pub struct String { /* private fields */ }
Expand description
A UTF-8–encoded, growable string.
The String
type is the most common string type that has ownership over the
contents of the string. It has a close relationship with its borrowed
counterpart, the primitive str
.
Examples
You can create a String
from a literal string with String::from
:
let hello = String::from("Hello, world!");
RunYou can append a char
to a String
with the push
method, and
append a &str
with the push_str
method:
let mut hello = String::from("Hello, ");
hello.push('w');
hello.push_str("orld!");
RunIf you have a vector of UTF-8 bytes, you can create a String
from it with
the from_utf8
method:
// some bytes, in a vector
let sparkle_heart = vec![240, 159, 146, 150];
// We know these bytes are valid, so we'll use `unwrap()`.
let sparkle_heart = String::from_utf8(sparkle_heart).unwrap();
assert_eq!("💖", sparkle_heart);
RunUTF-8
String
s are always valid UTF-8. This has a few implications, the first of
which is that if you need a non-UTF-8 string, consider OsString
. It is
similar, but without the UTF-8 constraint. The second implication is that
you cannot index into a String
:
let s = "hello";
println!("The first letter of s is {}", s[0]); // ERROR!!!
RunIndexing is intended to be a constant-time operation, but UTF-8 encoding
does not allow us to do this. Furthermore, it’s not clear what sort of
thing the index should return: a byte, a codepoint, or a grapheme cluster.
The bytes
and chars
methods return iterators over the first
two, respectively.
Deref
String
implements Deref<Target = str>
, and so inherits all of str
’s
methods. In addition, this means that you can pass a String
to a
function which takes a &str
by using an ampersand (&
):
fn takes_str(s: &str) { }
let s = String::from("Hello");
takes_str(&s);
RunThis will create a &str
from the String
and pass it in. This
conversion is very inexpensive, and so generally, functions will accept
&str
s as arguments unless they need a String
for some specific
reason.
In certain cases Rust doesn’t have enough information to make this
conversion, known as Deref
coercion. In the following example a string
slice &'a str
implements the trait TraitExample
, and the function
example_func
takes anything that implements the trait. In this case Rust
would need to make two implicit conversions, which Rust doesn’t have the
means to do. For that reason, the following example will not compile.
trait TraitExample {}
impl<'a> TraitExample for &'a str {}
fn example_func<A: TraitExample>(example_arg: A) {}
let example_string = String::from("example_string");
example_func(&example_string);
RunThere are two options that would work instead. The first would be to
change the line example_func(&example_string);
to
example_func(example_string.as_str());
, using the method as_str()
to explicitly extract the string slice containing the string. The second
way changes example_func(&example_string);
to
example_func(&*example_string);
. In this case we are dereferencing a
String
to a str
, then referencing the str
back to
&str
. The second way is more idiomatic, however both work to do the
conversion explicitly rather than relying on the implicit conversion.
Representation
A String
is made up of three components: a pointer to some bytes, a
length, and a capacity. The pointer points to an internal buffer String
uses to store its data. The length is the number of bytes currently stored
in the buffer, and the capacity is the size of the buffer in bytes. As such,
the length will always be less than or equal to the capacity.
This buffer is always stored on the heap.
You can look at these with the as_ptr
, len
, and capacity
methods:
use std::mem;
let story = String::from("Once upon a time...");
// Prevent automatically dropping the String's data
let mut story = mem::ManuallyDrop::new(story);
let ptr = story.as_mut_ptr();
let len = story.len();
let capacity = story.capacity();
// story has nineteen bytes
assert_eq!(19, len);
// We can re-build a String out of ptr, len, and capacity. This is all
// unsafe because we are responsible for making sure the components are
// valid:
let s = unsafe { String::from_raw_parts(ptr, len, capacity) } ;
assert_eq!(String::from("Once upon a time..."), s);
RunIf a String
has enough capacity, adding elements to it will not
re-allocate. For example, consider this program:
let mut s = String::new();
println!("{}", s.capacity());
for _ in 0..5 {
s.push_str("hello");
println!("{}", s.capacity());
}
RunThis will output the following:
0
5
10
20
20
40
At first, we have no memory allocated at all, but as we append to the
string, it increases its capacity appropriately. If we instead use the
with_capacity
method to allocate the correct capacity initially:
let mut s = String::with_capacity(25);
println!("{}", s.capacity());
for _ in 0..5 {
s.push_str("hello");
println!("{}", s.capacity());
}
RunWe end up with a different output:
25
25
25
25
25
25
Here, there’s no need to allocate more memory inside the loop.
Implementations
sourceimpl String
impl String
const: 1.39.0 · sourcepub const fn new() -> String
pub const fn new() -> String
Creates a new empty String
.
Given that the String
is empty, this will not allocate any initial
buffer. While that means that this initial operation is very
inexpensive, it may cause excessive allocation later when you add
data. If you have an idea of how much data the String
will hold,
consider the with_capacity
method to prevent excessive
re-allocation.
Examples
Basic usage:
let s = String::new();
Runsourcepub fn with_capacity(capacity: usize) -> String
pub fn with_capacity(capacity: usize) -> String
Creates a new empty String
with a particular capacity.
String
s have an internal buffer to hold their data. The capacity is
the length of that buffer, and can be queried with the capacity
method. This method creates an empty String
, but one with an initial
buffer that can hold capacity
bytes. This is useful when you may be
appending a bunch of data to the String
, reducing the number of
reallocations it needs to do.
If the given capacity is 0
, no allocation will occur, and this method
is identical to the new
method.
Examples
Basic usage:
let mut s = String::with_capacity(10);
// The String contains no chars, even though it has capacity for more
assert_eq!(s.len(), 0);
// These are all done without reallocating...
let cap = s.capacity();
for _ in 0..10 {
s.push('a');
}
assert_eq!(s.capacity(), cap);
// ...but this may make the string reallocate
s.push('a');
Runsourcepub fn from_utf8(vec: Vec<u8, Global>) -> Result<String, FromUtf8Error>
pub fn from_utf8(vec: Vec<u8, Global>) -> Result<String, FromUtf8Error>
Converts a vector of bytes to a String
.
A string (String
) is made of bytes (u8
), and a vector of bytes
(Vec<u8>
) is made of bytes, so this function converts between the
two. Not all byte slices are valid String
s, however: String
requires that it is valid UTF-8. from_utf8()
checks to ensure that
the bytes are valid UTF-8, and then does the conversion.
If you are sure that the byte slice is valid UTF-8, and you don’t want
to incur the overhead of the validity check, there is an unsafe version
of this function, from_utf8_unchecked
, which has the same behavior
but skips the check.
This method will take care to not copy the vector, for efficiency’s sake.
If you need a &str
instead of a String
, consider
str::from_utf8
.
The inverse of this method is into_bytes
.
Errors
Returns Err
if the slice is not UTF-8 with a description as to why the
provided bytes are not UTF-8. The vector you moved in is also included.
Examples
Basic usage:
// some bytes, in a vector
let sparkle_heart = vec![240, 159, 146, 150];
// We know these bytes are valid, so we'll use `unwrap()`.
let sparkle_heart = String::from_utf8(sparkle_heart).unwrap();
assert_eq!("💖", sparkle_heart);
RunIncorrect bytes:
// some invalid bytes, in a vector
let sparkle_heart = vec![0, 159, 146, 150];
assert!(String::from_utf8(sparkle_heart).is_err());
RunSee the docs for FromUtf8Error
for more details on what you can do
with this error.
sourcepub fn from_utf8_lossy(v: &[u8]) -> Cow<'_, str>
pub fn from_utf8_lossy(v: &[u8]) -> Cow<'_, str>
Converts a slice of bytes to a string, including invalid characters.
Strings are made of bytes (u8
), and a slice of bytes
(&[u8]
) is made of bytes, so this function converts
between the two. Not all byte slices are valid strings, however: strings
are required to be valid UTF-8. During this conversion,
from_utf8_lossy()
will replace any invalid UTF-8 sequences with
U+FFFD REPLACEMENT CHARACTER
, which looks like this: �
If you are sure that the byte slice is valid UTF-8, and you don’t want
to incur the overhead of the conversion, there is an unsafe version
of this function, from_utf8_unchecked
, which has the same behavior
but skips the checks.
This function returns a Cow<'a, str>
. If our byte slice is invalid
UTF-8, then we need to insert the replacement characters, which will
change the size of the string, and hence, require a String
. But if
it’s already valid UTF-8, we don’t need a new allocation. This return
type allows us to handle both cases.
Examples
Basic usage:
// some bytes, in a vector
let sparkle_heart = vec![240, 159, 146, 150];
let sparkle_heart = String::from_utf8_lossy(&sparkle_heart);
assert_eq!("💖", sparkle_heart);
RunIncorrect bytes:
// some invalid bytes
let input = b"Hello \xF0\x90\x80World";
let output = String::from_utf8_lossy(input);
assert_eq!("Hello �World", output);
Runsourcepub fn from_utf16(v: &[u16]) -> Result<String, FromUtf16Error>
pub fn from_utf16(v: &[u16]) -> Result<String, FromUtf16Error>
Decode a UTF-16–encoded vector v
into a String
, returning Err
if v
contains any invalid data.
Examples
Basic usage:
// 𝄞music
let v = &[0xD834, 0xDD1E, 0x006d, 0x0075,
0x0073, 0x0069, 0x0063];
assert_eq!(String::from("𝄞music"),
String::from_utf16(v).unwrap());
// 𝄞mu<invalid>ic
let v = &[0xD834, 0xDD1E, 0x006d, 0x0075,
0xD800, 0x0069, 0x0063];
assert!(String::from_utf16(v).is_err());
Runsourcepub fn from_utf16_lossy(v: &[u16]) -> String
pub fn from_utf16_lossy(v: &[u16]) -> String
Decode a UTF-16–encoded slice v
into a String
, replacing
invalid data with the replacement character (U+FFFD
).
Unlike from_utf8_lossy
which returns a Cow<'a, str>
,
from_utf16_lossy
returns a String
since the UTF-16 to UTF-8
conversion requires a memory allocation.
Examples
Basic usage:
// 𝄞mus<invalid>ic<invalid>
let v = &[0xD834, 0xDD1E, 0x006d, 0x0075,
0x0073, 0xDD1E, 0x0069, 0x0063,
0xD834];
assert_eq!(String::from("𝄞mus\u{FFFD}ic\u{FFFD}"),
String::from_utf16_lossy(v));
Runsourcepub fn into_raw_parts(self) -> (*mut u8, usize, usize)
pub fn into_raw_parts(self) -> (*mut u8, usize, usize)
Decomposes a String
into its raw components.
Returns the raw pointer to the underlying data, the length of
the string (in bytes), and the allocated capacity of the data
(in bytes). These are the same arguments in the same order as
the arguments to from_raw_parts
.
After calling this function, the caller is responsible for the
memory previously managed by the String
. The only way to do
this is to convert the raw pointer, length, and capacity back
into a String
with the from_raw_parts
function, allowing
the destructor to perform the cleanup.
Examples
#![feature(vec_into_raw_parts)]
let s = String::from("hello");
let (ptr, len, cap) = s.into_raw_parts();
let rebuilt = unsafe { String::from_raw_parts(ptr, len, cap) };
assert_eq!(rebuilt, "hello");
Runsourcepub unsafe fn from_raw_parts(
buf: *mut u8,
length: usize,
capacity: usize
) -> String
pub unsafe fn from_raw_parts(
buf: *mut u8,
length: usize,
capacity: usize
) -> String
Creates a new String
from a length, capacity, and pointer.
Safety
This is highly unsafe, due to the number of invariants that aren’t checked:
- The memory at
buf
needs to have been previously allocated by the same allocator the standard library uses, with a required alignment of exactly 1. length
needs to be less than or equal tocapacity
.capacity
needs to be the correct value.- The first
length
bytes atbuf
need to be valid UTF-8.
Violating these may cause problems like corrupting the allocator’s internal data structures.
The ownership of buf
is effectively transferred to the
String
which may then deallocate, reallocate or change the
contents of memory pointed to by the pointer at will. Ensure
that nothing else uses the pointer after calling this
function.
Examples
Basic usage:
use std::mem;
unsafe {
let s = String::from("hello");
// Prevent automatically dropping the String's data
let mut s = mem::ManuallyDrop::new(s);
let ptr = s.as_mut_ptr();
let len = s.len();
let capacity = s.capacity();
let s = String::from_raw_parts(ptr, len, capacity);
assert_eq!(String::from("hello"), s);
}
Runsourcepub unsafe fn from_utf8_unchecked(bytes: Vec<u8, Global>) -> String
pub unsafe fn from_utf8_unchecked(bytes: Vec<u8, Global>) -> String
Converts a vector of bytes to a String
without checking that the
string contains valid UTF-8.
See the safe version, from_utf8
, for more details.
Safety
This function is unsafe because it does not check that the bytes passed
to it are valid UTF-8. If this constraint is violated, it may cause
memory unsafety issues with future users of the String
, as the rest of
the standard library assumes that String
s are valid UTF-8.
Examples
Basic usage:
// some bytes, in a vector
let sparkle_heart = vec![240, 159, 146, 150];
let sparkle_heart = unsafe {
String::from_utf8_unchecked(sparkle_heart)
};
assert_eq!("💖", sparkle_heart);
Runsourcepub fn into_bytes(self) -> Vec<u8, Global>ⓘNotable traits for Vec<u8, A>impl<A: Allocator> Write for Vec<u8, A>
pub fn into_bytes(self) -> Vec<u8, Global>ⓘNotable traits for Vec<u8, A>impl<A: Allocator> Write for Vec<u8, A>
1.7.0 · sourcepub fn as_mut_str(&mut self) -> &mut str
pub fn as_mut_str(&mut self) -> &mut str
sourcepub fn extend_from_within<R>(&mut self, src: R) where
R: RangeBounds<usize>,
🔬 This is a nightly-only experimental API. (string_extend_from_within
)
pub fn extend_from_within<R>(&mut self, src: R) where
R: RangeBounds<usize>,
string_extend_from_within
)Copies elements from src
range to the end of the string.
