'b, U>> for RefMut<'b, T> {}

#[stable(feature = "std_guard_impls", since = "1.20.0")]
impl<T: ?Sized + fmt::Display> fmt::Display for RefMut<'_, T> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        self.value.fmt(f)
    }
}

/// The core primitive for interior mutability in Rust.
///
/// If you have a reference `&T`, then normally in Rust the compiler performs optimizations based on
/// the knowledge that `&T` points to immutable data. Mutating that data, for example through an
/// alias or by transmuting an `&T` into an `&mut T`, is considered undefined behavior.
/// `UnsafeCell<T>` opts-out of the immutability guarantee for `&T`: a shared reference
/// `&UnsafeCell<T>` may point to data that is being mutated. This is called "interior mutability".
///
/// All other types that allow internal mutability, such as `Cell<T>` and `RefCell<T>`, internally
/// use `UnsafeCell` to wrap their data.
///
/// Note that only the immutability guarantee for shared references is affected by `UnsafeCell`. The
/// uniqueness guarantee for mutable references is unaffected. There is *no* legal way to obtain
/// aliasing `&mut`, not even with `UnsafeCell<T>`.
///
/// The `UnsafeCell` API itself is technically very simple: [`.get()`] gives you a raw pointer
/// `*mut T` to its contents. It is up to _you_ as the abstraction designer to use that raw pointer
/// correctly.
///
/// [`.get()`]: `UnsafeCell::get`
///
/// The precise Rust aliasing rules are somewhat in flux, but the main points are not contentious:
///
/// - If you create a safe reference with lifetime `'a` (either a `&T` or `&mut T`
/// reference) that is accessible by safe code (for example, because you returned it),
/// then you must not access the data in any way that contradicts that reference for the
/// remainder of `'a`. For example, this means that if you take the `*mut T` from an
/// `UnsafeCell<T>` and cast it to an `&T`, then the data in `T` must remain immutable
/// (modulo any `UnsafeCell` data found within `T`, of course) until that reference's
/// lifetime expires. Similarly, if you create a `&mut T` reference that is released to
/// safe code, then you must not access the data within the `UnsafeCell` until that
/// reference expires.
///
/// - At all times, you must avoid data races. If multiple threads have access to
/// the same `UnsafeCell`, then any writes must have a proper happens-before relation to all other
/// accesses (or use atomics).
///
/// To assist with proper design, the following scenarios are explicitly declared legal
/// for single-threaded code:
///
/// 1. A `&T` reference can be released to safe code and there it can co-exist with other `&T`
/// references, but not with a `&mut T`
///
/// 2. A `&mut T` reference may be released to safe code provided neither other `&mut T` nor `&T`
/// co-exist with it. A `&mut T` must always be unique.
///
/// Note that whilst mutating the contents of an `&UnsafeCell<T>` (even while other
/// `&UnsafeCell<T>` references alias the cell) is
/// ok (provided you enforce the above invariants some other way), it is still undefined behavior
/// to have multiple `&mut UnsafeCell<T>` aliases. That is, `UnsafeCell` is a wrapper
/// designed to have a special interaction with _shared_ accesses (_i.e._, through an
/// `&UnsafeCell<_>` reference); there is no magic whatsoever when dealing with _exclusive_
/// accesses (_e.g._, through an `&mut UnsafeCell<_>`): neither the cell nor the wrapped value
/// may be aliased for the duration of that `&mut` borrow.
/// This is showcased by the [`.get_mut()`] accessor, which is a _safe_ getter that yields
/// a `&mut T`.
///
/// [`.get_mut()`]: `UnsafeCell::get_mut`
///
/// # Examples
///
/// Here is an example showcasing how to soundly mutate the contents of an `UnsafeCell<_>` despite
/// there being multiple references aliasing the cell:
///
/// ```
/// use std::cell::UnsafeCell;
///
/// let x: UnsafeCell<i32> = 42.into();
/// // Get multiple / concurrent / shared references to the same `x`.
/// let (p1, p2): (&UnsafeCell<i32>, &UnsafeCell<i32>) = (&x, &x);
///
/// unsafe {
///     // SAFETY: within this scope there are no other references to `x`'s contents,
///     // so ours is effectively unique.
///     let p1_exclusive: &mut i32 = &mut *p1.get(); // -- borrow --+
///     *p1_exclusive += 27; //                                     |
/// } // <---------- cannot go beyond this point -------------------+
///
/// unsafe {
///     // SAFETY: within this scope nobody expects to have exclusive access to `x`'s contents,
///     // so we can have multiple shared accesses concurrently.
///     let p2_shared: &i32 = &*p2.get();
///     assert_eq!(*p2_shared, 42 + 27);
///     let p1_shared: &i32 = &*p1.get();
///     assert_eq!(*p1_shared, *p2_shared);
/// }
/// ```
///
/// The following example showcases the fact that exclusive access to an `UnsafeCell<T>`
/// implies exclusive access to its `T`:
///
/// ```rust
/// #![forbid(unsafe_code)] // with exclusive accesses,
///                         // `UnsafeCell` is a transparent no-op wrapper,
///                         // so no need for `unsafe` here.
/// use std::cell::UnsafeCell;
///
/// let mut x: UnsafeCell<i32> = 42.into();
///
/// // Get a compile-time-checked unique reference to `x`.
/// let p_unique: &mut UnsafeCell<i32> = &mut x;
/// // With an exclusive reference, we can mutate the contents for free.
/// *p_unique.get_mut() = 0;
/// // Or, equivalently:
/// x = UnsafeCell::new(0);
///
/// // When we own the value, we can extract the contents for free.
/// let contents: i32 = x.into_inner();
/// assert_eq!(contents, 0);
/// ```
#[lang = "unsafe_cell"]
#[stable(feature = "rust1", since = "1.0.0")]
#[repr(transparent)]
#[repr(no_niche)] // rust-lang/rust#68303.
pub struct UnsafeCell<T: ?Sized> {
    value: T,
}

