1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236
//! A single-producer single-consumer concurrent queue
//!
//! This module contains the implementation of an SPSC queue which can be used
//! concurrently between two threads. This data structure is safe to use and
//! enforces the semantics that there is one pusher and one popper.
// https://www.1024cores.net/home/lock-free-algorithms/queues/unbounded-spsc-queue
#[cfg(all(test, not(target_os = "emscripten")))]
mod tests;
use core::cell::UnsafeCell;
use core::ptr;
use crate::boxed::Box;
use crate::sync::atomic::{AtomicPtr, AtomicUsize, Ordering};
use super::cache_aligned::CacheAligned;
// Node within the linked list queue of messages to send
struct Node<T> {
// FIXME: this could be an uninitialized T if we're careful enough, and
// that would reduce memory usage (and be a bit faster).
// is it worth it?
value: Option<T>, // nullable for re-use of nodes
cached: bool, // This node goes into the node cache
next: AtomicPtr<Node<T>>, // next node in the queue
}
/// The single-producer single-consumer queue. This structure is not cloneable,
/// but it can be safely shared in an Arc if it is guaranteed that there
/// is only one popper and one pusher touching the queue at any one point in
/// time.
pub struct Queue<T, ProducerAddition = (), ConsumerAddition = ()> {
// consumer fields
consumer: CacheAligned<Consumer<T, ConsumerAddition>>,
// producer fields
producer: CacheAligned<Producer<T, ProducerAddition>>,
}
struct Consumer<T, Addition> {
tail: UnsafeCell<*mut Node<T>>, // where to pop from
tail_prev: AtomicPtr<Node<T>>, // where to pop from
cache_bound: usize, // maximum cache size
cached_nodes: AtomicUsize, // number of nodes marked as cacheable
addition: Addition,
}
struct Producer<T, Addition> {
head: UnsafeCell<*mut Node<T>>, // where to push to
first: UnsafeCell<*mut Node<T>>, // where to get new nodes from
tail_copy: UnsafeCell<*mut Node<T>>, // between first/tail
addition: Addition,
}
unsafe impl<T: Send, P: Send + Sync, C: Send + Sync> Send for Queue<T, P, C> {}
unsafe impl<T: Send, P: Send + Sync, C: Send + Sync> Sync for Queue<T, P, C> {}
impl<T> Node<T> {
fn new() -> *mut Node<T> {
Box::into_raw(box Node {
value: None,
cached: false,
next: AtomicPtr::new(ptr::null_mut::<Node<T>>()),
})
}
}
impl<T, ProducerAddition, ConsumerAddition> Queue<T, ProducerAddition, ConsumerAddition> {
/// Creates a new queue. With given additional elements in the producer and
/// consumer portions of the queue.
///
/// Due to the performance implications of cache-contention,
/// we wish to keep fields used mainly by the producer on a separate cache
/// line than those used by the consumer.
/// Since cache lines are usually 64 bytes, it is unreasonably expensive to
/// allocate one for small fields, so we allow users to insert additional
/// fields into the cache lines already allocated by this for the producer
/// and consumer.
///
/// This is unsafe as the type system doesn't enforce a single
/// consumer-producer relationship. It also allows the consumer to `pop`
/// items while there is a `peek` active due to all methods having a
/// non-mutable receiver.
///
/// # Arguments
///
/// * `bound` - This queue implementation is implemented with a linked
/// list, and this means that a push is always a malloc. In
/// order to amortize this cost, an internal cache of nodes is
/// maintained to prevent a malloc from always being
/// necessary. This bound is the limit on the size of the
/// cache (if desired). If the value is 0, then the cache has
/// no bound. Otherwise, the cache will never grow larger than
/// `bound` (although the queue itself could be much larger.
pub unsafe fn with_additions(
bound: usize,
producer_addition: ProducerAddition,
consumer_addition: ConsumerAddition,
) -> Self {
let n1 = Node::new();
let n2 = Node::new();
(*n1).next.store(n2, Ordering::Relaxed);
Queue {
consumer: CacheAligned::new(Consumer {
tail: UnsafeCell::new(n2),
tail_prev: AtomicPtr::new(n1),
cache_bound: bound,
cached_nodes: AtomicUsize::new(0),
addition: consumer_addition,
}),
producer: CacheAligned::new(Producer {
head: UnsafeCell::new(n2),
first: UnsafeCell::new(n1),
tail_copy: UnsafeCell::new(n1),
addition: producer_addition,
}),
}
}
/// Pushes a new value onto this queue. Note that to use this function
/// safely, it must be externally guaranteed that there is only one pusher.