Panics
Panics if the starting point or end point do not lie on a char
boundary, or if they’re out of bounds.
Examples
#![feature(string_extend_from_within)]
let mut string = String::from("abcde");
string.extend_from_within(2..);
assert_eq!(string, "abcdecde");
string.extend_from_within(..2);
assert_eq!(string, "abcdecdeab");
string.extend_from_within(4..8);
assert_eq!(string, "abcdecdeabecde");
Runsourcepub fn reserve(&mut self, additional: usize)
pub fn reserve(&mut self, additional: usize)
Ensures that this String
’s capacity is at least additional
bytes
larger than its length.
The capacity may be increased by more than additional
bytes if it
chooses, to prevent frequent reallocations.
If you do not want this “at least” behavior, see the reserve_exact
method.
Panics
Panics if the new capacity overflows usize
.
Examples
Basic usage:
let mut s = String::new();
s.reserve(10);
assert!(s.capacity() >= 10);
RunThis might not actually increase the capacity:
let mut s = String::with_capacity(10);
s.push('a');
s.push('b');
// s now has a length of 2 and a capacity of 10
assert_eq!(2, s.len());
assert_eq!(10, s.capacity());
// Since we already have an extra 8 capacity, calling this...
s.reserve(8);
// ... doesn't actually increase.
assert_eq!(10, s.capacity());
Runsourcepub fn reserve_exact(&mut self, additional: usize)
pub fn reserve_exact(&mut self, additional: usize)
Ensures that this String
’s capacity is additional
bytes
larger than its length.
Consider using the reserve
method unless you absolutely know
better than the allocator.
Panics
Panics if the new capacity overflows usize
.
Examples
Basic usage:
let mut s = String::new();
s.reserve_exact(10);
assert!(s.capacity() >= 10);
RunThis might not actually increase the capacity:
let mut s = String::with_capacity(10);
s.push('a');
s.push('b');
// s now has a length of 2 and a capacity of 10
assert_eq!(2, s.len());
assert_eq!(10, s.capacity());
// Since we already have an extra 8 capacity, calling this...
s.reserve_exact(8);
// ... doesn't actually increase.
assert_eq!(10, s.capacity());
Run1.57.0 · sourcepub fn try_reserve(&mut self, additional: usize) -> Result<(), TryReserveError>
pub fn try_reserve(&mut self, additional: usize) -> Result<(), TryReserveError>
Tries to reserve capacity for at least additional
more elements to be inserted
in the given String
. The collection may reserve more space to avoid
frequent reallocations. After calling reserve
, capacity will be
greater than or equal to self.len() + additional
. Does nothing if
capacity is already sufficient.
Errors
If the capacity overflows, or the allocator reports a failure, then an error is returned.
Examples
use std::collections::TryReserveError;
fn process_data(data: &str) -> Result<String, TryReserveError> {
let mut output = String::new();
// Pre-reserve the memory, exiting if we can't
output.try_reserve(data.len())?;
// Now we know this can't OOM in the middle of our complex work
output.push_str(data);
Ok(output)
}
Run1.57.0 · sourcepub fn try_reserve_exact(
&mut self,
additional: usize
) -> Result<(), TryReserveError>
pub fn try_reserve_exact(
&mut self,
additional: usize
) -> Result<(), TryReserveError>
Tries to reserve the minimum capacity for exactly additional
more elements to
be inserted in the given String
. After calling reserve_exact
,
capacity will be greater than or equal to self.len() + additional
.
Does nothing if the capacity is already sufficient.
Note that the allocator may give the collection more space than it
requests. Therefore, capacity can not be relied upon to be precisely
minimal. Prefer try_reserve
if future insertions are expected.
Errors
If the capacity overflows, or the allocator reports a failure, then an error is returned.
Examples
use std::collections::TryReserveError;
fn process_data(data: &str) -> Result<String, TryReserveError> {
let mut output = String::new();
// Pre-reserve the memory, exiting if we can't
output.try_reserve_exact(data.len())?;
// Now we know this can't OOM in the middle of our complex work
output.push_str(data);
Ok(output)
}
Runsourcepub fn shrink_to_fit(&mut self)
pub fn shrink_to_fit(&mut self)
1.56.0 · sourcepub fn shrink_to(&mut self, min_capacity: usize)
pub fn shrink_to(&mut self, min_capacity: usize)
Shrinks the capacity of this String
with a lower bound.
The capacity will remain at least as large as both the length and the supplied value.
If the current capacity is less than the lower limit, this is a no-op.
Examples
let mut s = String::from("foo");
s.reserve(100);
assert!(s.capacity() >= 100);
s.shrink_to(10);
assert!(s.capacity() >= 10);
s.shrink_to(0);
assert!(s.capacity() >= 3);
Runsourcepub fn as_bytes(&self) -> &[u8]ⓘNotable traits for &[u8]impl Read for &[u8]impl Write for &mut [u8]
pub fn as_bytes(&self) -> &[u8]ⓘNotable traits for &[u8]impl Read for &[u8]impl Write for &mut [u8]
sourcepub fn truncate(&mut self, new_len: usize)
pub fn truncate(&mut self, new_len: usize)
Shortens this String
to the specified length.
If new_len
is greater than the string’s current length, this has no
effect.
Note that this method has no effect on the allocated capacity of the string
Panics
Panics if new_len
does not lie on a char
boundary.
Examples
Basic usage:
let mut s = String::from("hello");
s.truncate(2);
assert_eq!("he", s);
Runsourcepub fn remove(&mut self, idx: usize) -> char
pub fn remove(&mut self, idx: usize) -> char
Removes a char
from this String
at a byte position and returns it.
This is an O(n) operation, as it requires copying every element in the buffer.
Panics
Panics if idx
is larger than or equal to the String
’s length,
or if it does not lie on a char
boundary.
Examples
Basic usage:
let mut s = String::from("foo");
assert_eq!(s.remove(0), 'f');
assert_eq!(s.remove(1), 'o');
assert_eq!(s.remove(0), 'o');
Runsourcepub fn remove_matches<P>(&'a mut self, pat: P) where
P: for<'x> Pattern<'x>,
pub fn remove_matches<P>(&'a mut self, pat: P) where
P: for<'x> Pattern<'x>,
Remove all matches of pattern pat
in the String
.
Examples
#![feature(string_remove_matches)]
let mut s = String::from("Trees are not green, the sky is not blue.");
s.remove_matches("not ");
assert_eq!("Trees are green, the sky is blue.", s);
RunMatches will be detected and removed iteratively, so in cases where patterns overlap, only the first pattern will be removed:
#![feature(string_remove_matches)]
let mut s = String::from("banana");
s.remove_matches("ana");
assert_eq!("bna", s);
Run1.26.0 · sourcepub fn retain<F>(&mut self, f: F) where
F: FnMut(char) -> bool,
pub fn retain<F>(&mut self, f: F) where
F: FnMut(char) -> bool,
Retains only the characters specified by the predicate.
In other words, remove all characters c
such that f(c)
returns false
.
This method operates in place, visiting each character exactly once in the
original order, and preserves the order of the retained characters.
Examples
let mut s = String::from("f_o_ob_ar");
s.retain(|c| c != '_');
assert_eq!(s, "foobar");
RunBecause the elements are visited exactly once in the original order, external state may be used to decide which elements to keep.
let mut s = String::from("abcde");
let keep = [false, true, true, false, true];
let mut iter = keep.iter();
s.retain(|_| *iter.next().unwrap());
assert_eq!(s, "bce");
Runsourcepub fn insert(&mut self, idx: usize, ch: char)
pub fn insert(&mut self, idx: usize, ch: char)
Inserts a character into this String
at a byte position.
This is an O(n) operation as it requires copying every element in the buffer.
Panics
Panics if idx
is larger than the String
’s length, or if it does not
lie on a char
boundary.
Examples
Basic usage:
let mut s = String::with_capacity(3);
s.insert(0, 'f');
s.insert(1, 'o');
s.insert(2, 'o');
assert_eq!("foo", s);
Run1.16.0 · sourcepub fn insert_str(&mut self, idx: usize, string: &str)
pub fn insert_str(&mut self, idx: usize, string: &str)
Inserts a string slice into this String
at a byte position.
This is an O(n) operation as it requires copying every element in the buffer.
Panics
Panics if idx
is larger than the String
’s length, or if it does not
lie on a char
boundary.
Examples
Basic usage:
let mut s = String::from("bar");
s.insert_str(0, "foo");
assert_eq!("foobar", s);
Runsourcepub unsafe fn as_mut_vec(&mut self) -> &mut Vec<u8, Global>ⓘNotable traits for Vec<u8, A>impl<A: Allocator> Write for Vec<u8, A>
pub unsafe fn as_mut_vec(&mut self) -> &mut Vec<u8, Global>ⓘNotable traits for Vec<u8, A>impl<A: Allocator> Write for Vec<u8, A>
Returns a mutable reference to the contents of this String
.
Safety
This function is unsafe because the returned &mut Vec
allows writing
bytes which are not valid UTF-8. If this constraint is violated, using
the original String
after dropping the &mut Vec
may violate memory
safety, as the rest of the standard library assumes that String
s are
valid UTF-8.
Examples
Basic usage:
let mut s = String::from("hello");
unsafe {
let vec = s.as_mut_vec();
assert_eq!(&[104, 101, 108, 108, 111][..], &vec[..]);
vec.reverse();
}
assert_eq!(s, "olleh");
Runsourcepub fn len(&self) -> usize
pub fn len(&self) -> usize
Returns the length of this String
, in bytes, not char
s or
graphemes. In other words, it might not be what a human considers the
length of the string.
Examples
Basic usage:
let a = String::from("foo");
assert_eq!(a.len(), 3);
let fancy_f = String::from("ƒoo");
assert_eq!(fancy_f.len(), 4);
assert_eq!(fancy_f.chars().count(), 3);
Run1.16.0 · sourcepub fn split_off(&mut self, at: usize) -> String
pub fn split_off(&mut self, at: usize) -> String
Splits the string into two at the given byte index.
Returns a newly allocated String
. self
contains bytes [0, at)
, and
the returned String
contains bytes [at, len)
. at
must be on the
boundary of a UTF-8 code point.
Note that the capacity of self
does not change.
Panics
Panics if at
is not on a UTF-8
code point boundary, or if it is beyond the last
code point of the string.
Examples
let mut hello = String::from("Hello, World!");
let world = hello.split_off(7);
assert_eq!(hello, "Hello, ");
assert_eq!(world, "World!");
Run1.6.0 · sourcepub fn drain<R>(&mut self, range: R) -> Drain<'_>ⓘNotable traits for Drain<'_>impl<'_> Iterator for Drain<'_> type Item = char;
where
R: RangeBounds<usize>,
pub fn drain<R>(&mut self, range: R) -> Drain<'_>ⓘNotable traits for Drain<'_>impl<'_> Iterator for Drain<'_> type Item = char;
where
R: RangeBounds<usize>,
Creates a draining iterator that removes the specified range in the String
and yields the removed chars
.
Note: The element range is removed even if the iterator is not consumed until the end.
Panics
Panics if the starting point or end point do not lie on a char
boundary, or if they’re out of bounds.
Examples
Basic usage:
let mut s = String::from("α is alpha, β is beta");
let beta_offset = s.find('β').unwrap_or(s.len());
// Remove the range up until the β from the string
let t: String = s.drain(..beta_offset).collect();
assert_eq!(t, "α is alpha, ");
assert_eq!(s, "β is beta");
// A full range clears the string
s.drain(..);
assert_eq!(s, "");
Run1.27.0 · sourcepub fn replace_range<R>(&mut self, range: R, replace_with: &str) where
R: RangeBounds<usize>,
pub fn replace_range<R>(&mut self, range: R, replace_with: &str) where
R: RangeBounds<usize>,
Removes the specified range in the string, and replaces it with the given string. The given string doesn’t need to be the same length as the range.
Panics
Panics if the starting point or end point do not lie on a char
boundary, or if they’re out of bounds.
Examples
Basic usage:
let mut s = String::from("α is alpha, β is beta");
let beta_offset = s.find('β').unwrap_or(s.len());
// Replace the range up until the β from the string
s.replace_range(..beta_offset, "Α is capital alpha; ");
assert_eq!(s, "Α is capital alpha; β is beta");
Run1.4.0 · sourcepub fn into_boxed_str(self) -> Box<str, Global>ⓘNotable traits for Box<F, A>impl<F, A> Future for Box<F, A> where
F: Future + Unpin + ?Sized,
A: Allocator + 'static, type Output = <F as Future>::Output;impl<I, A> Iterator for Box<I, A> where
I: Iterator + ?Sized,
A: Allocator, type Item = <I as Iterator>::Item;impl<R: Read + ?Sized> Read for Box<R>impl<W: Write + ?Sized> Write for Box<W>
pub fn into_boxed_str(self) -> Box<str, Global>ⓘNotable traits for Box<F, A>impl<F, A> Future for Box<F, A> where
F: Future + Unpin + ?Sized,
A: Allocator + 'static, type Output = <F as Future>::Output;impl<I, A> Iterator for Box<I, A> where
I: Iterator + ?Sized,
A: Allocator, type Item = <I as Iterator>::Item;impl<R: Read + ?Sized> Read for Box<R>impl<W: Write + ?Sized> Write for Box<W>
F: Future + Unpin + ?Sized,
A: Allocator + 'static, type Output = <F as Future>::Output;impl<I, A> Iterator for Box<I, A> where
I: Iterator + ?Sized,
A: Allocator, type Item = <I as Iterator>::Item;impl<R: Read + ?Sized> Read for Box<R>impl<W: Write + ?Sized> Write for Box<W>
Methods from Deref<Target = str>
sourcepub fn len(&self) -> usize
pub fn len(&self) -> usize
Returns the length of self
.