#[stable(feature = "rust1", since = "1.0.0")]
impl<T: ?Sized> !Sync for UnsafeCell<T> {}

impl<T> UnsafeCell<T> {
    /// Constructs a new instance of `UnsafeCell` which will wrap the specified
    /// value.
    ///
    /// All access to the inner value through methods is `unsafe`.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::cell::UnsafeCell;
    ///
    /// let uc = UnsafeCell::new(5);
    /// ```
    #[stable(feature = "rust1", since = "1.0.0")]
    #[rustc_const_stable(feature = "const_unsafe_cell_new", since = "1.32.0")]
    #[inline(always)]
    pub const fn new(value: T) -> UnsafeCell<T> {
        UnsafeCell { value }
    }

    /// Unwraps the value.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::cell::UnsafeCell;
    ///
    /// let uc = UnsafeCell::new(5);
    ///
    /// let five = uc.into_inner();
    /// ```
    #[inline(always)]
    #[stable(feature = "rust1", since = "1.0.0")]
    #[rustc_const_unstable(feature = "const_cell_into_inner", issue = "78729")]
    pub const fn into_inner(self) -> T {
        self.value
    }
}

impl<T: ?Sized> UnsafeCell<T> {
    /// Gets a mutable pointer to the wrapped value.
    ///
    /// This can be cast to a pointer of any kind.
    /// Ensure that the access is unique (no active references, mutable or not)
    /// when casting to `&mut T`, and ensure that there are no mutations
    /// or mutable aliases going on when casting to `&T`
    ///
    /// # Examples
    ///
    /// ```
    /// use std::cell::UnsafeCell;
    ///
    /// let uc = UnsafeCell::new(5);
    ///
    /// let five = uc.get();
    /// ```
    #[inline(always)]
    #[stable(feature = "rust1", since = "1.0.0")]
    #[rustc_const_stable(feature = "const_unsafecell_get", since = "1.32.0")]
    pub const fn get(&self) -> *mut T {
        // We can just cast the pointer from `UnsafeCell<T>` to `T` because of
        // #[repr(transparent)]. This exploits libstd's special status, there is
        // no guarantee for user code that this will work in future versions of the compiler!
        self as *const UnsafeCell<T> as *const T as *mut T
    }