pub fn push(&self, t: T) {
unsafe {
// Acquire a node (which either uses a cached one or allocates a new
// one), and then append this to the 'head' node.
let n = self.alloc();
assert!((*n).value.is_none());
(*n).value = Some(t);
(*n).next.store(ptr::null_mut(), Ordering::Relaxed);
(**self.producer.head.get()).next.store(n, Ordering::Release);
*(&self.producer.head).get() = n;
}
}
unsafe fn alloc(&self) -> *mut Node<T> {
// First try to see if we can consume the 'first' node for our uses.
if *self.producer.first.get() != *self.producer.tail_copy.get() {
let ret = *self.producer.first.get();
*self.producer.0.first.get() = (*ret).next.load(Ordering::Relaxed);
return ret;
}
// If the above fails, then update our copy of the tail and try
// again.
*self.producer.0.tail_copy.get() = self.consumer.tail_prev.load(Ordering::Acquire);
if *self.producer.first.get() != *self.producer.tail_copy.get() {
let ret = *self.producer.first.get();
*self.producer.0.first.get() = (*ret).next.load(Ordering::Relaxed);
return ret;
}
// If all of that fails, then we have to allocate a new node
// (there's nothing in the node cache).
Node::new()
}
/// Attempts to pop a value from this queue. Remember that to use this type
/// safely you must ensure that there is only one popper at a time.
pub fn pop(&self) -> Option<T> {
unsafe {
// The `tail` node is not actually a used node, but rather a
// sentinel from where we should start popping from. Hence, look at
// tail's next field and see if we can use it. If we do a pop, then
// the current tail node is a candidate for going into the cache.
let tail = *self.consumer.tail.get();
let next = (*tail).next.load(Ordering::Acquire);
if next.is_null() {
return None;
}
assert!((*next).value.is_some());
let ret = (*next).value.take();
*self.consumer.0.tail.get() = next;
if self.consumer.cache_bound == 0 {
self.consumer.tail_prev.store(tail, Ordering::Release);
} else {
let cached_nodes = self.consumer.cached_nodes.load(Ordering::Relaxed);
if cached_nodes < self.consumer.cache_bound && !(*tail).cached {
self.consumer.cached_nodes.store(cached_nodes, Ordering::Relaxed);
(*tail).cached = true;
}
if (*tail).cached {
self.consumer.tail_prev.store(tail, Ordering::Release);
} else {
(*self.consumer.tail_prev.load(Ordering::Relaxed))
.next
.store(next, Ordering::Relaxed);
// We have successfully erased all references to 'tail', so
// now we can safely drop it.
let _: Box<Node<T>> = Box::from_raw(tail);
}
}
ret
}
}
/// Attempts to peek at the head of the queue, returning `None` if the queue
/// has no data currently
///
/// # Warning
/// The reference returned is invalid if it is not used before the consumer
/// pops the value off the queue. If the producer then pushes another value
/// onto the queue, it will overwrite the value pointed to by the reference.
pub fn peek(&self) -> Option<&mut T> {
// This is essentially the same as above with all the popping bits
// stripped out.
unsafe {
let tail = *self.consumer.tail.get();
let next = (*tail).next.load(Ordering::Acquire);
if next.is_null() { None } else { (*next).value.as_mut() }
}
}
pub fn producer_addition(&self) -> &ProducerAddition {
&self.producer.addition
}
pub fn consumer_addition(&self) -> &ConsumerAddition {
&self.consumer.addition
}
}
impl<T, ProducerAddition, ConsumerAddition> Drop for Queue<T, ProducerAddition, ConsumerAddition> {
fn drop(&mut self) {
unsafe {
let mut cur = *self.producer.first.get();
while !cur.is_null() {
let next = (*cur).next.load(Ordering::Relaxed);
let _n: Box<Node<T>> = Box::from_raw(cur);
cur = next;
}
}
}
}