Struct iced_x86::OpCodeInfo
source · [−]pub struct OpCodeInfo { /* private fields */ }Expand description
Opcode info, returned by Code::op_code() and Instruction::op_code()
Implementations
sourceimpl OpCodeInfo
impl OpCodeInfo
sourcepub const fn code(&self) -> Code
pub const fn code(&self) -> Code
Gets the code
Examples
use iced_x86::*;
let op_code = Code::EVEX_Vmovapd_ymm_k1z_ymmm256.op_code();
assert_eq!(op_code.code(), Code::EVEX_Vmovapd_ymm_k1z_ymmm256);sourcepub fn mnemonic(&self) -> Mnemonic
pub fn mnemonic(&self) -> Mnemonic
Gets the mnemonic
Examples
use iced_x86::*;
let op_code = Code::EVEX_Vmovapd_ymm_k1z_ymmm256.op_code();
assert_eq!(op_code.mnemonic(), Mnemonic::Vmovapd);sourcepub const fn encoding(&self) -> EncodingKind
pub const fn encoding(&self) -> EncodingKind
Gets the encoding
Examples
use iced_x86::*;
let op_code = Code::EVEX_Vmovapd_ymm_k1z_ymmm256.op_code();
assert_eq!(op_code.encoding(), EncodingKind::EVEX);sourcepub fn is_instruction(&self) -> bool
pub fn is_instruction(&self) -> bool
true if it’s an instruction, false if it’s eg. Code::INVALID, db, dw, dd, dq, zero_bytes
Examples
use iced_x86::*;
assert!(Code::EVEX_Vmovapd_ymm_k1z_ymmm256.op_code().is_instruction());
assert!(!Code::INVALID.op_code().is_instruction());
assert!(!Code::DeclareByte.op_code().is_instruction());sourcepub const fn fwait(&self) -> bool
pub const fn fwait(&self) -> bool
true if an FWAIT (9B) instruction is added before the instruction
sourcepub const fn operand_size(&self) -> u32
pub const fn operand_size(&self) -> u32
(Legacy encoding) Gets the required operand size (16,32,64) or 0
sourcepub const fn address_size(&self) -> u32
pub const fn address_size(&self) -> u32
(Legacy encoding) Gets the required address size (16,32,64) or 0
sourcepub const fn w(&self) -> u32
pub const fn w(&self) -> u32
(VEX/XOP/EVEX/MVEX) W value or default value if is_wig() or is_wig32() is true
sourcepub const fn is_lig(&self) -> bool
pub const fn is_lig(&self) -> bool
(VEX/XOP/EVEX) true if the L / L'L fields are ignored.
EVEX: if reg-only ops and {er} (EVEX.b is set), L'L is the rounding control and not ignored.
sourcepub const fn is_wig(&self) -> bool
pub const fn is_wig(&self) -> bool
(VEX/XOP/EVEX/MVEX) true if the W field is ignored in 16/32/64-bit modes
sourcepub const fn is_wig32(&self) -> bool
pub const fn is_wig32(&self) -> bool
(VEX/XOP/EVEX/MVEX) true if the W field is ignored in 16/32-bit modes (but not 64-bit mode)
sourcepub const fn tuple_type(&self) -> TupleType
pub const fn tuple_type(&self) -> TupleType
(EVEX/MVEX) Gets the tuple type
sourcepub fn mvex_eh_bit(&self) -> MvexEHBit
pub fn mvex_eh_bit(&self) -> MvexEHBit
(MVEX) Gets the EH bit that’s required to encode this instruction
sourcepub fn mvex_can_use_eviction_hint(&self) -> bool
pub fn mvex_can_use_eviction_hint(&self) -> bool
(MVEX) true if the instruction supports eviction hint (if it has a memory operand)
sourcepub fn mvex_can_use_imm_rounding_control(&self) -> bool
pub fn mvex_can_use_imm_rounding_control(&self) -> bool
(MVEX) true if the instruction’s rounding control bits are stored in imm8[1:0]
sourcepub fn mvex_ignores_op_mask_register(&self) -> bool
pub fn mvex_ignores_op_mask_register(&self) -> bool
(MVEX) true if the instruction ignores op mask registers (eg. {k1})