This length is in bytes, not char
s or graphemes. In other words,
it might not be what a human considers the length of the string.
Examples
Basic usage:
let len = "foo".len();
assert_eq!(3, len);
assert_eq!("ƒoo".len(), 4); // fancy f!
assert_eq!("ƒoo".chars().count(), 3);
Run1.9.0 · sourcepub fn is_char_boundary(&self, index: usize) -> bool
pub fn is_char_boundary(&self, index: usize) -> bool
Checks that index
-th byte is the first byte in a UTF-8 code point
sequence or the end of the string.
The start and end of the string (when index == self.len()
) are
considered to be boundaries.
Returns false
if index
is greater than self.len()
.
Examples
let s = "Löwe 老虎 Léopard";
assert!(s.is_char_boundary(0));
// start of `老`
assert!(s.is_char_boundary(6));
assert!(s.is_char_boundary(s.len()));
// second byte of `ö`
assert!(!s.is_char_boundary(2));
// third byte of `老`
assert!(!s.is_char_boundary(8));
Runsourcepub fn as_bytes(&self) -> &[u8]ⓘNotable traits for &[u8]impl Read for &[u8]impl Write for &mut [u8]
pub fn as_bytes(&self) -> &[u8]ⓘNotable traits for &[u8]impl Read for &[u8]impl Write for &mut [u8]
1.20.0 · sourcepub unsafe fn as_bytes_mut(&mut self) -> &mut [u8]ⓘNotable traits for &[u8]impl Read for &[u8]impl Write for &mut [u8]
pub unsafe fn as_bytes_mut(&mut self) -> &mut [u8]ⓘNotable traits for &[u8]impl Read for &[u8]impl Write for &mut [u8]
Converts a mutable string slice to a mutable byte slice.
Safety
The caller must ensure that the content of the slice is valid UTF-8
before the borrow ends and the underlying str
is used.
Use of a str
whose contents are not valid UTF-8 is undefined behavior.
Examples
Basic usage:
let mut s = String::from("Hello");
let bytes = unsafe { s.as_bytes_mut() };
assert_eq!(b"Hello", bytes);
RunMutability:
let mut s = String::from("🗻∈🌏");
unsafe {
let bytes = s.as_bytes_mut();
bytes[0] = 0xF0;
bytes[1] = 0x9F;
bytes[2] = 0x8D;
bytes[3] = 0x94;
}
assert_eq!("🍔∈🌏", s);
Runsourcepub fn as_ptr(&self) -> *const u8
pub fn as_ptr(&self) -> *const u8
Converts a string slice to a raw pointer.
As string slices are a slice of bytes, the raw pointer points to a
u8
. This pointer will be pointing to the first byte of the string
slice.
The caller must ensure that the returned pointer is never written to.
If you need to mutate the contents of the string slice, use as_mut_ptr
.
Examples
Basic usage:
let s = "Hello";
let ptr = s.as_ptr();
Run1.36.0 · sourcepub fn as_mut_ptr(&mut self) -> *mut u8
pub fn as_mut_ptr(&mut self) -> *mut u8
Converts a mutable string slice to a raw pointer.
As string slices are a slice of bytes, the raw pointer points to a
u8
. This pointer will be pointing to the first byte of the string
slice.
It is your responsibility to make sure that the string slice only gets modified in a way that it remains valid UTF-8.
1.20.0 · sourcepub fn get<I>(&self, i: I) -> Option<&<I as SliceIndex<str>>::Output> where
I: SliceIndex<str>,
pub fn get<I>(&self, i: I) -> Option<&<I as SliceIndex<str>>::Output> where
I: SliceIndex<str>,
Returns a subslice of str
.
This is the non-panicking alternative to indexing the str
. Returns
None
whenever equivalent indexing operation would panic.
Examples
let v = String::from("🗻∈🌏");
assert_eq!(Some("🗻"), v.get(0..4));
// indices not on UTF-8 sequence boundaries
assert!(v.get(1..).is_none());
assert!(v.get(..8).is_none());
// out of bounds
assert!(v.get(..42).is_none());
Run1.20.0 · sourcepub fn get_mut<I>(
&mut self,
i: I
) -> Option<&mut <I as SliceIndex<str>>::Output> where
I: SliceIndex<str>,
pub fn get_mut<I>(
&mut self,
i: I
) -> Option<&mut <I as SliceIndex<str>>::Output> where
I: SliceIndex<str>,
Returns a mutable subslice of str
.
This is the non-panicking alternative to indexing the str
. Returns
None
whenever equivalent indexing operation would panic.
Examples
let mut v = String::from("hello");
// correct length
assert!(v.get_mut(0..5).is_some());
// out of bounds
assert!(v.get_mut(..42).is_none());
assert_eq!(Some("he"), v.get_mut(0..2).map(|v| &*v));
assert_eq!("hello", v);
{
let s = v.get_mut(0..2);
let s = s.map(|s| {
s.make_ascii_uppercase();
&*s
});
assert_eq!(Some("HE"), s);
}
assert_eq!("HEllo", v);
Run1.20.0 · sourcepub unsafe fn get_unchecked<I>(&self, i: I) -> &<I as SliceIndex<str>>::Output where
I: SliceIndex<str>,
pub unsafe fn get_unchecked<I>(&self, i: I) -> &<I as SliceIndex<str>>::Output where
I: SliceIndex<str>,
Returns an unchecked subslice of str
.
This is the unchecked alternative to indexing the str
.
Safety
Callers of this function are responsible that these preconditions are satisfied:
- The starting index must not exceed the ending index;
- Indexes must be within bounds of the original slice;
- Indexes must lie on UTF-8 sequence boundaries.
Failing that, the returned string slice may reference invalid memory or
violate the invariants communicated by the str
type.
Examples
let v = "🗻∈🌏";
unsafe {
assert_eq!("🗻", v.get_unchecked(0..4));
assert_eq!("∈", v.get_unchecked(4..7));
assert_eq!("🌏", v.get_unchecked(7..11));
}
Run1.20.0 · sourcepub unsafe fn get_unchecked_mut<I>(
&mut self,
i: I
) -> &mut <I as SliceIndex<str>>::Output where
I: SliceIndex<str>,
pub unsafe fn get_unchecked_mut<I>(
&mut self,
i: I
) -> &mut <I as SliceIndex<str>>::Output where
I: SliceIndex<str>,
Returns a mutable, unchecked subslice of str
.
This is the unchecked alternative to indexing the str
.
Safety
Callers of this function are responsible that these preconditions are satisfied:
- The starting index must not exceed the ending index;
- Indexes must be within bounds of the original slice;
- Indexes must lie on UTF-8 sequence boundaries.
Failing that, the returned string slice may reference invalid memory or
violate the invariants communicated by the str
type.
Examples
let mut v = String::from("🗻∈🌏");
unsafe {
assert_eq!("🗻", v.get_unchecked_mut(0..4));
assert_eq!("∈", v.get_unchecked_mut(4..7));
assert_eq!("🌏", v.get_unchecked_mut(7..11));
}
Runsourcepub unsafe fn slice_unchecked(&self, begin: usize, end: usize) -> &str
👎 Deprecated since 1.29.0: use get_unchecked(begin..end)
instead
pub unsafe fn slice_unchecked(&self, begin: usize, end: usize) -> &str
use get_unchecked(begin..end)
instead
Creates a string slice from another string slice, bypassing safety checks.
This is generally not recommended, use with caution! For a safe
alternative see str
and Index
.
This new slice goes from begin
to end
, including begin
but
excluding end
.
To get a mutable string slice instead, see the
slice_mut_unchecked
method.
Safety
Callers of this function are responsible that three preconditions are satisfied:
begin
must not exceedend
.begin
andend
must be byte positions within the string slice.begin
andend
must lie on UTF-8 sequence boundaries.
Examples
Basic usage:
let s = "Löwe 老虎 Léopard";
unsafe {
assert_eq!("Löwe 老虎 Léopard", s.slice_unchecked(0, 21));
}
let s = "Hello, world!";
unsafe {
assert_eq!("world", s.slice_unchecked(7, 12));
}
Run1.5.0 · sourcepub unsafe fn slice_mut_unchecked(
&mut self,
begin: usize,
end: usize
) -> &mut str
👎 Deprecated since 1.29.0: use get_unchecked_mut(begin..end)
instead
pub unsafe fn slice_mut_unchecked(
&mut self,
begin: usize,
end: usize
) -> &mut str
use get_unchecked_mut(begin..end)
instead
Creates a string slice from another string slice, bypassing safety
checks.
This is generally not recommended, use with caution! For a safe
alternative see str
and IndexMut
.
This new slice goes from begin
to end
, including begin
but
excluding end
.
To get an immutable string slice instead, see the
slice_unchecked
method.
Safety
Callers of this function are responsible that three preconditions are satisfied:
begin
must not exceedend
.begin
andend
must be byte positions within the string slice.begin
andend
must lie on UTF-8 sequence boundaries.
1.4.0 · sourcepub fn split_at(&self, mid: usize) -> (&str, &str)
pub fn split_at(&self, mid: usize) -> (&str, &str)
Divide one string slice into two at an index.
The argument, mid
, should be a byte offset from the start of the
string. It must also be on the boundary of a UTF-8 code point.
The two slices returned go from the start of the string slice to mid
,
and from mid
to the end of the string slice.
To get mutable string slices instead, see the split_at_mut
method.
Panics
Panics if mid
is not on a UTF-8 code point boundary, or if it is
past the end of the last code point of the string slice.
Examples
Basic usage:
let s = "Per Martin-Löf";
let (first, last) = s.split_at(3);
assert_eq!("Per", first);
assert_eq!(" Martin-Löf", last);
Run1.4.0 · sourcepub fn split_at_mut(&mut self, mid: usize) -> (&mut str, &mut str)
pub fn split_at_mut(&mut self, mid: usize) -> (&mut str, &mut str)
Divide one mutable string slice into two at an index.
The argument, mid
, should be a byte offset from the start of the
string. It must also be on the boundary of a UTF-8 code point.
The two slices returned go from the start of the string slice to mid
,
and from mid
to the end of the string slice.
To get immutable string slices instead, see the split_at
method.
Panics
Panics if mid
is not on a UTF-8 code point boundary, or if it is
past the end of the last code point of the string slice.
Examples
Basic usage:
let mut s = "Per Martin-Löf".to_string();
{
let (first, last) = s.split_at_mut(3);
first.make_ascii_uppercase();
assert_eq!("PER", first);
assert_eq!(" Martin-Löf", last);
}
assert_eq!("PER Martin-Löf", s);
Runsourcepub fn chars(&self) -> Chars<'_>ⓘNotable traits for Chars<'a>impl<'a> Iterator for Chars<'a> type Item = char;
pub fn chars(&self) -> Chars<'_>ⓘNotable traits for Chars<'a>impl<'a> Iterator for Chars<'a> type Item = char;
Returns an iterator over the char
s of a string slice.
As a string slice consists of valid UTF-8, we can iterate through a
string slice by char
. This method returns such an iterator.
It’s important to remember that char
represents a Unicode Scalar
Value, and might not match your idea of what a ‘character’ is. Iteration
over grapheme clusters may be what you actually want. This functionality
is not provided by Rust’s standard library, check crates.io instead.
Examples
Basic usage:
let word = "goodbye";
let count = word.chars().count();
assert_eq!(7, count);
let mut chars = word.chars();
assert_eq!(Some('g'), chars.next());
assert_eq!(Some('o'), chars.next());
assert_eq!(Some('o'), chars.next());
assert_eq!(Some('d'), chars.next());
assert_eq!(Some('b'), chars.next());
assert_eq!(Some('y'), chars.next());
assert_eq!(Some('e'), chars.next());
assert_eq!(None, chars.next());
RunRemember, char
s might not match your intuition about characters:
let y = "y̆";
let mut chars = y.chars();
assert_eq!(Some('y'), chars.next()); // not 'y̆'
assert_eq!(Some('\u{0306}'), chars.next());
assert_eq!(None, chars.next());
Runsourcepub fn char_indices(&self) -> CharIndices<'_>ⓘNotable traits for CharIndices<'a>impl<'a> Iterator for CharIndices<'a> type Item = (usize, char);
pub fn char_indices(&self) -> CharIndices<'_>ⓘNotable traits for CharIndices<'a>impl<'a> Iterator for CharIndices<'a> type Item = (usize, char);
Returns an iterator over the char
s of a string slice, and their
positions.
As a string slice consists of valid UTF-8, we can iterate through a
string slice by char
. This method returns an iterator of both
these char
s, as well as their byte positions.
The iterator yields tuples. The position is first, the char
is
second.
Examples
Basic usage:
let word = "goodbye";
let count = word.char_indices().count();
assert_eq!(7, count);
let mut char_indices = word.char_indices();
assert_eq!(Some((0, 'g')), char_indices.next());
assert_eq!(Some((1, 'o')), char_indices.next());
assert_eq!(Some((2, 'o')), char_indices.next());
assert_eq!(Some((3, 'd')), char_indices.next());
assert_eq!(Some((4, 'b')), char_indices.next());
assert_eq!(Some((5, 'y')), char_indices.next());
assert_eq!(Some((6, 'e')), char_indices.next());
assert_eq!(None, char_indices.next());
RunRemember, char
s might not match your intuition about characters:
let yes = "y̆es";
let mut char_indices = yes.char_indices();
assert_eq!(Some((0, 'y')), char_indices.next()); // not (0, 'y̆')
assert_eq!(Some((1, '\u{0306}')), char_indices.next());
// note the 3 here - the last character took up two bytes
assert_eq!(Some((3, 'e')), char_indices.next());
assert_eq!(Some((4, 's')), char_indices.next());
assert_eq!(None, char_indices.next());
Runsourcepub fn bytes(&self) -> Bytes<'_>ⓘNotable traits for Bytes<'_>impl<'_> Iterator for Bytes<'_> type Item = u8;
pub fn bytes(&self) -> Bytes<'_>ⓘNotable traits for Bytes<'_>impl<'_> Iterator for Bytes<'_> type Item = u8;
An iterator over the bytes of a string slice.
