1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
//! Implementation of panics backed by libgcc/libunwind (in some form).
//!
//! For background on exception handling and stack unwinding please see
//! "Exception Handling in LLVM" (llvm.org/docs/ExceptionHandling.html) and
//! documents linked from it.
//! These are also good reads:
//!  * <https://itanium-cxx-abi.github.io/cxx-abi/abi-eh.html>
//!  * <https://monoinfinito.wordpress.com/series/exception-handling-in-c/>
//!  * <https://www.airs.com/blog/index.php?s=exception+frames>
//!
//! ## A brief summary
//!
//! Exception handling happens in two phases: a search phase and a cleanup
//! phase.
//!
//! In both phases the unwinder walks stack frames from top to bottom using
//! information from the stack frame unwind sections of the current process's
//! modules ("module" here refers to an OS module, i.e., an executable or a
//! dynamic library).
//!
//! For each stack frame, it invokes the associated "personality routine", whose
//! address is also stored in the unwind info section.
//!
//! In the search phase, the job of a personality routine is to examine
//! exception object being thrown, and to decide whether it should be caught at
//! that stack frame. Once the handler frame has been identified, cleanup phase
//! begins.
//!
//! In the cleanup phase, the unwinder invokes each personality routine again.
//! This time it decides which (if any) cleanup code needs to be run for
//! the current stack frame. If so, the control is transferred to a special
//! branch in the function body, the "landing pad", which invokes destructors,
//! frees memory, etc. At the end of the landing pad, control is transferred
//! back to the unwinder and unwinding resumes.
//!
//! Once stack has been unwound down to the handler frame level, unwinding stops
//! and the last personality routine transfers control to the catch block.

use super::dwarf::eh::{self, EHAction, EHContext};
use libc::{c_int, uintptr_t};
use unwind as uw;

// Register ids were lifted from LLVM's TargetLowering::getExceptionPointerRegister()
// and TargetLowering::getExceptionSelectorRegister() for each architecture,
// then mapped to DWARF register numbers via register definition tables
// (typically <arch>RegisterInfo.td, search for "DwarfRegNum").
// See also https://llvm.org/docs/WritingAnLLVMBackend.html#defining-a-register.

#[cfg(target_arch = "x86")]
const UNWIND_DATA_REG: (i32, i32) = (0, 2); // EAX, EDX

#[cfg(target_arch = "x86_64")]
const UNWIND_DATA_REG: (i32, i32) = (0, 1); // RAX, RDX

#[cfg(any(target_arch = "arm", target_arch = "aarch64"))]
const UNWIND_DATA_REG: (i32, i32) = (0, 1); // R0, R1 / X0, X1

#[cfg(target_arch = "m68k")]
const UNWIND_DATA_REG: (i32, i32) = (0, 1); // D0, D1

#[cfg(any(target_arch = "mips", target_arch = "mips64"))]
const UNWIND_DATA_REG: (i32, i32) = (4, 5); // A0, A1

#[cfg(any(target_arch = "powerpc", target_arch = "powerpc64"))]
const UNWIND_DATA_REG: (i32, i32) = (3, 4); // R3, R4 / X3, X4

#[cfg(target_arch = "s390x")]
const UNWIND_DATA_REG: (i32, i32) = (6, 7); // R6, R7

#[cfg(any(target_arch = "sparc", target_arch = "sparc64"))]
const UNWIND_DATA_REG: (i32, i32) = (24, 25); // I0, I1

#[cfg(target_arch = "hexagon")]
const UNWIND_DATA_REG: (i32, i32) = (0, 1); // R0, R1

#[cfg(any(target_arch = "riscv64", target_arch = "riscv32"))]
const UNWIND_DATA_REG: (i32, i32) = (10, 11); // x10, x11