    /// Returns a mutable reference to the underlying data.
    ///
    /// This call borrows the `UnsafeCell` mutably (at compile-time) which
    /// guarantees that we possess the only reference.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::cell::UnsafeCell;
    ///
    /// let mut c = UnsafeCell::new(5);
    /// *c.get_mut() += 1;
    ///
    /// assert_eq!(*c.get_mut(), 6);
    /// ```
    #[inline(always)]
    #[stable(feature = "unsafe_cell_get_mut", since = "1.50.0")]
    #[rustc_const_unstable(feature = "const_unsafecell_get_mut", issue = "88836")]
    pub const fn get_mut(&mut self) -> &mut T {
        &mut self.value
    }

    /// Gets a mutable pointer to the wrapped value.
    /// The difference from [`get`] is that this function accepts a raw pointer,
    /// which is useful to avoid the creation of temporary references.
    ///
    /// The result can be cast to a pointer of any kind.
    /// Ensure that the access is unique (no active references, mutable or not)
    /// when casting to `&mut T`, and ensure that there are no mutations
    /// or mutable aliases going on when casting to `&T`.
    ///
    /// [`get`]: UnsafeCell::get()
    ///
    /// # Examples
    ///
    /// Gradual initialization of an `UnsafeCell` requires `raw_get`, as
    /// calling `get` would require creating a reference to uninitialized data:
    ///
    /// ```
    /// use std::cell::UnsafeCell;
    /// use std::mem::MaybeUninit;
    ///
    /// let m = MaybeUninit::<UnsafeCell<i32>>::uninit();
    /// unsafe { UnsafeCell::raw_get(m.as_ptr()).write(5); }
    /// let uc = unsafe { m.assume_init() };
    ///
    /// assert_eq!(uc.into_inner(), 5);
    /// ```
    #[inline(always)]
    #[stable(feature = "unsafe_cell_raw_get", since = "1.56.0")]
    #[rustc_const_stable(feature = "unsafe_cell_raw_get", since = "1.56.0")]
    pub const fn raw_get(this: *const Self) -> *mut T {
        // We can just cast the pointer from `UnsafeCell<T>` to `T` because of
        // #[repr(transparent)]. This exploits libstd's special status, there is
        // no guarantee for user code that this will work in future versions of the compiler!
        this as *const T as *mut T
    }
}

#[stable(feature = "unsafe_cell_default", since = "1.10.0")]
impl<T: Default> Default for UnsafeCell<T> {
    /// Creates an `UnsafeCell`, with the `Default` value for T.
    fn default() -> UnsafeCell<T> {
        UnsafeCell::new(Default::default())
    }
}

#[stable(feature = "cell_from", since = "1.12.0")]
#[rustc_const_unstable(feature = "const_convert", issue = "88674")]
impl<T> const From<T> for UnsafeCell<T> {
    /// Creates a new `UnsafeCell<T>` containing the given value.
    fn from(t: T) -> UnsafeCell<T> {
        UnsafeCell::new(t)
    }
}

#[unstable(feature = "coerce_unsized", issue = "27732")]
impl<T: CoerceUnsized<U>, U> CoerceUnsized<UnsafeCell<U>> for UnsafeCell<T> {}

#[allow(unused)]
fn assert_coerce_unsized(a: UnsafeCell<&i32>, b: Cell<&i32>, c: RefCell<&i32>) {
    let _: UnsafeCell<&dyn Send> = a;
    let _: Cell<&dyn Send> = b;
    let _: RefCell<&dyn Send> = c;
}