sourcepub fn mvex_no_sae_rc(&self) -> bool
pub fn mvex_no_sae_rc(&self) -> bool
(MVEX) true if the instruction must have MVEX.SSS=000 if MVEX.EH=1
sourcepub fn mvex_tuple_type_lut_kind(&self) -> MvexTupleTypeLutKind
pub fn mvex_tuple_type_lut_kind(&self) -> MvexTupleTypeLutKind
(MVEX) Gets the tuple type / conv lut kind
sourcepub fn mvex_conversion_func(&self) -> MvexConvFn
pub fn mvex_conversion_func(&self) -> MvexConvFn
(MVEX) Gets the conversion function, eg. Sf32
sourcepub fn mvex_valid_conversion_funcs_mask(&self) -> u8
pub fn mvex_valid_conversion_funcs_mask(&self) -> u8
(MVEX) Gets flags indicating which conversion functions are valid (bit 0 == func 0)
sourcepub fn mvex_valid_swizzle_funcs_mask(&self) -> u8
pub fn mvex_valid_swizzle_funcs_mask(&self) -> u8
(MVEX) Gets flags indicating which swizzle functions are valid (bit 0 == func 0)
sourcepub fn memory_size(&self) -> MemorySize
pub fn memory_size(&self) -> MemorySize
If it has a memory operand, gets the MemorySize (non-broadcast memory type)
sourcepub fn broadcast_memory_size(&self) -> MemorySize
pub fn broadcast_memory_size(&self) -> MemorySize
If it has a memory operand, gets the MemorySize (broadcast memory type)
sourcepub const fn can_broadcast(&self) -> bool
pub const fn can_broadcast(&self) -> bool
(EVEX) true if the instruction supports broadcasting (EVEX.b bit) (if it has a memory operand)
sourcepub const fn can_use_rounding_control(&self) -> bool
pub const fn can_use_rounding_control(&self) -> bool
(EVEX/MVEX) true if the instruction supports rounding control
sourcepub const fn can_suppress_all_exceptions(&self) -> bool
pub const fn can_suppress_all_exceptions(&self) -> bool
(EVEX/MVEX) true if the instruction supports suppress all exceptions
sourcepub const fn can_use_op_mask_register(&self) -> bool
pub const fn can_use_op_mask_register(&self) -> bool
(EVEX/MVEX) true if an opmask register can be used
sourcepub const fn require_op_mask_register(&self) -> bool
pub const fn require_op_mask_register(&self) -> bool
(EVEX/MVEX) true if a non-zero opmask register must be used
sourcepub const fn can_use_zeroing_masking(&self) -> bool
pub const fn can_use_zeroing_masking(&self) -> bool
(EVEX) true if the instruction supports zeroing masking (if one of the opmask registers K1-K7 is used and destination operand is not a memory operand)
sourcepub const fn can_use_lock_prefix(&self) -> bool
pub const fn can_use_lock_prefix(&self) -> bool
true if the LOCK (F0) prefix can be used
sourcepub const fn can_use_xacquire_prefix(&self) -> bool
pub const fn can_use_xacquire_prefix(&self) -> bool
true if the XACQUIRE (F2) prefix can be used
sourcepub const fn can_use_xrelease_prefix(&self) -> bool
pub const fn can_use_xrelease_prefix(&self) -> bool
true if the XRELEASE (F3) prefix can be used
sourcepub const fn can_use_rep_prefix(&self) -> bool
pub const fn can_use_rep_prefix(&self) -> bool
true if the REP / REPE (F3) prefixes can be used
sourcepub const fn can_use_repne_prefix(&self) -> bool
pub const fn can_use_repne_prefix(&self) -> bool
true if the REPNE (F2) prefix can be used
sourcepub const fn can_use_bnd_prefix(&self) -> bool
pub const fn can_use_bnd_prefix(&self) -> bool
true if the BND (F2) prefix can be used
sourcepub const fn can_use_hint_taken_prefix(&self) -> bool