// The following code is based on GCC's C and C++ personality routines.  For reference, see:
// https://github.com/gcc-mirror/gcc/blob/master/libstdc++-v3/libsupc++/eh_personality.cc
// https://github.com/gcc-mirror/gcc/blob/trunk/libgcc/unwind-c.c

cfg_if::cfg_if! {
    if #[cfg(all(target_arch = "arm", not(target_os = "ios"), not(target_os = "watchos"), not(target_os = "netbsd")))] {
        // ARM EHABI personality routine.
        // https://infocenter.arm.com/help/topic/com.arm.doc.ihi0038b/IHI0038B_ehabi.pdf
        //
        // iOS uses the default routine instead since it uses SjLj unwinding.
        #[lang = "eh_personality"]
        unsafe extern "C" fn rust_eh_personality(
            state: uw::_Unwind_State,
            exception_object: *mut uw::_Unwind_Exception,
            context: *mut uw::_Unwind_Context,
        ) -> uw::_Unwind_Reason_Code {
            let state = state as c_int;
            let action = state & uw::_US_ACTION_MASK as c_int;
            let search_phase = if action == uw::_US_VIRTUAL_UNWIND_FRAME as c_int {
                // Backtraces on ARM will call the personality routine with
                // state == _US_VIRTUAL_UNWIND_FRAME | _US_FORCE_UNWIND. In those cases
                // we want to continue unwinding the stack, otherwise all our backtraces
                // would end at __rust_try
                if state & uw::_US_FORCE_UNWIND as c_int != 0 {
                    return continue_unwind(exception_object, context);
                }
                true
            } else if action == uw::_US_UNWIND_FRAME_STARTING as c_int {
                false
            } else if action == uw::_US_UNWIND_FRAME_RESUME as c_int {
                return continue_unwind(exception_object, context);
            } else {
                return uw::_URC_FAILURE;
            };

            // The DWARF unwinder assumes that _Unwind_Context holds things like the function
            // and LSDA pointers, however ARM EHABI places them into the exception object.
            // To preserve signatures of functions like _Unwind_GetLanguageSpecificData(), which
            // take only the context pointer, GCC personality routines stash a pointer to
            // exception_object in the context, using location reserved for ARM's
            // "scratch register" (r12).
            uw::_Unwind_SetGR(context, uw::UNWIND_POINTER_REG, exception_object as uw::_Unwind_Ptr);
            // ...A more principled approach would be to provide the full definition of ARM's
            // _Unwind_Context in our libunwind bindings and fetch the required data from there
            // directly, bypassing DWARF compatibility functions.

            let eh_action = match find_eh_action(context) {
                Ok(action) => action,
                Err(_) => return uw::_URC_FAILURE,
            };
            if search_phase {
                match eh_action {
                    EHAction::None | EHAction::Cleanup(_) => {
                        return continue_unwind(exception_object, context);
                    }
                    EHAction::Catch(_) => {
                        // EHABI requires the personality routine to update the
                        // SP value in the barrier cache of the exception object.
                        (*exception_object).private[5] =
                            uw::_Unwind_GetGR(context, uw::UNWIND_SP_REG);
                        return uw::_URC_HANDLER_FOUND;
                    }
                    EHAction::Terminate => return uw::_URC_FAILURE,
                }
            } else {
                match eh_action {
                    EHAction::None => return continue_unwind(exception_object, context),
                    EHAction::Cleanup(lpad) | EHAction::Catch(lpad) => {
                        uw::_Unwind_SetGR(
                            context,
                            UNWIND_DATA_REG.0,
                            exception_object as uintptr_t,
                        );
                        uw::_Unwind_SetGR(context, UNWIND_DATA_REG.1, 0);
                        uw::_Unwind_SetIP(context, lpad);
                        return uw::_URC_INSTALL_CONTEXT;
                    }
                    EHAction::Terminate => return uw::_URC_FAILURE,
                }
            }