As a string slice consists of a sequence of bytes, we can iterate through a string slice by byte. This method returns such an iterator.
Examples
Basic usage:
let mut bytes = "bors".bytes();
assert_eq!(Some(b'b'), bytes.next());
assert_eq!(Some(b'o'), bytes.next());
assert_eq!(Some(b'r'), bytes.next());
assert_eq!(Some(b's'), bytes.next());
assert_eq!(None, bytes.next());
Run1.1.0 · sourcepub fn split_whitespace(&self) -> SplitWhitespace<'_>ⓘNotable traits for SplitWhitespace<'a>impl<'a> Iterator for SplitWhitespace<'a> type Item = &'a str;
pub fn split_whitespace(&self) -> SplitWhitespace<'_>ⓘNotable traits for SplitWhitespace<'a>impl<'a> Iterator for SplitWhitespace<'a> type Item = &'a str;
Splits a string slice by whitespace.
The iterator returned will return string slices that are sub-slices of the original string slice, separated by any amount of whitespace.
‘Whitespace’ is defined according to the terms of the Unicode Derived
Core Property White_Space
. If you only want to split on ASCII whitespace
instead, use split_ascii_whitespace
.
Examples
Basic usage:
let mut iter = "A few words".split_whitespace();
assert_eq!(Some("A"), iter.next());
assert_eq!(Some("few"), iter.next());
assert_eq!(Some("words"), iter.next());
assert_eq!(None, iter.next());
RunAll kinds of whitespace are considered:
let mut iter = " Mary had\ta\u{2009}little \n\t lamb".split_whitespace();
assert_eq!(Some("Mary"), iter.next());
assert_eq!(Some("had"), iter.next());
assert_eq!(Some("a"), iter.next());
assert_eq!(Some("little"), iter.next());
assert_eq!(Some("lamb"), iter.next());
assert_eq!(None, iter.next());
Run1.34.0 · sourcepub fn split_ascii_whitespace(&self) -> SplitAsciiWhitespace<'_>ⓘNotable traits for SplitAsciiWhitespace<'a>impl<'a> Iterator for SplitAsciiWhitespace<'a> type Item = &'a str;
pub fn split_ascii_whitespace(&self) -> SplitAsciiWhitespace<'_>ⓘNotable traits for SplitAsciiWhitespace<'a>impl<'a> Iterator for SplitAsciiWhitespace<'a> type Item = &'a str;
Splits a string slice by ASCII whitespace.
The iterator returned will return string slices that are sub-slices of the original string slice, separated by any amount of ASCII whitespace.
To split by Unicode Whitespace
instead, use split_whitespace
.
Examples
Basic usage:
let mut iter = "A few words".split_ascii_whitespace();
assert_eq!(Some("A"), iter.next());
assert_eq!(Some("few"), iter.next());
assert_eq!(Some("words"), iter.next());
assert_eq!(None, iter.next());
RunAll kinds of ASCII whitespace are considered:
let mut iter = " Mary had\ta little \n\t lamb".split_ascii_whitespace();
assert_eq!(Some("Mary"), iter.next());
assert_eq!(Some("had"), iter.next());
assert_eq!(Some("a"), iter.next());
assert_eq!(Some("little"), iter.next());
assert_eq!(Some("lamb"), iter.next());
assert_eq!(None, iter.next());
Runsourcepub fn lines(&self) -> Lines<'_>ⓘNotable traits for Lines<'a>impl<'a> Iterator for Lines<'a> type Item = &'a str;
pub fn lines(&self) -> Lines<'_>ⓘNotable traits for Lines<'a>impl<'a> Iterator for Lines<'a> type Item = &'a str;
An iterator over the lines of a string, as string slices.
Lines are ended with either a newline (\n
) or a carriage return with
a line feed (\r\n
).
The final line ending is optional. A string that ends with a final line ending will return the same lines as an otherwise identical string without a final line ending.
Examples
Basic usage:
let text = "foo\r\nbar\n\nbaz\n";
let mut lines = text.lines();
assert_eq!(Some("foo"), lines.next());
assert_eq!(Some("bar"), lines.next());
assert_eq!(Some(""), lines.next());
assert_eq!(Some("baz"), lines.next());
assert_eq!(None, lines.next());
RunThe final line ending isn’t required:
let text = "foo\nbar\n\r\nbaz";
let mut lines = text.lines();
assert_eq!(Some("foo"), lines.next());
assert_eq!(Some("bar"), lines.next());
assert_eq!(Some(""), lines.next());
assert_eq!(Some("baz"), lines.next());
assert_eq!(None, lines.next());
Runsourcepub fn lines_any(&self) -> LinesAny<'_>ⓘNotable traits for LinesAny<'a>impl<'a> Iterator for LinesAny<'a> type Item = &'a str;
👎 Deprecated since 1.4.0: use lines() instead now
pub fn lines_any(&self) -> LinesAny<'_>ⓘNotable traits for LinesAny<'a>impl<'a> Iterator for LinesAny<'a> type Item = &'a str;
use lines() instead now
An iterator over the lines of a string.
1.8.0 · sourcepub fn encode_utf16(&self) -> EncodeUtf16<'_>ⓘNotable traits for EncodeUtf16<'a>impl<'a> Iterator for EncodeUtf16<'a> type Item = u16;
pub fn encode_utf16(&self) -> EncodeUtf16<'_>ⓘNotable traits for EncodeUtf16<'a>impl<'a> Iterator for EncodeUtf16<'a> type Item = u16;
sourcepub fn contains<'a, P>(&'a self, pat: P) -> bool where
P: Pattern<'a>,
pub fn contains<'a, P>(&'a self, pat: P) -> bool where
P: Pattern<'a>,
Returns true
if the given pattern matches a sub-slice of
this string slice.
Returns false
if it does not.
The pattern can be a &str
, char
, a slice of char
s, or a
function or closure that determines if a character matches.
Examples
Basic usage:
let bananas = "bananas";
assert!(bananas.contains("nana"));
assert!(!bananas.contains("apples"));
Runsourcepub fn starts_with<'a, P>(&'a self, pat: P) -> bool where
P: Pattern<'a>,
pub fn starts_with<'a, P>(&'a self, pat: P) -> bool where
P: Pattern<'a>,
Returns true
if the given pattern matches a prefix of this
string slice.
Returns false
if it does not.
The pattern can be a &str
, char
, a slice of char
s, or a
function or closure that determines if a character matches.
Examples
Basic usage:
let bananas = "bananas";
assert!(bananas.starts_with("bana"));
assert!(!bananas.starts_with("nana"));
Runsourcepub fn ends_with<'a, P>(&'a self, pat: P) -> bool where
P: Pattern<'a>,
<P as Pattern<'a>>::Searcher: ReverseSearcher<'a>,
pub fn ends_with<'a, P>(&'a self, pat: P) -> bool where
P: Pattern<'a>,
<P as Pattern<'a>>::Searcher: ReverseSearcher<'a>,
Returns true
if the given pattern matches a suffix of this
string slice.
Returns false
if it does not.
The pattern can be a &str
, char
, a slice of char
s, or a
function or closure that determines if a character matches.
Examples
Basic usage:
let bananas = "bananas";
assert!(bananas.ends_with("anas"));
assert!(!bananas.ends_with("nana"));
Runsourcepub fn find<'a, P>(&'a self, pat: P) -> Option<usize> where
P: Pattern<'a>,
pub fn find<'a, P>(&'a self, pat: P) -> Option<usize> where
P: Pattern<'a>,
Returns the byte index of the first character of this string slice that matches the pattern.
Returns None
if the pattern doesn’t match.
The pattern can be a &str
, char
, a slice of char
s, or a
function or closure that determines if a character matches.
Examples
Simple patterns:
let s = "Löwe 老虎 Léopard Gepardi";
assert_eq!(s.find('L'), Some(0));
assert_eq!(s.find('é'), Some(14));
assert_eq!(s.find("pard"), Some(17));
RunMore complex patterns using point-free style and closures:
let s = "Löwe 老虎 Léopard";
assert_eq!(s.find(char::is_whitespace), Some(5));
assert_eq!(s.find(char::is_lowercase), Some(1));
assert_eq!(s.find(|c: char| c.is_whitespace() || c.is_lowercase()), Some(1));
assert_eq!(s.find(|c: char| (c < 'o') && (c > 'a')), Some(4));
RunNot finding the pattern:
let s = "Löwe 老虎 Léopard";
let x: &[_] = &['1', '2'];
assert_eq!(s.find(x), None);
Runsourcepub fn rfind<'a, P>(&'a self, pat: P) -> Option<usize> where
P: Pattern<'a>,
<P as Pattern<'a>>::Searcher: ReverseSearcher<'a>,
pub fn rfind<'a, P>(&'a self, pat: P) -> Option<usize> where
P: Pattern<'a>,
<P as Pattern<'a>>::Searcher: ReverseSearcher<'a>,
Returns the byte index for the first character of the rightmost match of the pattern in this string slice.
Returns None
if the pattern doesn’t match.
The pattern can be a &str
, char
, a slice of char
s, or a
function or closure that determines if a character matches.
Examples
Simple patterns:
let s = "Löwe 老虎 Léopard Gepardi";
assert_eq!(s.rfind('L'), Some(13));
assert_eq!(s.rfind('é'), Some(14));
assert_eq!(s.rfind("pard"), Some(24));
RunMore complex patterns with closures:
let s = "Löwe 老虎 Léopard";
assert_eq!(s.rfind(char::is_whitespace), Some(12));
assert_eq!(s.rfind(char::is_lowercase), Some(20));
RunNot finding the pattern:
let s = "Löwe 老虎 Léopard";
let x: &[_] = &['1', '2'];
assert_eq!(s.rfind(x), None);
Runsourcepub fn split<'a, P>(&'a self, pat: P) -> Split<'a, P>ⓘNotable traits for Split<'a, P>impl<'a, P> Iterator for Split<'a, P> where
P: Pattern<'a>, type Item = &'a str;
where
P: Pattern<'a>,
pub fn split<'a, P>(&'a self, pat: P) -> Split<'a, P>ⓘNotable traits for Split<'a, P>impl<'a, P> Iterator for Split<'a, P> where
P: Pattern<'a>, type Item = &'a str;
where
P: Pattern<'a>,
P: Pattern<'a>, type Item = &'a str;
An iterator over substrings of this string slice, separated by characters matched by a pattern.
The pattern can be a &str
, char
, a slice of char
s, or a
function or closure that determines if a character matches.
Iterator behavior
The returned iterator will be a DoubleEndedIterator
if the pattern
allows a reverse search and forward/reverse search yields the same
elements. This is true for, e.g., char
, but not for &str
.
If the pattern allows a reverse search but its results might differ
from a forward search, the rsplit
method can be used.
Examples
Simple patterns:
let v: Vec<&str> = "Mary had a little lamb".split(' ').collect();
assert_eq!(v, ["Mary", "had", "a", "little", "lamb"]);
let v: Vec<&str> = "".split('X').collect();
assert_eq!(v, [""]);
let v: Vec<&str> = "lionXXtigerXleopard".split('X').collect();
assert_eq!(v, ["lion", "", "tiger", "leopard"]);
let v: Vec<&str> = "lion::tiger::leopard".split("::").collect();
assert_eq!(v, ["lion", "tiger", "leopard"]);
let v: Vec<&str> = "abc1def2ghi".split(char::is_numeric).collect();
assert_eq!(v, ["abc", "def", "ghi"]);
let v: Vec<&str> = "lionXtigerXleopard".split(char::is_uppercase).collect();
assert_eq!(v, ["lion", "tiger", "leopard"]);
RunIf the pattern is a slice of chars, split on each occurrence of any of the characters:
let v: Vec<&str> = "2020-11-03 23:59".split(&['-', ' ', ':', '@'][..]).collect();
assert_eq!(v, ["2020", "11", "03", "23", "59"]);
RunA more complex pattern, using a closure:
let v: Vec<&str> = "abc1defXghi".split(|c| c == '1' || c == 'X').collect();
assert_eq!(v, ["abc", "def", "ghi"]);
RunIf a string contains multiple contiguous separators, you will end up with empty strings in the output:
let x = "||||a||b|c".to_string();
let d: Vec<_> = x.split('|').collect();
assert_eq!(d, &["", "", "", "", "a", "", "b", "c"]);
RunContiguous separators are separated by the empty string.
let x = "(///)".to_string();
let d: Vec<_> = x.split('/').collect();
assert_eq!(d, &["(", "", "", ")"]);
RunSeparators at the start or end of a string are neighbored by empty strings.
let d: Vec<_> = "010".split("0").collect();
assert_eq!(d, &["", "1", ""]);
RunWhen the empty string is used as a separator, it separates every character in the string, along with the beginning and end of the string.
let f: Vec<_> = "rust".split("").collect();
assert_eq!(f, &["", "r", "u", "s", "t", ""]);
RunContiguous separators can lead to possibly surprising behavior when whitespace is used as the separator. This code is correct:
let x = " a b c".to_string();
let d: Vec<_> = x.split(' ').collect();
assert_eq!(d, &["", "", "", "", "a", "", "b", "c"]);
RunIt does not give you:
assert_eq!(d, &["a", "b", "c"]);
RunUse split_whitespace
for this behavior.