pub const fn can_use_hint_taken_prefix(&self) -> bool
true if the HINT-TAKEN (3E) and HINT-NOT-TAKEN (2E) prefixes can be used
sourcepub const fn can_use_notrack_prefix(&self) -> bool
pub const fn can_use_notrack_prefix(&self) -> bool
true if the NOTRACK (3E) prefix can be used
sourcepub const fn ignores_rounding_control(&self) -> bool
pub const fn ignores_rounding_control(&self) -> bool
true if rounding control is ignored (#UD is not generated)
sourcepub const fn amd_lock_reg_bit(&self) -> bool
pub const fn amd_lock_reg_bit(&self) -> bool
true if the LOCK prefix can be used as an extra register bit (bit 3) to access registers 8-15 without a REX prefix (eg. in 32-bit mode)
sourcepub const fn default_op_size64(&self) -> bool
pub const fn default_op_size64(&self) -> bool
true if the default operand size is 64 in 64-bit mode. A 66 prefix can switch to 16-bit operand size.
sourcepub const fn force_op_size64(&self) -> bool
pub const fn force_op_size64(&self) -> bool
true if the operand size is always 64 in 64-bit mode. A 66 prefix is ignored.
sourcepub const fn intel_force_op_size64(&self) -> bool
pub const fn intel_force_op_size64(&self) -> bool
true if the Intel decoder forces 64-bit operand size. A 66 prefix is ignored.
sourcepub const fn must_be_cpl0(&self) -> bool
pub const fn must_be_cpl0(&self) -> bool
true if it can only be executed when CPL=0
sourcepub const fn is_input_output(&self) -> bool
pub const fn is_input_output(&self) -> bool
true if the instruction accesses the I/O address space (eg. IN, OUT, INS, OUTS)
sourcepub const fn is_nop(&self) -> bool
pub const fn is_nop(&self) -> bool
true if it’s one of the many nop instructions (does not include FPU nop instructions, eg. FNOP)
sourcepub const fn is_reserved_nop(&self) -> bool
pub const fn is_reserved_nop(&self) -> bool
true if it’s one of the many reserved nop instructions (eg. 0F0D, 0F18-0F1F)
sourcepub const fn is_serializing_intel(&self) -> bool
pub const fn is_serializing_intel(&self) -> bool
true if it’s a serializing instruction (Intel CPUs)
sourcepub const fn is_serializing_amd(&self) -> bool
pub const fn is_serializing_amd(&self) -> bool
true if it’s a serializing instruction (AMD CPUs)
sourcepub const fn may_require_cpl0(&self) -> bool
pub const fn may_require_cpl0(&self) -> bool
true if the instruction requires either CPL=0 or CPL<=3 depending on some CPU option (eg. CR4.TSD, CR4.PCE, CR4.UMIP)
sourcepub const fn is_cet_tracked(&self) -> bool
pub const fn is_cet_tracked(&self) -> bool
true if it’s a tracked JMP/CALL indirect instruction (CET)
sourcepub const fn is_non_temporal(&self) -> bool
pub const fn is_non_temporal(&self) -> bool
true if it’s a non-temporal hint memory access (eg. MOVNTDQ)
sourcepub const fn is_fpu_no_wait(&self) -> bool
pub const fn is_fpu_no_wait(&self) -> bool
true if it’s a no-wait FPU instruction, eg. FNINIT
sourcepub const fn ignores_mod_bits(&self) -> bool
pub const fn ignores_mod_bits(&self) -> bool
true if the mod bits are ignored and it’s assumed modrm[7:6] == 11b
sourcepub const fn requires_unique_reg_nums(&self) -> bool
pub const fn requires_unique_reg_nums(&self) -> bool
true if the index reg’s reg-num (vsib op) (if any) and register ops’ reg-nums must be unique,
eg. MNEMONIC XMM1,YMM1,[RAX+ZMM1*2] is invalid. Registers = XMM/YMM/ZMM/TMM.
