1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
use crate::alloc::Allocator;
use core::iter::TrustedLen;
use core::ptr::{self};
use core::slice::{self};

use super::{IntoIter, SetLenOnDrop, Vec};

// Specialization trait used for Vec::extend
pub(super) trait SpecExtend<T, I> {
    fn spec_extend(&mut self, iter: I);
}

impl<T, I, A: Allocator> SpecExtend<T, I> for Vec<T, A>
where
    I: Iterator<Item = T>,
{
    default fn spec_extend(&mut self, iter: I) {
        self.extend_desugared(iter)
    }
}

impl<T, I, A: Allocator> SpecExtend<T, I> for Vec<T, A>
where
    I: TrustedLen<Item = T>,
{
    default fn spec_extend(&mut self, iterator: I) {
        // This is the case for a TrustedLen iterator.
        let (low, high) = iterator.size_hint();
        if let Some(additional) = high {
            debug_assert_eq!(
                low,
                additional,
                "TrustedLen iterator's size hint is not exact: {:?}",
                (low, high)
            );
            self.reserve(additional);
            unsafe {
                let mut ptr = self.as_mut_ptr().add(self.len());
                let mut local_len = SetLenOnDrop::new(&mut self.len);
                iterator.for_each(move |element| {
                    ptr::write(ptr, element);
                    ptr = ptr.add(1);
                    // Since the loop executes user code which can panic we have to bump the pointer
                    // after each step.
                    // NB can't overflow since we would have had to alloc the address space
                    local_len.increment_len(1);
                });
            }
        } else {
            // Per TrustedLen contract a `None` upper bound means that the iterator length
            // truly exceeds usize::MAX, which would eventually lead to a capacity overflow anyway.
            // Since the other branch already panics eagerly (via `reserve()`) we do the same here.
            // This avoids additional codegen for a fallback code path which would eventually
            // panic anyway.
            panic!("capacity overflow");
        }
    }
}

impl<T, A: Allocator> SpecExtend<T, IntoIter<T>> for Vec<T, A> {
    fn spec_extend(&mut self, mut iterator: IntoIter<T>) {
        unsafe {
            self.append_elements(iterator.as_slice() as _);
        }
        iterator.forget_remaining_elements();
    }
}

impl<'a, T: 'a, I, A: Allocator + 'a> SpecExtend<&'a T, I> for Vec<T, A>
where
    I: Iterator<Item = &'a T>,
    T: Clone,
{
    default fn spec_extend(&mut self, iterator: I) {
        self.spec_extend(iterator.cloned())
    }
}

impl<'a, T: 'a, A: Allocator + 'a> SpecExtend<&'a T, slice::Iter<'a, T>> for Vec<T, A>
where
    T: Copy,
{
    fn spec_extend(&mut self, iterator: slice::Iter<'a, T>) {
        let slice = iterator.as_slice();
        unsafe { self.append_elements(slice) };
    }
}