1.51.0 · sourcepub fn split_inclusive<'a, P>(&'a self, pat: P) -> SplitInclusive<'a, P>ⓘNotable traits for SplitInclusive<'a, P>impl<'a, P> Iterator for SplitInclusive<'a, P> where
P: Pattern<'a>, type Item = &'a str;
where
P: Pattern<'a>,
pub fn split_inclusive<'a, P>(&'a self, pat: P) -> SplitInclusive<'a, P>ⓘNotable traits for SplitInclusive<'a, P>impl<'a, P> Iterator for SplitInclusive<'a, P> where
P: Pattern<'a>, type Item = &'a str;
where
P: Pattern<'a>,
P: Pattern<'a>, type Item = &'a str;
An iterator over substrings of this string slice, separated by
characters matched by a pattern. Differs from the iterator produced by
split
in that split_inclusive
leaves the matched part as the
terminator of the substring.
The pattern can be a &str
, char
, a slice of char
s, or a
function or closure that determines if a character matches.
Examples
let v: Vec<&str> = "Mary had a little lamb\nlittle lamb\nlittle lamb."
.split_inclusive('\n').collect();
assert_eq!(v, ["Mary had a little lamb\n", "little lamb\n", "little lamb."]);
RunIf the last element of the string is matched, that element will be considered the terminator of the preceding substring. That substring will be the last item returned by the iterator.
let v: Vec<&str> = "Mary had a little lamb\nlittle lamb\nlittle lamb.\n"
.split_inclusive('\n').collect();
assert_eq!(v, ["Mary had a little lamb\n", "little lamb\n", "little lamb.\n"]);
Runsourcepub fn rsplit<'a, P>(&'a self, pat: P) -> RSplit<'a, P>ⓘNotable traits for RSplit<'a, P>impl<'a, P> Iterator for RSplit<'a, P> where
P: Pattern<'a>,
<P as Pattern<'a>>::Searcher: ReverseSearcher<'a>, type Item = &'a str;
where
P: Pattern<'a>,
<P as Pattern<'a>>::Searcher: ReverseSearcher<'a>,
pub fn rsplit<'a, P>(&'a self, pat: P) -> RSplit<'a, P>ⓘNotable traits for RSplit<'a, P>impl<'a, P> Iterator for RSplit<'a, P> where
P: Pattern<'a>,
<P as Pattern<'a>>::Searcher: ReverseSearcher<'a>, type Item = &'a str;
where
P: Pattern<'a>,
<P as Pattern<'a>>::Searcher: ReverseSearcher<'a>,
P: Pattern<'a>,
<P as Pattern<'a>>::Searcher: ReverseSearcher<'a>, type Item = &'a str;
An iterator over substrings of the given string slice, separated by characters matched by a pattern and yielded in reverse order.
The pattern can be a &str
, char
, a slice of char
s, or a
function or closure that determines if a character matches.
Iterator behavior
The returned iterator requires that the pattern supports a reverse
search, and it will be a DoubleEndedIterator
if a forward/reverse
search yields the same elements.
For iterating from the front, the split
method can be used.
Examples
Simple patterns:
let v: Vec<&str> = "Mary had a little lamb".rsplit(' ').collect();
assert_eq!(v, ["lamb", "little", "a", "had", "Mary"]);
let v: Vec<&str> = "".rsplit('X').collect();
assert_eq!(v, [""]);
let v: Vec<&str> = "lionXXtigerXleopard".rsplit('X').collect();
assert_eq!(v, ["leopard", "tiger", "", "lion"]);
let v: Vec<&str> = "lion::tiger::leopard".rsplit("::").collect();
assert_eq!(v, ["leopard", "tiger", "lion"]);
RunA more complex pattern, using a closure:
let v: Vec<&str> = "abc1defXghi".rsplit(|c| c == '1' || c == 'X').collect();
assert_eq!(v, ["ghi", "def", "abc"]);
Runsourcepub fn split_terminator<'a, P>(&'a self, pat: P) -> SplitTerminator<'a, P>ⓘNotable traits for SplitTerminator<'a, P>impl<'a, P> Iterator for SplitTerminator<'a, P> where
P: Pattern<'a>, type Item = &'a str;
where
P: Pattern<'a>,
pub fn split_terminator<'a, P>(&'a self, pat: P) -> SplitTerminator<'a, P>ⓘNotable traits for SplitTerminator<'a, P>impl<'a, P> Iterator for SplitTerminator<'a, P> where
P: Pattern<'a>, type Item = &'a str;
where
P: Pattern<'a>,
P: Pattern<'a>, type Item = &'a str;
An iterator over substrings of the given string slice, separated by characters matched by a pattern.
The pattern can be a &str
, char
, a slice of char
s, or a
function or closure that determines if a character matches.
Equivalent to split
, except that the trailing substring
is skipped if empty.
This method can be used for string data that is terminated, rather than separated by a pattern.
Iterator behavior
The returned iterator will be a DoubleEndedIterator
if the pattern
allows a reverse search and forward/reverse search yields the same
elements. This is true for, e.g., char
, but not for &str
.
If the pattern allows a reverse search but its results might differ
from a forward search, the rsplit_terminator
method can be used.
Examples
Basic usage:
let v: Vec<&str> = "A.B.".split_terminator('.').collect();
assert_eq!(v, ["A", "B"]);
let v: Vec<&str> = "A..B..".split_terminator(".").collect();
assert_eq!(v, ["A", "", "B", ""]);
let v: Vec<&str> = "A.B:C.D".split_terminator(&['.', ':'][..]).collect();
assert_eq!(v, ["A", "B", "C", "D"]);
Runsourcepub fn rsplit_terminator<'a, P>(&'a self, pat: P) -> RSplitTerminator<'a, P>ⓘNotable traits for RSplitTerminator<'a, P>impl<'a, P> Iterator for RSplitTerminator<'a, P> where
P: Pattern<'a>,
<P as Pattern<'a>>::Searcher: ReverseSearcher<'a>, type Item = &'a str;
where
P: Pattern<'a>,
<P as Pattern<'a>>::Searcher: ReverseSearcher<'a>,
pub fn rsplit_terminator<'a, P>(&'a self, pat: P) -> RSplitTerminator<'a, P>ⓘNotable traits for RSplitTerminator<'a, P>impl<'a, P> Iterator for RSplitTerminator<'a, P> where
P: Pattern<'a>,
<P as Pattern<'a>>::Searcher: ReverseSearcher<'a>, type Item = &'a str;
where
P: Pattern<'a>,
<P as Pattern<'a>>::Searcher: ReverseSearcher<'a>,
P: Pattern<'a>,
<P as Pattern<'a>>::Searcher: ReverseSearcher<'a>, type Item = &'a str;
An iterator over substrings of self
, separated by characters
matched by a pattern and yielded in reverse order.
The pattern can be a &str
, char
, a slice of char
s, or a
function or closure that determines if a character matches.
Equivalent to split
, except that the trailing substring is
skipped if empty.
This method can be used for string data that is terminated, rather than separated by a pattern.
Iterator behavior
The returned iterator requires that the pattern supports a reverse search, and it will be double ended if a forward/reverse search yields the same elements.
For iterating from the front, the split_terminator
method can be
used.
Examples
let v: Vec<&str> = "A.B.".rsplit_terminator('.').collect();
assert_eq!(v, ["B", "A"]);
let v: Vec<&str> = "A..B..".rsplit_terminator(".").collect();
assert_eq!(v, ["", "B", "", "A"]);
let v: Vec<&str> = "A.B:C.D".rsplit_terminator(&['.', ':'][..]).collect();
assert_eq!(v, ["D", "C", "B", "A"]);
Runsourcepub fn splitn<'a, P>(&'a self, n: usize, pat: P) -> SplitN<'a, P>ⓘNotable traits for SplitN<'a, P>impl<'a, P> Iterator for SplitN<'a, P> where
P: Pattern<'a>, type Item = &'a str;
where
P: Pattern<'a>,
pub fn splitn<'a, P>(&'a self, n: usize, pat: P) -> SplitN<'a, P>ⓘNotable traits for SplitN<'a, P>impl<'a, P> Iterator for SplitN<'a, P> where
P: Pattern<'a>, type Item = &'a str;
where
P: Pattern<'a>,
P: Pattern<'a>, type Item = &'a str;
An iterator over substrings of the given string slice, separated by a
pattern, restricted to returning at most n
items.
If n
substrings are returned, the last substring (the n
th substring)
will contain the remainder of the string.
The pattern can be a &str
, char
, a slice of char
s, or a
function or closure that determines if a character matches.
Iterator behavior
The returned iterator will not be double ended, because it is not efficient to support.
If the pattern allows a reverse search, the rsplitn
method can be
used.
Examples
Simple patterns:
let v: Vec<&str> = "Mary had a little lambda".splitn(3, ' ').collect();
assert_eq!(v, ["Mary", "had", "a little lambda"]);
let v: Vec<&str> = "lionXXtigerXleopard".splitn(3, "X").collect();
assert_eq!(v, ["lion", "", "tigerXleopard"]);
let v: Vec<&str> = "abcXdef".splitn(1, 'X').collect();
assert_eq!(v, ["abcXdef"]);
let v: Vec<&str> = "".splitn(1, 'X').collect();
assert_eq!(v, [""]);
RunA more complex pattern, using a closure:
let v: Vec<&str> = "abc1defXghi".splitn(2, |c| c == '1' || c == 'X').collect();
assert_eq!(v, ["abc", "defXghi"]);
Runsourcepub fn rsplitn<'a, P>(&'a self, n: usize, pat: P) -> RSplitN<'a, P>ⓘNotable traits for RSplitN<'a, P>impl<'a, P> Iterator for RSplitN<'a, P> where
P: Pattern<'a>,
<P as Pattern<'a>>::Searcher: ReverseSearcher<'a>, type Item = &'a str;
where
P: Pattern<'a>,
<P as Pattern<'a>>::Searcher: ReverseSearcher<'a>,
pub fn rsplitn<'a, P>(&'a self, n: usize, pat: P) -> RSplitN<'a, P>ⓘNotable traits for RSplitN<'a, P>impl<'a, P> Iterator for RSplitN<'a, P> where
P: Pattern<'a>,
<P as Pattern<'a>>::Searcher: ReverseSearcher<'a>, type Item = &'a str;
where
P: Pattern<'a>,
<P as Pattern<'a>>::Searcher: ReverseSearcher<'a>,
P: Pattern<'a>,
<P as Pattern<'a>>::Searcher: ReverseSearcher<'a>, type Item = &'a str;
An iterator over substrings of this string slice, separated by a
pattern, starting from the end of the string, restricted to returning
at most n
items.
If n
substrings are returned, the last substring (the n
th substring)
will contain the remainder of the string.
The pattern can be a &str
, char
, a slice of char
s, or a
function or closure that determines if a character matches.
Iterator behavior
The returned iterator will not be double ended, because it is not efficient to support.
For splitting from the front, the splitn
method can be used.
Examples
Simple patterns:
let v: Vec<&str> = "Mary had a little lamb".rsplitn(3, ' ').collect();
assert_eq!(v, ["lamb", "little", "Mary had a"]);
let v: Vec<&str> = "lionXXtigerXleopard".rsplitn(3, 'X').collect();
assert_eq!(v, ["leopard", "tiger", "lionX"]);
let v: Vec<&str> = "lion::tiger::leopard".rsplitn(2, "::").collect();
assert_eq!(v, ["leopard", "lion::tiger"]);
RunA more complex pattern, using a closure:
let v: Vec<&str> = "abc1defXghi".rsplitn(2, |c| c == '1' || c == 'X').collect();
assert_eq!(v, ["ghi", "abc1def"]);
Run1.52.0 · sourcepub fn split_once<'a, P>(&'a self, delimiter: P) -> Option<(&'a str, &'a str)> where
P: Pattern<'a>,
pub fn split_once<'a, P>(&'a self, delimiter: P) -> Option<(&'a str, &'a str)> where
P: Pattern<'a>,
Splits the string on the first occurrence of the specified delimiter and returns prefix before delimiter and suffix after delimiter.
Examples
assert_eq!("cfg".split_once('='), None);
assert_eq!("cfg=foo".split_once('='), Some(("cfg", "foo")));
assert_eq!("cfg=foo=bar".split_once('='), Some(("cfg", "foo=bar")));
Run1.52.0 · sourcepub fn rsplit_once<'a, P>(&'a self, delimiter: P) -> Option<(&'a str, &'a str)> where
P: Pattern<'a>,
<P as Pattern<'a>>::Searcher: ReverseSearcher<'a>,
pub fn rsplit_once<'a, P>(&'a self, delimiter: P) -> Option<(&'a str, &'a str)> where
P: Pattern<'a>,
<P as Pattern<'a>>::Searcher: ReverseSearcher<'a>,
Splits the string on the last occurrence of the specified delimiter and returns prefix before delimiter and suffix after delimiter.
Examples
assert_eq!("cfg".rsplit_once('='), None);
assert_eq!("cfg=foo".rsplit_once('='), Some(("cfg", "foo")));
assert_eq!("cfg=foo=bar".rsplit_once('='), Some(("cfg=foo", "bar")));
Run1.2.0 · sourcepub fn matches<'a, P>(&'a self, pat: P) -> Matches<'a, P>ⓘNotable traits for Matches<'a, P>impl<'a, P> Iterator for Matches<'a, P> where
P: Pattern<'a>, type Item = &'a str;
where
P: Pattern<'a>,
pub fn matches<'a, P>(&'a self, pat: P) -> Matches<'a, P>ⓘNotable traits for Matches<'a, P>impl<'a, P> Iterator for Matches<'a, P> where
P: Pattern<'a>, type Item = &'a str;
where
P: Pattern<'a>,
P: Pattern<'a>, type Item = &'a str;
An iterator over the disjoint matches of a pattern within the given string slice.
The pattern can be a &str
, char
, a slice of char
s, or a
function or closure that determines if a character matches.
Iterator behavior
The returned iterator will be a DoubleEndedIterator
if the pattern
allows a reverse search and forward/reverse search yields the same
elements. This is true for, e.g., char
, but not for &str
.
If the pattern allows a reverse search but its results might differ
from a forward search, the rmatches
method can be used.