sourcepub const fn requires_unique_dest_reg_num(&self) -> bool
pub const fn requires_unique_dest_reg_num(&self) -> bool
true if the destination register’s reg-num must not be present in any other operand, eg. MNEMONIC XMM1,YMM1,[RAX+ZMM1*2]
is invalid. Registers = XMM/YMM/ZMM/TMM.
sourcepub const fn is_privileged(&self) -> bool
pub const fn is_privileged(&self) -> bool
true if it’s a privileged instruction (all CPL=0 instructions (except VMCALL) and IOPL instructions IN, INS, OUT, OUTS, CLI, STI)
sourcepub const fn is_save_restore(&self) -> bool
pub const fn is_save_restore(&self) -> bool
true if it reads/writes too many registers
sourcepub const fn is_stack_instruction(&self) -> bool
pub const fn is_stack_instruction(&self) -> bool
true if it’s an instruction that implicitly uses the stack register, eg. CALL, POP, etc
sourcepub const fn ignores_segment(&self) -> bool
pub const fn ignores_segment(&self) -> bool
true if the instruction doesn’t read the segment register if it uses a memory operand
sourcepub const fn is_op_mask_read_write(&self) -> bool
pub const fn is_op_mask_read_write(&self) -> bool
true if the opmask register is read and written (instead of just read). This also implies that it can’t be K0.
sourcepub const fn protected_mode(&self) -> bool
pub const fn protected_mode(&self) -> bool
true if it can be executed in protected mode
sourcepub const fn virtual8086_mode(&self) -> bool
pub const fn virtual8086_mode(&self) -> bool
true if it can be executed in virtual 8086 mode
sourcepub const fn compatibility_mode(&self) -> bool
pub const fn compatibility_mode(&self) -> bool
true if it can be executed in compatibility mode
sourcepub const fn use_outside_smm(&self) -> bool
pub const fn use_outside_smm(&self) -> bool
true if it can be used outside SMM
sourcepub const fn use_in_smm(&self) -> bool
pub const fn use_in_smm(&self) -> bool
true if it can be used in SMM
sourcepub const fn use_outside_enclave_sgx(&self) -> bool
pub const fn use_outside_enclave_sgx(&self) -> bool
true if it can be used outside an enclave (SGX)
sourcepub const fn use_in_enclave_sgx1(&self) -> bool
pub const fn use_in_enclave_sgx1(&self) -> bool
true if it can be used inside an enclave (SGX1)
sourcepub const fn use_in_enclave_sgx2(&self) -> bool
pub const fn use_in_enclave_sgx2(&self) -> bool
true if it can be used inside an enclave (SGX2)
sourcepub const fn use_outside_vmx_op(&self) -> bool
pub const fn use_outside_vmx_op(&self) -> bool
true if it can be used outside VMX operation
sourcepub const fn use_in_vmx_root_op(&self) -> bool
pub const fn use_in_vmx_root_op(&self) -> bool
true if it can be used in VMX root operation
sourcepub const fn use_in_vmx_non_root_op(&self) -> bool
pub const fn use_in_vmx_non_root_op(&self) -> bool
true if it can be used in VMX non-root operation
sourcepub const fn use_outside_seam(&self) -> bool
pub const fn use_outside_seam(&self) -> bool
true if it can be used outside SEAM
sourcepub const fn use_in_seam(&self) -> bool
pub const fn use_in_seam(&self) -> bool
true if it can be used in SEAM
sourcepub const fn tdx_non_root_gen_ud(&self) -> bool
pub const fn tdx_non_root_gen_ud(&self) -> bool
true if #UD is generated in TDX non-root operation
sourcepub const fn tdx_non_root_gen_ve(&self) -> bool
pub const fn tdx_non_root_gen_ve(&self) -> bool
true if #VE is generated in TDX non-root operation