            // On ARM EHABI the personality routine is responsible for actually
            // unwinding a single stack frame before returning (ARM EHABI Sec. 6.1).
            unsafe fn continue_unwind(
                exception_object: *mut uw::_Unwind_Exception,
                context: *mut uw::_Unwind_Context,
            ) -> uw::_Unwind_Reason_Code {
                if __gnu_unwind_frame(exception_object, context) == uw::_URC_NO_REASON {
                    uw::_URC_CONTINUE_UNWIND
                } else {
                    uw::_URC_FAILURE
                }
            }
            // defined in libgcc
            extern "C" {
                fn __gnu_unwind_frame(
                    exception_object: *mut uw::_Unwind_Exception,
                    context: *mut uw::_Unwind_Context,
                ) -> uw::_Unwind_Reason_Code;
            }
        }
    } else {
        // Default personality routine, which is used directly on most targets
        // and indirectly on Windows x86_64 via SEH.
        unsafe extern "C" fn rust_eh_personality_impl(
            version: c_int,
            actions: uw::_Unwind_Action,
            _exception_class: uw::_Unwind_Exception_Class,
            exception_object: *mut uw::_Unwind_Exception,
            context: *mut uw::_Unwind_Context,
        ) -> uw::_Unwind_Reason_Code {
            if version != 1 {
                return uw::_URC_FATAL_PHASE1_ERROR;
            }
            let eh_action = match find_eh_action(context) {
                Ok(action) => action,
                Err(_) => return uw::_URC_FATAL_PHASE1_ERROR,
            };
            if actions as i32 & uw::_UA_SEARCH_PHASE as i32 != 0 {
                match eh_action {
                    EHAction::None | EHAction::Cleanup(_) => uw::_URC_CONTINUE_UNWIND,
                    EHAction::Catch(_) => uw::_URC_HANDLER_FOUND,
                    EHAction::Terminate => uw::_URC_FATAL_PHASE1_ERROR,
                }
            } else {
                match eh_action {
                    EHAction::None => uw::_URC_CONTINUE_UNWIND,
                    EHAction::Cleanup(lpad) | EHAction::Catch(lpad) => {
                        uw::_Unwind_SetGR(
                            context,
                            UNWIND_DATA_REG.0,
                            exception_object as uintptr_t,
                        );
                        uw::_Unwind_SetGR(context, UNWIND_DATA_REG.1, 0);
                        uw::_Unwind_SetIP(context, lpad);
                        uw::_URC_INSTALL_CONTEXT
                    }
                    EHAction::Terminate => uw::_URC_FATAL_PHASE2_ERROR,
                }
            }
        }

        cfg_if::cfg_if! {
            if #[cfg(all(windows, target_arch = "x86_64", target_env = "gnu"))] {
                // On x86_64 MinGW targets, the unwinding mechanism is SEH however the unwind
                // handler data (aka LSDA) uses GCC-compatible encoding.
                #[lang = "eh_personality"]
                #[allow(nonstandard_style)]
                unsafe extern "C" fn rust_eh_personality(
                    exceptionRecord: *mut uw::EXCEPTION_RECORD,
                    establisherFrame: uw::LPVOID,
                    contextRecord: *mut uw::CONTEXT,
                    dispatcherContext: *mut uw::DISPATCHER_CONTEXT,
                ) -> uw::EXCEPTION_DISPOSITION {
                    uw::_GCC_specific_handler(
                        exceptionRecord,
                        establisherFrame,
                        contextRecord,
                        dispatcherContext,
                        rust_eh_personality_impl,
                    )
                }
            } else {
                // The personality routine for most of our targets.
                #[lang = "eh_personality"]
                unsafe extern "C" fn rust_eh_personality(
                    version: c_int,
                    actions: uw::_Unwind_Action,
                    exception_class: uw::_Unwind_Exception_Class,
                    exception_object: *mut uw::_Unwind_Exception,
                    context: *mut uw::_Unwind_Context,
                ) -> uw::_Unwind_Reason_Code {
                    rust_eh_personality_impl(
                        version,
                        actions,
                        exception_class,
                        exception_object,
                        context,
                    )
                }
            }
        }
    }
}

unsafe fn find_eh_action(context: *mut uw::_Unwind_Context) -> Result<EHAction, ()> {
    let lsda = uw::_Unwind_GetLanguageSpecificData(context) as *const u8;
    let mut ip_before_instr: c_int = 0;
    let ip = uw::_Unwind_GetIPInfo(context, &mut ip_before_instr);
    let eh_context = EHContext {
        // The return address points 1 byte past the call instruction,
        // which could be in the next IP range in LSDA range table.
        //
        // `ip = -1` has special meaning, so use wrapping sub to allow for that
        ip: if ip_before_instr != 0 { ip } else { ip.wrapping_sub(1) },
        func_start: uw::_Unwind_GetRegionStart(context),
        get_text_start: &|| uw::_Unwind_GetTextRelBase(context),
        get_data_start: &|| uw::_Unwind_GetDataRelBase(context),
    };
    eh::find_eh_action(lsda, &eh_context)
}