Examples
Basic usage:
let v: Vec<&str> = "abcXXXabcYYYabc".matches("abc").collect();
assert_eq!(v, ["abc", "abc", "abc"]);
let v: Vec<&str> = "1abc2abc3".matches(char::is_numeric).collect();
assert_eq!(v, ["1", "2", "3"]);
Run1.2.0 · sourcepub fn rmatches<'a, P>(&'a self, pat: P) -> RMatches<'a, P>ⓘNotable traits for RMatches<'a, P>impl<'a, P> Iterator for RMatches<'a, P> where
P: Pattern<'a>,
<P as Pattern<'a>>::Searcher: ReverseSearcher<'a>, type Item = &'a str;
where
P: Pattern<'a>,
<P as Pattern<'a>>::Searcher: ReverseSearcher<'a>,
pub fn rmatches<'a, P>(&'a self, pat: P) -> RMatches<'a, P>ⓘNotable traits for RMatches<'a, P>impl<'a, P> Iterator for RMatches<'a, P> where
P: Pattern<'a>,
<P as Pattern<'a>>::Searcher: ReverseSearcher<'a>, type Item = &'a str;
where
P: Pattern<'a>,
<P as Pattern<'a>>::Searcher: ReverseSearcher<'a>,
P: Pattern<'a>,
<P as Pattern<'a>>::Searcher: ReverseSearcher<'a>, type Item = &'a str;
An iterator over the disjoint matches of a pattern within this string slice, yielded in reverse order.
The pattern can be a &str
, char
, a slice of char
s, or a
function or closure that determines if a character matches.
Iterator behavior
The returned iterator requires that the pattern supports a reverse
search, and it will be a DoubleEndedIterator
if a forward/reverse
search yields the same elements.
For iterating from the front, the matches
method can be used.
Examples
Basic usage:
let v: Vec<&str> = "abcXXXabcYYYabc".rmatches("abc").collect();
assert_eq!(v, ["abc", "abc", "abc"]);
let v: Vec<&str> = "1abc2abc3".rmatches(char::is_numeric).collect();
assert_eq!(v, ["3", "2", "1"]);
Run1.5.0 · sourcepub fn match_indices<'a, P>(&'a self, pat: P) -> MatchIndices<'a, P>ⓘNotable traits for MatchIndices<'a, P>impl<'a, P> Iterator for MatchIndices<'a, P> where
P: Pattern<'a>, type Item = (usize, &'a str);
where
P: Pattern<'a>,
pub fn match_indices<'a, P>(&'a self, pat: P) -> MatchIndices<'a, P>ⓘNotable traits for MatchIndices<'a, P>impl<'a, P> Iterator for MatchIndices<'a, P> where
P: Pattern<'a>, type Item = (usize, &'a str);
where
P: Pattern<'a>,
P: Pattern<'a>, type Item = (usize, &'a str);
An iterator over the disjoint matches of a pattern within this string slice as well as the index that the match starts at.
For matches of pat
within self
that overlap, only the indices
corresponding to the first match are returned.
The pattern can be a &str
, char
, a slice of char
s, or a
function or closure that determines if a character matches.
Iterator behavior
The returned iterator will be a DoubleEndedIterator
if the pattern
allows a reverse search and forward/reverse search yields the same
elements. This is true for, e.g., char
, but not for &str
.
If the pattern allows a reverse search but its results might differ
from a forward search, the rmatch_indices
method can be used.
Examples
Basic usage:
let v: Vec<_> = "abcXXXabcYYYabc".match_indices("abc").collect();
assert_eq!(v, [(0, "abc"), (6, "abc"), (12, "abc")]);
let v: Vec<_> = "1abcabc2".match_indices("abc").collect();
assert_eq!(v, [(1, "abc"), (4, "abc")]);
let v: Vec<_> = "ababa".match_indices("aba").collect();
assert_eq!(v, [(0, "aba")]); // only the first `aba`
Run1.5.0 · sourcepub fn rmatch_indices<'a, P>(&'a self, pat: P) -> RMatchIndices<'a, P>ⓘNotable traits for RMatchIndices<'a, P>impl<'a, P> Iterator for RMatchIndices<'a, P> where
P: Pattern<'a>,
<P as Pattern<'a>>::Searcher: ReverseSearcher<'a>, type Item = (usize, &'a str);
where
P: Pattern<'a>,
<P as Pattern<'a>>::Searcher: ReverseSearcher<'a>,
pub fn rmatch_indices<'a, P>(&'a self, pat: P) -> RMatchIndices<'a, P>ⓘNotable traits for RMatchIndices<'a, P>impl<'a, P> Iterator for RMatchIndices<'a, P> where
P: Pattern<'a>,
<P as Pattern<'a>>::Searcher: ReverseSearcher<'a>, type Item = (usize, &'a str);
where
P: Pattern<'a>,
<P as Pattern<'a>>::Searcher: ReverseSearcher<'a>,
P: Pattern<'a>,
<P as Pattern<'a>>::Searcher: ReverseSearcher<'a>, type Item = (usize, &'a str);
An iterator over the disjoint matches of a pattern within self
,
yielded in reverse order along with the index of the match.
For matches of pat
within self
that overlap, only the indices
corresponding to the last match are returned.
The pattern can be a &str
, char
, a slice of char
s, or a
function or closure that determines if a character matches.
Iterator behavior
The returned iterator requires that the pattern supports a reverse
search, and it will be a DoubleEndedIterator
if a forward/reverse
search yields the same elements.
For iterating from the front, the match_indices
method can be used.
Examples
Basic usage:
let v: Vec<_> = "abcXXXabcYYYabc".rmatch_indices("abc").collect();
assert_eq!(v, [(12, "abc"), (6, "abc"), (0, "abc")]);
let v: Vec<_> = "1abcabc2".rmatch_indices("abc").collect();
assert_eq!(v, [(4, "abc"), (1, "abc")]);
let v: Vec<_> = "ababa".rmatch_indices("aba").collect();
assert_eq!(v, [(2, "aba")]); // only the last `aba`
Run1.30.0 · sourcepub fn trim_start(&self) -> &str
pub fn trim_start(&self) -> &str
Returns a string slice with leading whitespace removed.
‘Whitespace’ is defined according to the terms of the Unicode Derived
Core Property White_Space
.
Text directionality
A string is a sequence of bytes. start
in this context means the first
position of that byte string; for a left-to-right language like English or
Russian, this will be left side, and for right-to-left languages like
Arabic or Hebrew, this will be the right side.
Examples
Basic usage:
let s = " Hello\tworld\t";
assert_eq!("Hello\tworld\t", s.trim_start());
RunDirectionality:
let s = " English ";
assert!(Some('E') == s.trim_start().chars().next());
let s = " עברית ";
assert!(Some('ע') == s.trim_start().chars().next());
Run1.30.0 · sourcepub fn trim_end(&self) -> &str
pub fn trim_end(&self) -> &str
Returns a string slice with trailing whitespace removed.
‘Whitespace’ is defined according to the terms of the Unicode Derived
Core Property White_Space
.
Text directionality
A string is a sequence of bytes. end
in this context means the last
position of that byte string; for a left-to-right language like English or
Russian, this will be right side, and for right-to-left languages like
Arabic or Hebrew, this will be the left side.
Examples
Basic usage:
let s = " Hello\tworld\t";
assert_eq!(" Hello\tworld", s.trim_end());
RunDirectionality:
let s = " English ";
assert!(Some('h') == s.trim_end().chars().rev().next());
let s = " עברית ";
assert!(Some('ת') == s.trim_end().chars().rev().next());
Runsourcepub fn trim_left(&self) -> &str
👎 Deprecated since 1.33.0: superseded by trim_start
pub fn trim_left(&self) -> &str
superseded by trim_start
Returns a string slice with leading whitespace removed.
‘Whitespace’ is defined according to the terms of the Unicode Derived
Core Property White_Space
.
Text directionality
A string is a sequence of bytes. ‘Left’ in this context means the first position of that byte string; for a language like Arabic or Hebrew which are ‘right to left’ rather than ‘left to right’, this will be the right side, not the left.
Examples
Basic usage:
let s = " Hello\tworld\t";
assert_eq!("Hello\tworld\t", s.trim_left());
RunDirectionality:
let s = " English";
assert!(Some('E') == s.trim_left().chars().next());
let s = " עברית";
assert!(Some('ע') == s.trim_left().chars().next());
Runsourcepub fn trim_right(&self) -> &str
👎 Deprecated since 1.33.0: superseded by trim_end
pub fn trim_right(&self) -> &str
superseded by trim_end
Returns a string slice with trailing whitespace removed.
‘Whitespace’ is defined according to the terms of the Unicode Derived
Core Property White_Space
.
Text directionality
A string is a sequence of bytes. ‘Right’ in this context means the last position of that byte string; for a language like Arabic or Hebrew which are ‘right to left’ rather than ‘left to right’, this will be the left side, not the right.
Examples
Basic usage:
let s = " Hello\tworld\t";
assert_eq!(" Hello\tworld", s.trim_right());
RunDirectionality:
let s = "English ";
assert!(Some('h') == s.trim_right().chars().rev().next());
let s = "עברית ";
assert!(Some('ת') == s.trim_right().chars().rev().next());
Runsourcepub fn trim_matches<'a, P>(&'a self, pat: P) -> &'a str where
P: Pattern<'a>,
<P as Pattern<'a>>::Searcher: DoubleEndedSearcher<'a>,
pub fn trim_matches<'a, P>(&'a self, pat: P) -> &'a str where
P: Pattern<'a>,
<P as Pattern<'a>>::Searcher: DoubleEndedSearcher<'a>,
Returns a string slice with all prefixes and suffixes that match a pattern repeatedly removed.
The pattern can be a char
, a slice of char
s, or a function
or closure that determines if a character matches.
Examples
Simple patterns:
assert_eq!("11foo1bar11".trim_matches('1'), "foo1bar");
assert_eq!("123foo1bar123".trim_matches(char::is_numeric), "foo1bar");
let x: &[_] = &['1', '2'];
assert_eq!("12foo1bar12".trim_matches(x), "foo1bar");
RunA more complex pattern, using a closure:
assert_eq!("1foo1barXX".trim_matches(|c| c == '1' || c == 'X'), "foo1bar");
Run1.30.0 · sourcepub fn trim_start_matches<'a, P>(&'a self, pat: P) -> &'a str where
P: Pattern<'a>,
pub fn trim_start_matches<'a, P>(&'a self, pat: P) -> &'a str where
P: Pattern<'a>,
Returns a string slice with all prefixes that match a pattern repeatedly removed.
The pattern can be a &str
, char
, a slice of char
s, or a
function or closure that determines if a character matches.
Text directionality
A string is a sequence of bytes. start
in this context means the first
position of that byte string; for a left-to-right language like English or
Russian, this will be left side, and for right-to-left languages like
Arabic or Hebrew, this will be the right side.
Examples
Basic usage:
assert_eq!("11foo1bar11".trim_start_matches('1'), "foo1bar11");
assert_eq!("123foo1bar123".trim_start_matches(char::is_numeric), "foo1bar123");
let x: &[_] = &['1', '2'];
assert_eq!("12foo1bar12".trim_start_matches(x), "foo1bar12");
Run1.45.0 · sourcepub fn strip_prefix<'a, P>(&'a self, prefix: P) -> Option<&'a str> where
P: Pattern<'a>,
pub fn strip_prefix<'a, P>(&'a self, prefix: P) -> Option<&'a str> where
P: Pattern<'a>,
Returns a string slice with the prefix removed.
If the string starts with the pattern prefix
, returns substring after the prefix, wrapped
in Some
. Unlike trim_start_matches
, this method removes the prefix exactly once.
If the string does not start with prefix
, returns None
.
The pattern can be a &str
, char
, a slice of char
s, or a
function or closure that determines if a character matches.
Examples
assert_eq!("foo:bar".strip_prefix("foo:"), Some("bar"));
assert_eq!("foo:bar".strip_prefix("bar"), None);
assert_eq!("foofoo".strip_prefix("foo"), Some("foo"));
Run1.45.0 · sourcepub fn strip_suffix<'a, P>(&'a self, suffix: P) -> Option<&'a str> where
P: Pattern<'a>,
<P as Pattern<'a>>::Searcher: ReverseSearcher<'a>,
pub fn strip_suffix<'a, P>(&'a self, suffix: P) -> Option<&'a str> where
P: Pattern<'a>,
<P as Pattern<'a>>::Searcher: ReverseSearcher<'a>,
Returns a string slice with the suffix removed.
If the string ends with the pattern suffix
, returns the substring before the suffix,
wrapped in Some
. Unlike trim_end_matches
, this method removes the suffix exactly once.
If the string does not end with suffix
, returns None
.
The pattern can be a &str
, char
, a slice of char
s, or a
function or closure that determines if a character matches.
Examples
assert_eq!("bar:foo".strip_suffix(":foo"), Some("bar"));
assert_eq!("bar:foo".strip_suffix("bar"), None);
assert_eq!("foofoo".strip_suffix("foo"), Some("foo"));
Run1.30.0 · sourcepub fn trim_end_matches<'a, P>(&'a self, pat: P) -> &'a str where
P: Pattern<'a>,
<P as Pattern<'a>>::Searcher: ReverseSearcher<'a>,
pub fn trim_end_matches<'a, P>(&'a self, pat: P) -> &'a str where
P: Pattern<'a>,
<P as Pattern<'a>>::Searcher: ReverseSearcher<'a>,
Returns a string slice with all suffixes that match a pattern repeatedly removed.
The pattern can be a &str
, char
, a slice of char
s, or a
function or closure that determines if a character matches.
Text directionality
A string is a sequence of bytes. end
in this context means the last
position of that byte string; for a left-to-right language like English or
Russian, this will be right side, and for right-to-left languages like
Arabic or Hebrew, this will be the left side.