sourcepub const fn tdx_non_root_may_gen_ex(&self) -> bool
pub const fn tdx_non_root_may_gen_ex(&self) -> bool
true if an exception (eg. #GP(0), #VE) may be generated in TDX non-root operation
sourcepub const fn intel_vm_exit(&self) -> bool
pub const fn intel_vm_exit(&self) -> bool
(Intel VMX) true if it causes a VM exit in VMX non-root operation
sourcepub const fn intel_may_vm_exit(&self) -> bool
pub const fn intel_may_vm_exit(&self) -> bool
(Intel VMX) true if it may cause a VM exit in VMX non-root operation
sourcepub const fn intel_smm_vm_exit(&self) -> bool
pub const fn intel_smm_vm_exit(&self) -> bool
(Intel VMX) true if it causes an SMM VM exit in VMX root operation (if dual-monitor treatment is activated)
sourcepub const fn amd_vm_exit(&self) -> bool
pub const fn amd_vm_exit(&self) -> bool
(AMD SVM) true if it causes a #VMEXIT in guest mode
sourcepub const fn amd_may_vm_exit(&self) -> bool
pub const fn amd_may_vm_exit(&self) -> bool
(AMD SVM) true if it may cause a #VMEXIT in guest mode
sourcepub const fn tsx_impl_abort(&self) -> bool
pub const fn tsx_impl_abort(&self) -> bool
true if it causes a TSX abort inside a TSX transaction depending on the implementation
sourcepub const fn tsx_may_abort(&self) -> bool
pub const fn tsx_may_abort(&self) -> bool
true if it may cause a TSX abort inside a TSX transaction depending on some condition
sourcepub const fn intel_decoder16(&self) -> bool
pub const fn intel_decoder16(&self) -> bool
true if it’s decoded by iced’s 16-bit Intel decoder
sourcepub const fn intel_decoder32(&self) -> bool
pub const fn intel_decoder32(&self) -> bool
true if it’s decoded by iced’s 32-bit Intel decoder
sourcepub const fn intel_decoder64(&self) -> bool
pub const fn intel_decoder64(&self) -> bool
true if it’s decoded by iced’s 64-bit Intel decoder
sourcepub const fn amd_decoder16(&self) -> bool
pub const fn amd_decoder16(&self) -> bool
true if it’s decoded by iced’s 16-bit AMD decoder
sourcepub const fn amd_decoder32(&self) -> bool
pub const fn amd_decoder32(&self) -> bool
true if it’s decoded by iced’s 32-bit AMD decoder
sourcepub const fn amd_decoder64(&self) -> bool
pub const fn amd_decoder64(&self) -> bool
true if it’s decoded by iced’s 64-bit AMD decoder
sourcepub fn decoder_option(&self) -> u32
pub fn decoder_option(&self) -> u32
Gets the decoder option that’s needed to decode the instruction or DecoderOptions::NONE.
The return value is a DecoderOptions value.
sourcepub const fn table(&self) -> OpCodeTableKind
pub const fn table(&self) -> OpCodeTableKind
Gets the opcode table
sourcepub const fn mandatory_prefix(&self) -> MandatoryPrefix
pub const fn mandatory_prefix(&self) -> MandatoryPrefix
Gets the mandatory prefix
sourcepub const fn op_code(&self) -> u32
pub const fn op_code(&self) -> u32
Gets the opcode byte(s). The low byte(s) of this value is the opcode. The length is in op_code_len().
It doesn’t include the table value, see table().
Examples
use iced_x86::*;
assert_eq!(Code::Ffreep_sti.op_code().op_code(), 0xDFC0);
assert_eq!(Code::Vmrunw.op_code().op_code(), 0x01D8);
assert_eq!(Code::Sub_r8_rm8.op_code().op_code(), 0x2A);
assert_eq!(Code::Cvtpi2ps_xmm_mmm64.op_code().op_code(), 0x2A);sourcepub const fn op_code_len(&self) -> u32
pub const fn op_code_len(&self) -> u32
Gets the length of the opcode bytes (op_code()). The low bytes is the opcode value.