Examples
Simple patterns:
assert_eq!("11foo1bar11".trim_end_matches('1'), "11foo1bar");
assert_eq!("123foo1bar123".trim_end_matches(char::is_numeric), "123foo1bar");
let x: &[_] = &['1', '2'];
assert_eq!("12foo1bar12".trim_end_matches(x), "12foo1bar");
RunA more complex pattern, using a closure:
assert_eq!("1fooX".trim_end_matches(|c| c == '1' || c == 'X'), "1foo");
Runsourcepub fn trim_left_matches<'a, P>(&'a self, pat: P) -> &'a str where
P: Pattern<'a>,
👎 Deprecated since 1.33.0: superseded by trim_start_matches
pub fn trim_left_matches<'a, P>(&'a self, pat: P) -> &'a str where
P: Pattern<'a>,
superseded by trim_start_matches
Returns a string slice with all prefixes that match a pattern repeatedly removed.
The pattern can be a &str
, char
, a slice of char
s, or a
function or closure that determines if a character matches.
Text directionality
A string is a sequence of bytes. ‘Left’ in this context means the first position of that byte string; for a language like Arabic or Hebrew which are ‘right to left’ rather than ‘left to right’, this will be the right side, not the left.
Examples
Basic usage:
assert_eq!("11foo1bar11".trim_left_matches('1'), "foo1bar11");
assert_eq!("123foo1bar123".trim_left_matches(char::is_numeric), "foo1bar123");
let x: &[_] = &['1', '2'];
assert_eq!("12foo1bar12".trim_left_matches(x), "foo1bar12");
Runsourcepub fn trim_right_matches<'a, P>(&'a self, pat: P) -> &'a str where
P: Pattern<'a>,
<P as Pattern<'a>>::Searcher: ReverseSearcher<'a>,
👎 Deprecated since 1.33.0: superseded by trim_end_matches
pub fn trim_right_matches<'a, P>(&'a self, pat: P) -> &'a str where
P: Pattern<'a>,
<P as Pattern<'a>>::Searcher: ReverseSearcher<'a>,
superseded by trim_end_matches
Returns a string slice with all suffixes that match a pattern repeatedly removed.
The pattern can be a &str
, char
, a slice of char
s, or a
function or closure that determines if a character matches.
Text directionality
A string is a sequence of bytes. ‘Right’ in this context means the last position of that byte string; for a language like Arabic or Hebrew which are ‘right to left’ rather than ‘left to right’, this will be the left side, not the right.
Examples
Simple patterns:
assert_eq!("11foo1bar11".trim_right_matches('1'), "11foo1bar");
assert_eq!("123foo1bar123".trim_right_matches(char::is_numeric), "123foo1bar");
let x: &[_] = &['1', '2'];
assert_eq!("12foo1bar12".trim_right_matches(x), "12foo1bar");
RunA more complex pattern, using a closure:
assert_eq!("1fooX".trim_right_matches(|c| c == '1' || c == 'X'), "1foo");
Runsourcepub fn parse<F>(&self) -> Result<F, <F as FromStr>::Err> where
F: FromStr,
pub fn parse<F>(&self) -> Result<F, <F as FromStr>::Err> where
F: FromStr,
Parses this string slice into another type.
Because parse
is so general, it can cause problems with type
inference. As such, parse
is one of the few times you’ll see
the syntax affectionately known as the ‘turbofish’: ::<>
. This
helps the inference algorithm understand specifically which type
you’re trying to parse into.
parse
can parse into any type that implements the FromStr
trait.
Errors
Will return Err
if it’s not possible to parse this string slice into
the desired type.
Examples
Basic usage
let four: u32 = "4".parse().unwrap();
assert_eq!(4, four);
RunUsing the ‘turbofish’ instead of annotating four
:
let four = "4".parse::<u32>();
assert_eq!(Ok(4), four);
RunFailing to parse:
let nope = "j".parse::<u32>();
assert!(nope.is_err());
Run1.23.0 · sourcepub fn eq_ignore_ascii_case(&self, other: &str) -> bool
pub fn eq_ignore_ascii_case(&self, other: &str) -> bool
Checks that two strings are an ASCII case-insensitive match.
Same as to_ascii_lowercase(a) == to_ascii_lowercase(b)
,
but without allocating and copying temporaries.
Examples
assert!("Ferris".eq_ignore_ascii_case("FERRIS"));
assert!("Ferrös".eq_ignore_ascii_case("FERRöS"));
assert!(!"Ferrös".eq_ignore_ascii_case("FERRÖS"));
Run1.23.0 · sourcepub fn make_ascii_uppercase(&mut self)
pub fn make_ascii_uppercase(&mut self)
Converts this string to its ASCII upper case equivalent in-place.
ASCII letters ‘a’ to ‘z’ are mapped to ‘A’ to ‘Z’, but non-ASCII letters are unchanged.
To return a new uppercased value without modifying the existing one, use
to_ascii_uppercase()
.
Examples
let mut s = String::from("Grüße, Jürgen ❤");
s.make_ascii_uppercase();
assert_eq!("GRüßE, JüRGEN ❤", s);
Run1.23.0 · sourcepub fn make_ascii_lowercase(&mut self)
pub fn make_ascii_lowercase(&mut self)
Converts this string to its ASCII lower case equivalent in-place.
ASCII letters ‘A’ to ‘Z’ are mapped to ‘a’ to ‘z’, but non-ASCII letters are unchanged.
To return a new lowercased value without modifying the existing one, use
to_ascii_lowercase()
.
Examples
let mut s = String::from("GRÜßE, JÜRGEN ❤");
s.make_ascii_lowercase();
assert_eq!("grÜße, jÜrgen ❤", s);
Run1.34.0 · sourcepub fn escape_debug(&self) -> EscapeDebug<'_>ⓘNotable traits for EscapeDebug<'a>impl<'a> Iterator for EscapeDebug<'a> type Item = char;
pub fn escape_debug(&self) -> EscapeDebug<'_>ⓘNotable traits for EscapeDebug<'a>impl<'a> Iterator for EscapeDebug<'a> type Item = char;
Return an iterator that escapes each char in self
with char::escape_debug
.
Note: only extended grapheme codepoints that begin the string will be escaped.
Examples
As an iterator:
for c in "❤\n!".escape_debug() {
print!("{}", c);
}
println!();
RunUsing println!
directly:
println!("{}", "❤\n!".escape_debug());
RunBoth are equivalent to:
println!("❤\\n!");
RunUsing to_string
:
assert_eq!("❤\n!".escape_debug().to_string(), "❤\\n!");
Run1.34.0 · sourcepub fn escape_default(&self) -> EscapeDefault<'_>ⓘNotable traits for EscapeDefault<'a>impl<'a> Iterator for EscapeDefault<'a> type Item = char;
pub fn escape_default(&self) -> EscapeDefault<'_>ⓘNotable traits for EscapeDefault<'a>impl<'a> Iterator for EscapeDefault<'a> type Item = char;
Return an iterator that escapes each char in self
with char::escape_default
.
Examples
As an iterator:
for c in "❤\n!".escape_default() {
print!("{}", c);
}
println!();
RunUsing println!
directly:
println!("{}", "❤\n!".escape_default());
RunBoth are equivalent to:
println!("\\u{{2764}}\\n!");
RunUsing to_string
:
assert_eq!("❤\n!".escape_default().to_string(), "\\u{2764}\\n!");
Run1.34.0 · sourcepub fn escape_unicode(&self) -> EscapeUnicode<'_>ⓘNotable traits for EscapeUnicode<'a>impl<'a> Iterator for EscapeUnicode<'a> type Item = char;
pub fn escape_unicode(&self) -> EscapeUnicode<'_>ⓘNotable traits for EscapeUnicode<'a>impl<'a> Iterator for EscapeUnicode<'a> type Item = char;
Return an iterator that escapes each char in self
with char::escape_unicode
.
Examples
As an iterator:
for c in "❤\n!".escape_unicode() {
print!("{}", c);
}
println!();
RunUsing println!
directly:
println!("{}", "❤\n!".escape_unicode());
RunBoth are equivalent to:
println!("\\u{{2764}}\\u{{a}}\\u{{21}}");
RunUsing to_string
:
assert_eq!("❤\n!".escape_unicode().to_string(), "\\u{2764}\\u{a}\\u{21}");
Runsourcepub fn replace<'a, P>(&'a self, from: P, to: &str) -> String where
P: Pattern<'a>,
pub fn replace<'a, P>(&'a self, from: P, to: &str) -> String where
P: Pattern<'a>,
Replaces all matches of a pattern with another string.
replace
creates a new String
, and copies the data from this string slice into it.
While doing so, it attempts to find matches of a pattern. If it finds any, it
replaces them with the replacement string slice.
Examples
Basic usage:
let s = "this is old";
assert_eq!("this is new", s.replace("old", "new"));
RunWhen the pattern doesn’t match:
let s = "this is old";
assert_eq!(s, s.replace("cookie monster", "little lamb"));
Run1.16.0 · sourcepub fn replacen<'a, P>(&'a self, pat: P, to: &str, count: usize) -> String where
P: Pattern<'a>,
pub fn replacen<'a, P>(&'a self, pat: P, to: &str, count: usize) -> String where
P: Pattern<'a>,
Replaces first N matches of a pattern with another string.
replacen
creates a new String
, and copies the data from this string slice into it.
While doing so, it attempts to find matches of a pattern. If it finds any, it
replaces them with the replacement string slice at most count
times.
Examples
Basic usage:
let s = "foo foo 123 foo";
assert_eq!("new new 123 foo", s.replacen("foo", "new", 2));
assert_eq!("faa fao 123 foo", s.replacen('o', "a", 3));
assert_eq!("foo foo new23 foo", s.replacen(char::is_numeric, "new", 1));
RunWhen the pattern doesn’t match:
let s = "this is old";
assert_eq!(s, s.replacen("cookie monster", "little lamb", 10));
Run1.2.0 · sourcepub fn to_lowercase(&self) -> String
pub fn to_lowercase(&self) -> String
Returns the lowercase equivalent of this string slice, as a new String
.
‘Lowercase’ is defined according to the terms of the Unicode Derived Core Property
Lowercase
.
Since some characters can expand into multiple characters when changing
the case, this function returns a String
instead of modifying the
parameter in-place.
Examples
Basic usage:
let s = "HELLO";
assert_eq!("hello", s.to_lowercase());
RunA tricky example, with sigma:
let sigma = "Σ";
assert_eq!("σ", sigma.to_lowercase());
// but at the end of a word, it's ς, not σ:
let odysseus = "ὈΔΥΣΣΕΎΣ";
assert_eq!("ὀδυσσεύς", odysseus.to_lowercase());
RunLanguages without case are not changed:
let new_year = "农历新年";
assert_eq!(new_year, new_year.to_lowercase());
Run1.2.0 · sourcepub fn to_uppercase(&self) -> String
pub fn to_uppercase(&self) -> String
Returns the uppercase equivalent of this string slice, as a new String
.
‘Uppercase’ is defined according to the terms of the Unicode Derived Core Property
Uppercase
.
Since some characters can expand into multiple characters when changing
the case, this function returns a String
instead of modifying the
parameter in-place.
Examples
Basic usage:
let s = "hello";
assert_eq!("HELLO", s.to_uppercase());
RunScripts without case are not changed:
let new_year = "农历新年";
assert_eq!(new_year, new_year.to_uppercase());
RunOne character can become multiple:
let s = "tschüß";
assert_eq!("TSCHÜSS", s.to_uppercase());
Run1.16.0 · sourcepub fn repeat(&self, n: usize) -> String
pub fn repeat(&self, n: usize) -> String
Creates a new String
by repeating a string n
times.
Panics
This function will panic if the capacity would overflow.
Examples
Basic usage:
assert_eq!("abc".repeat(4), String::from("abcabcabcabc"));
RunA panic upon overflow:
// this will panic at runtime
let huge = "0123456789abcdef".repeat(usize::MAX);
Run1.23.0 · sourcepub fn to_ascii_uppercase(&self) -> String
pub fn to_ascii_uppercase(&self) -> String
Returns a copy of this string where each character is mapped to its ASCII upper case equivalent.
ASCII letters ‘a’ to ‘z’ are mapped to ‘A’ to ‘Z’, but non-ASCII letters are unchanged.
To uppercase the value in-place, use make_ascii_uppercase
.
To uppercase ASCII characters in addition to non-ASCII characters, use
to_uppercase
.
Examples
let s = "Grüße, Jürgen ❤";
assert_eq!("GRüßE, JüRGEN ❤", s.to_ascii_uppercase());
Run1.23.0 · sourcepub fn to_ascii_lowercase(&self) -> String
pub fn to_ascii_lowercase(&self) -> String
Returns a copy of this string where each character is mapped to its ASCII lower case equivalent.
ASCII letters ‘A’ to ‘Z’ are mapped to ‘a’ to ‘z’, but non-ASCII letters are unchanged.
To lowercase the value in-place, use make_ascii_lowercase
.
To lowercase ASCII characters in addition to non-ASCII characters, use
to_lowercase
.
Examples
let s = "Grüße, Jürgen ❤";
assert_eq!("grüße, jürgen ❤", s.to_ascii_lowercase());
RunTrait Implementations
sourceimpl<'_> Add<&'_ str> for String
impl<'_> Add<&'_ str> for String
Implements the +
operator for concatenating two strings.
This consumes the String
on the left-hand side and re-uses its buffer (growing it if
necessary). This is done to avoid allocating a new String
and copying the entire contents on
every operation, which would lead to O(n^2) running time when building an n-byte string by
repeated concatenation.
The string on the right-hand side is only borrowed; its contents are copied into the returned
String
.
Examples
Concatenating two String
s takes the first by value and borrows the second:
let a = String::from("hello");
let b = String::from(" world");
let c = a + &b;
// `a` is moved and can no longer be used here.
RunIf you want to keep using the first String
, you can clone it and append to the clone instead:
let a = String::from("hello");
let b = String::from(" world");
let c = a.clone() + &b;
// `a` is still valid here.