Examples
use iced_x86::*;
assert_eq!(Code::Ffreep_sti.op_code().op_code_len(), 2);
assert_eq!(Code::Vmrunw.op_code().op_code_len(), 2);
assert_eq!(Code::Sub_r8_rm8.op_code().op_code_len(), 1);
assert_eq!(Code::Cvtpi2ps_xmm_mmm64.op_code().op_code_len(), 1);sourcepub const fn group_index(&self) -> i32
pub const fn group_index(&self) -> i32
Group index (0-7) or -1. If it’s 0-7, it’s stored in the reg field of the modrm byte.
sourcepub const fn is_rm_group(&self) -> bool
pub const fn is_rm_group(&self) -> bool
true if it’s part of a modrm.rm group
sourcepub const fn rm_group_index(&self) -> i32
pub const fn rm_group_index(&self) -> i32
Group index (0-7) or -1. If it’s 0-7, it’s stored in the rm field of the modrm byte.
sourcepub const fn op0_kind(&self) -> OpCodeOperandKind
pub const fn op0_kind(&self) -> OpCodeOperandKind
Gets operand #0’s opkind
sourcepub const fn op1_kind(&self) -> OpCodeOperandKind
pub const fn op1_kind(&self) -> OpCodeOperandKind
Gets operand #1’s opkind
sourcepub const fn op2_kind(&self) -> OpCodeOperandKind
pub const fn op2_kind(&self) -> OpCodeOperandKind
Gets operand #2’s opkind
sourcepub const fn op3_kind(&self) -> OpCodeOperandKind
pub const fn op3_kind(&self) -> OpCodeOperandKind
Gets operand #3’s opkind
sourcepub const fn op4_kind(&self) -> OpCodeOperandKind
pub const fn op4_kind(&self) -> OpCodeOperandKind
Gets operand #4’s opkind
sourcepub fn op_kind(&self, operand: u32) -> OpCodeOperandKind
pub fn op_kind(&self, operand: u32) -> OpCodeOperandKind
sourcepub fn op_kinds(&self) -> &[OpCodeOperandKind]
pub fn op_kinds(&self) -> &[OpCodeOperandKind]
Gets all operand kinds
sourcepub const fn is_available_in_mode(&self, bitness: u32) -> bool
pub const fn is_available_in_mode(&self, bitness: u32) -> bool
Checks if the instruction is available in 16-bit mode, 32-bit mode or 64-bit mode
Arguments
bitness: 16, 32 or 64
sourcepub fn op_code_string(&self) -> &str
pub fn op_code_string(&self) -> &str
Gets the opcode string, eg. VEX.128.66.0F38.W0 78 /r, see also instruction_string()
Examples
use iced_x86::*;
let op_code = Code::EVEX_Vmovapd_ymm_k1z_ymmm256.op_code();
assert_eq!(op_code.op_code_string(), "EVEX.256.66.0F.W1 28 /r");sourcepub fn instruction_string(&self) -> &str
pub fn instruction_string(&self) -> &str
Gets the instruction string, eg. VPBROADCASTB xmm1, xmm2/m8, see also op_code_string()
Examples
use iced_x86::*;
let op_code = Code::EVEX_Vmovapd_ymm_k1z_ymmm256.op_code();
assert_eq!(op_code.instruction_string(), "VMOVAPD ymm1 {k1}{z}, ymm2/m256");Trait Implementations
sourceimpl Clone for OpCodeInfo
impl Clone for OpCodeInfo
sourcefn clone(&self) -> OpCodeInfo
fn clone(&self) -> OpCodeInfo
1.0.0 · sourcefn clone_from(&mut self, source: &Self)
fn clone_from(&mut self, source: &Self)
source. Read more