RunConcatenating &str
slices can be done by converting the first to a String
:
let a = "hello";
let b = " world";
let c = a.to_string() + b;
Run1.12.0 · sourceimpl<'_> AddAssign<&'_ str> for String
impl<'_> AddAssign<&'_ str> for String
Implements the +=
operator for appending to a String
.
This has the same behavior as the push_str
method.
sourcepub fn add_assign(&mut self, other: &str)
pub fn add_assign(&mut self, other: &str)
Performs the +=
operation. Read more
1.36.0 · sourceimpl BorrowMut<str> for String
impl BorrowMut<str> for String
sourcepub fn borrow_mut(&mut self) -> &mut str
pub fn borrow_mut(&mut self) -> &mut str
Mutably borrows from an owned value. Read more
1.2.0 · sourceimpl<'a> Extend<&'a char> for String
impl<'a> Extend<&'a char> for String
sourcepub fn extend<I>(&mut self, iter: I) where
I: IntoIterator<Item = &'a char>,
pub fn extend<I>(&mut self, iter: I) where
I: IntoIterator<Item = &'a char>,
Extends a collection with the contents of an iterator. Read more
sourcepub fn extend_reserve(&mut self, additional: usize)
pub fn extend_reserve(&mut self, additional: usize)
Reserves capacity in a collection for the given number of additional elements. Read more
sourceimpl<'a> Extend<&'a str> for String
impl<'a> Extend<&'a str> for String
sourcepub fn extend<I>(&mut self, iter: I) where
I: IntoIterator<Item = &'a str>,
pub fn extend<I>(&mut self, iter: I) where
I: IntoIterator<Item = &'a str>,
Extends a collection with the contents of an iterator. Read more
sourcefn extend_reserve(&mut self, additional: usize)
fn extend_reserve(&mut self, additional: usize)
Reserves capacity in a collection for the given number of additional elements. Read more
1.45.0 · sourceimpl Extend<Box<str, Global>> for String
impl Extend<Box<str, Global>> for String
sourcepub fn extend<I>(&mut self, iter: I) where
I: IntoIterator<Item = Box<str, Global>>,
pub fn extend<I>(&mut self, iter: I) where
I: IntoIterator<Item = Box<str, Global>>,
Extends a collection with the contents of an iterator. Read more
sourcefn extend_reserve(&mut self, additional: usize)
fn extend_reserve(&mut self, additional: usize)
Reserves capacity in a collection for the given number of additional elements. Read more
1.19.0 · sourceimpl<'a> Extend<Cow<'a, str>> for String
impl<'a> Extend<Cow<'a, str>> for String
sourcepub fn extend<I>(&mut self, iter: I) where
I: IntoIterator<Item = Cow<'a, str>>,
pub fn extend<I>(&mut self, iter: I) where
I: IntoIterator<Item = Cow<'a, str>>,
Extends a collection with the contents of an iterator. Read more
sourcefn extend_reserve(&mut self, additional: usize)
fn extend_reserve(&mut self, additional: usize)
Reserves capacity in a collection for the given number of additional elements. Read more
1.4.0 · sourceimpl Extend<String> for String
impl Extend<String> for String
sourcepub fn extend<I>(&mut self, iter: I) where
I: IntoIterator<Item = String>,
pub fn extend<I>(&mut self, iter: I) where
I: IntoIterator<Item = String>,
Extends a collection with the contents of an iterator. Read more
sourcefn extend_reserve(&mut self, additional: usize)
fn extend_reserve(&mut self, additional: usize)
Reserves capacity in a collection for the given number of additional elements. Read more
sourceimpl Extend<char> for String
impl Extend<char> for String
sourcepub fn extend<I>(&mut self, iter: I) where
I: IntoIterator<Item = char>,
pub fn extend<I>(&mut self, iter: I) where
I: IntoIterator<Item = char>,
Extends a collection with the contents of an iterator. Read more
sourcepub fn extend_reserve(&mut self, additional: usize)
pub fn extend_reserve(&mut self, additional: usize)
Reserves capacity in a collection for the given number of additional elements. Read more
1.18.0 · sourceimpl From<Box<str, Global>> for String
impl From<Box<str, Global>> for String
1.14.0 · sourceimpl<'a> From<Cow<'a, str>> for String
impl<'a> From<Cow<'a, str>> for String
sourcepub fn from(s: Cow<'a, str>) -> String
pub fn from(s: Cow<'a, str>) -> String
Converts a clone-on-write string to an owned
instance of String
.
This extracts the owned string, clones the string if it is not already owned.
Example
// If the string is not owned...
let cow: Cow<str> = Cow::Borrowed("eggplant");
// It will allocate on the heap and copy the string.
let owned: String = String::from(cow);
assert_eq!(&owned[..], "eggplant");
Run1.14.0 · sourceimpl From<String> for Vec<u8, Global>
impl From<String> for Vec<u8, Global>
1.20.0 · sourceimpl From<String> for Box<str, Global>
impl From<String> for Box<str, Global>
sourcepub fn from(s: String) -> Box<str, Global>ⓘNotable traits for Box<F, A>impl<F, A> Future for Box<F, A> where
F: Future + Unpin + ?Sized,
A: Allocator + 'static, type Output = <F as Future>::Output;impl<I, A> Iterator for Box<I, A> where
I: Iterator + ?Sized,
A: Allocator, type Item = <I as Iterator>::Item;impl<R: Read + ?Sized> Read for Box<R>impl<W: Write + ?Sized> Write for Box<W>
pub fn from(s: String) -> Box<str, Global>ⓘNotable traits for Box<F, A>impl<F, A> Future for Box<F, A> where
F: Future + Unpin + ?Sized,
A: Allocator + 'static, type Output = <F as Future>::Output;impl<I, A> Iterator for Box<I, A> where
I: Iterator + ?Sized,
A: Allocator, type Item = <I as Iterator>::Item;impl<R: Read + ?Sized> Read for Box<R>impl<W: Write + ?Sized> Write for Box<W>
F: Future + Unpin + ?Sized,
A: Allocator + 'static, type Output = <F as Future>::Output;impl<I, A> Iterator for Box<I, A> where
I: Iterator + ?Sized,
A: Allocator, type Item = <I as Iterator>::Item;impl<R: Read + ?Sized> Read for Box<R>impl<W: Write + ?Sized> Write for Box<W>
sourceimpl From<String> for Box<dyn Error + Send + Sync>
impl From<String> for Box<dyn Error + Send + Sync>
sourcefn from(err: String) -> Box<dyn Error + Send + Sync>ⓘNotable traits for Box<F, A>impl<F, A> Future for Box<F, A> where
F: Future + Unpin + ?Sized,
A: Allocator + 'static, type Output = <F as Future>::Output;impl<I, A> Iterator for Box<I, A> where
I: Iterator + ?Sized,
A: Allocator, type Item = <I as Iterator>::Item;impl<R: Read + ?Sized> Read for Box<R>impl<W: Write + ?Sized> Write for Box<W>
fn from(err: String) -> Box<dyn Error + Send + Sync>ⓘNotable traits for Box<F, A>impl<F, A> Future for Box<F, A> where
F: Future + Unpin + ?Sized,
A: Allocator + 'static, type Output = <F as Future>::Output;impl<I, A> Iterator for Box<I, A> where
I: Iterator + ?Sized,
A: Allocator, type Item = <I as Iterator>::Item;impl<R: Read + ?Sized> Read for Box<R>impl<W: Write + ?Sized> Write for Box<W>
F: Future + Unpin + ?Sized,
A: Allocator + 'static, type Output = <F as Future>::Output;impl<I, A> Iterator for Box<I, A> where
I: Iterator + ?Sized,
A: Allocator, type Item = <I as Iterator>::Item;impl<R: Read + ?Sized> Read for Box<R>impl<W: Write + ?Sized> Write for Box<W>
Converts a String
into a box of dyn Error
+ Send
+ Sync
.
Examples
use std::error::Error;
use std::mem;
let a_string_error = "a string error".to_string();
let a_boxed_error = Box::<dyn Error + Send + Sync>::from(a_string_error);
assert!(
mem::size_of::<Box<dyn Error + Send + Sync>>() == mem::size_of_val(&a_boxed_error))
Run1.6.0 · sourceimpl From<String> for Box<dyn Error>
impl From<String> for Box<dyn Error>
sourcefn from(str_err: String) -> Box<dyn Error>ⓘNotable traits for Box<F, A>impl<F, A> Future for Box<F, A> where
F: Future + Unpin + ?Sized,
A: Allocator + 'static, type Output = <F as Future>::Output;impl<I, A> Iterator for Box<I, A> where
I: Iterator + ?Sized,
A: Allocator, type Item = <I as Iterator>::Item;impl<R: Read + ?Sized> Read for Box<R>impl<W: Write + ?Sized> Write for Box<W>
fn from(str_err: String) -> Box<dyn Error>ⓘNotable traits for Box<F, A>impl<F, A> Future for Box<F, A> where
F: Future + Unpin + ?Sized,
A: Allocator + 'static, type Output = <F as Future>::Output;impl<I, A> Iterator for Box<I, A> where
I: Iterator + ?Sized,
A: Allocator, type Item = <I as Iterator>::Item;impl<R: Read + ?Sized> Read for Box<R>impl<W: Write + ?Sized> Write for Box<W>
F: Future + Unpin + ?Sized,
A: Allocator + 'static, type Output = <F as Future>::Output;impl<I, A> Iterator for Box<I, A> where
I: Iterator + ?Sized,
A: Allocator, type Item = <I as Iterator>::Item;impl<R: Read + ?Sized> Read for Box<R>impl<W: Write + ?Sized> Write for Box<W>
1.17.0 · sourceimpl<'a> FromIterator<&'a char> for String
impl<'a> FromIterator<&'a char> for String
sourceimpl<'a> FromIterator<&'a str> for String
impl<'a> FromIterator<&'a str> for String
1.19.0 · sourceimpl<'a> FromIterator<Cow<'a, str>> for String
impl<'a> FromIterator<Cow<'a, str>> for String
1.12.0 · sourceimpl<'a> FromIterator<String> for Cow<'a, str>
impl<'a> FromIterator<String> for Cow<'a, str>
1.4.0 · sourceimpl FromIterator<String> for String
impl FromIterator<String> for String
sourceimpl FromIterator<char> for String
impl FromIterator<char> for String
1.26.0 · sourceimpl Index<RangeInclusive<usize>> for String
impl Index<RangeInclusive<usize>> for String
1.26.0 · sourceimpl Index<RangeToInclusive<usize>> for String
impl Index<RangeToInclusive<usize>> for String
1.26.0 · sourceimpl IndexMut<RangeInclusive<usize>> for String
impl IndexMut<RangeInclusive<usize>> for String
1.26.0 · sourceimpl IndexMut<RangeToInclusive<usize>> for String
impl IndexMut<RangeToInclusive<usize>> for String
sourceimpl Ord for String
impl Ord for String
sourceimpl PartialOrd<String> for String
impl PartialOrd<String> for String
sourcepub fn partial_cmp(&self, other: &String) -> Option<Ordering>
pub fn partial_cmp(&self, other: &String) -> Option<Ordering>
This method returns an ordering between self
and other
values if one exists. Read more
sourcefn lt(&self, other: &Rhs) -> bool
fn lt(&self, other: &Rhs) -> bool
This method tests less than (for self
and other
) and is used by the <
operator. Read more
sourcefn le(&self, other: &Rhs) -> bool
fn le(&self, other: &Rhs) -> bool
This method tests less than or equal to (for self
and other
) and is used by the <=
operator. Read more
sourceimpl<'a, 'b> Pattern<'a> for &'b String
impl<'a, 'b> Pattern<'a> for &'b String
A convenience impl that delegates to the impl for &str
.
Examples
assert_eq!(String::from("Hello world").find("world"), Some(6));
Runsourcepub fn into_searcher(
self,
haystack: &'a str
) -> <&'b str as Pattern<'a>>::Searcher
pub fn into_searcher(
self,
haystack: &'a str
) -> <&'b str as Pattern<'a>>::Searcher
Constructs the associated searcher from
self
and the haystack
to search in. Read more
sourcepub fn is_contained_in(self, haystack: &'a str) -> bool
pub fn is_contained_in(self, haystack: &'a str) -> bool
Checks whether the pattern matches anywhere in the haystack
sourcepub fn is_prefix_of(self, haystack: &'a str) -> bool
pub fn is_prefix_of(self, haystack: &'a str) -> bool
Checks whether the pattern matches at the front of the haystack
sourcepub fn strip_prefix_of(self, haystack: &'a str) -> Option<&'a str>
pub fn strip_prefix_of(self, haystack: &'a str) -> Option<&'a str>
Removes the pattern from the front of haystack, if it matches.
sourcepub fn is_suffix_of(self, haystack: &'a str) -> bool
pub fn is_suffix_of(self, haystack: &'a str) -> bool
Checks whether the pattern matches at the back of the haystack
1.16.0 · sourceimpl ToSocketAddrs for String
impl ToSocketAddrs for String
type Iter = IntoIter<SocketAddr>
type Iter = IntoIter<SocketAddr>
Returned iterator over socket addresses which this type may correspond to. Read more
sourcefn to_socket_addrs(&self) -> Result<IntoIter<SocketAddr>>
fn to_socket_addrs(&self) -> Result<IntoIter<SocketAddr>>
Converts this object to an iterator of resolved SocketAddr
s. Read more
sourceimpl Write for String
impl Write for String
impl Eq for String
impl StructuralEq for String
Auto Trait Implementations
impl RefUnwindSafe for String
impl Send for String
impl Sync for String
impl Unpin for String
impl UnwindSafe for String
Blanket Implementations
sourceimpl<T> BorrowMut<T> for T where
T: ?Sized,
impl<T> BorrowMut<T> for T where
T: ?Sized,
const: unstable · sourcepub fn borrow_mut(&mut self) -> &mut T
pub fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more