pub struct HashSet<T, S = RandomState> { /* private fields */ }Expand description
A hash set implemented as a HashMap where the value is ().
As with the HashMap type, a HashSet requires that the elements
implement the Eq and Hash traits. This can frequently be achieved by
using #[derive(PartialEq, Eq, Hash)]. If you implement these yourself,
it is important that the following property holds:
k1 == k2 -> hash(k1) == hash(k2)In other words, if two keys are equal, their hashes must be equal.
It is a logic error for an item to be modified in such a way that the
item’s hash, as determined by the Hash trait, or its equality, as
determined by the Eq trait, changes while it is in the set. This is
normally only possible through Cell, RefCell, global state, I/O, or
unsafe code. The behavior resulting from such a logic error is not
specified (it could include panics, incorrect results, aborts, memory
leaks, or non-termination) but will not be undefined behavior.
Examples
use std::collections::HashSet;
// Type inference lets us omit an explicit type signature (which
// would be `HashSet<String>` in this example).
let mut books = HashSet::new();
// Add some books.
books.insert("A Dance With Dragons".to_string());
books.insert("To Kill a Mockingbird".to_string());
books.insert("The Odyssey".to_string());
books.insert("The Great Gatsby".to_string());
// Check for a specific one.
if !books.contains("The Winds of Winter") {
println!("We have {} books, but The Winds of Winter ain't one.",
books.len());
}
// Remove a book.
books.remove("The Odyssey");
// Iterate over everything.
for book in &books {
println!("{book}");
}RunThe easiest way to use HashSet with a custom type is to derive
Eq and Hash. We must also derive PartialEq, this will in the
future be implied by Eq.
use std::collections::HashSet;
#[derive(Hash, Eq, PartialEq, Debug)]
struct Viking {
name: String,
power: usize,
}
let mut vikings = HashSet::new();
vikings.insert(Viking { name: "Einar".to_string(), power: 9 });
vikings.insert(Viking { name: "Einar".to_string(), power: 9 });
vikings.insert(Viking { name: "Olaf".to_string(), power: 4 });
vikings.insert(Viking { name: "Harald".to_string(), power: 8 });
// Use derived implementation to print the vikings.
for x in &vikings {
println!("{x:?}");
}RunA HashSet with a known list of items can be initialized from an array:
use std::collections::HashSet;
let viking_names = HashSet::from(["Einar", "Olaf", "Harald"]);RunImplementations
impl<T> HashSet<T, RandomState>
source
impl<T> HashSet<T, RandomState>
sourcepub fn new() -> HashSet<T, RandomState>
source
pub fn new() -> HashSet<T, RandomState>
sourcepub fn with_capacity(capacity: usize) -> HashSet<T, RandomState>
source
pub fn with_capacity(capacity: usize) -> HashSet<T, RandomState>
sourceCreates an empty HashSet with the specified capacity.
The hash set will be able to hold at least capacity elements without
reallocating. If capacity is 0, the hash set will not allocate.
Examples
use std::collections::HashSet;
let set: HashSet<i32> = HashSet::with_capacity(10);
assert!(set.capacity() >= 10);Runimpl<T, S> HashSet<T, S>
source
impl<T, S> HashSet<T, S>
sourcepub fn iter(&self) -> Iter<'_, T>ⓘNotable traits for Iter<'a, K>impl<'a, K> Iterator for Iter<'a, K> type Item = &'a K;
source
pub fn iter(&self) -> Iter<'_, T>ⓘNotable traits for Iter<'a, K>impl<'a, K> Iterator for Iter<'a, K> type Item = &'a K;
sourcepub fn drain(&mut self) -> Drain<'_, T>ⓘNotable traits for Drain<'a, K>impl<'a, K> Iterator for Drain<'a, K> type Item = K;
1.6.0 · source
pub fn drain(&mut self) -> Drain<'_, T>ⓘNotable traits for Drain<'a, K>impl<'a, K> Iterator for Drain<'a, K> type Item = K;
1.6.0 · sourceClears the set, returning all elements as an iterator. Keeps the allocated memory for reuse.
If the returned iterator is dropped before being fully consumed, it drops the remaining elements. The returned iterator keeps a mutable borrow on the vector to optimize its implementation.
Examples
use std::collections::HashSet;
let mut set = HashSet::from([1, 2, 3]);
assert!(!set.is_empty());
// print 1, 2, 3 in an arbitrary order
for i in set.drain() {
println!("{i}");
}
assert!(set.is_empty());Runpub fn drain_filter<F>(&mut self, pred: F) -> DrainFilter<'_, T, F>ⓘNotable traits for DrainFilter<'_, K, F>impl<K, F> Iterator for DrainFilter<'_, K, F> where
F: FnMut(&K) -> bool, type Item = K; where
F: FnMut(&T) -> bool,
source
pub fn drain_filter<F>(&mut self, pred: F) -> DrainFilter<'_, T, F>ⓘNotable traits for DrainFilter<'_, K, F>impl<K, F> Iterator for DrainFilter<'_, K, F> where
F: FnMut(&K) -> bool, type Item = K; where
F: FnMut(&T) -> bool,
sourceF: FnMut(&K) -> bool, type Item = K;
Creates an iterator which uses a closure to determine if a value should be removed.
If the closure returns true, then the value is removed and yielded. If the closure returns false, the value will remain in the list and will not be yielded by the iterator.
If the iterator is only partially consumed or not consumed at all, each of the remaining values will still be subjected to the closure and removed and dropped if it returns true.
It is unspecified how many more values will be subjected to the closure
if a panic occurs in the closure, or if a panic occurs while dropping a value, or if the
DrainFilter itself is leaked.
Examples
Splitting a set into even and odd values, reusing the original set:
#![feature(hash_drain_filter)]
use std::collections::HashSet;
let mut set: HashSet<i32> = (0..8).collect();
let drained: HashSet<i32> = set.drain_filter(|v| v % 2 == 0).collect();
let mut evens = drained.into_iter().collect::<Vec<_>>();
let mut odds = set.into_iter().collect::<Vec<_>>();
evens.sort();
odds.sort();
assert_eq!(evens, vec![0, 2, 4, 6]);
assert_eq!(odds, vec![1, 3, 5, 7]);Runpub fn retain<F>(&mut self, f: F) where
F: FnMut(&T) -> bool,
1.18.0 · source
pub fn retain<F>(&mut self, f: F) where
F: FnMut(&T) -> bool,
1.18.0 · sourceRetains only the elements specified by the predicate.
In other words, remove all elements e for which f(&e) returns false.
The elements are visited in unsorted (and unspecified) order.
Examples
use std::collections::HashSet;
let mut set = HashSet::from([1, 2, 3, 4, 5, 6]);
set.retain(|&k| k % 2 == 0);
assert_eq!(set.len(), 3);Runpub fn with_hasher(hasher: S) -> HashSet<T, S>
1.7.0 · source
pub fn with_hasher(hasher: S) -> HashSet<T, S>
1.7.0 · sourceCreates a new empty hash set which will use the given hasher to hash keys.
The hash set is also created with the default initial capacity.
Warning: hasher is normally randomly generated, and
is designed to allow HashSets to be resistant to attacks that
cause many collisions and very poor performance. Setting it
manually using this function can expose a DoS attack vector.
The hash_builder passed should implement the BuildHasher trait for
the HashMap to be useful, see its documentation for details.
Examples
use std::collections::HashSet;
use std::collections::hash_map::RandomState;
let s = RandomState::new();
let mut set = HashSet::with_hasher(s);
set.insert(2);Runpub fn with_capacity_and_hasher(capacity: usize, hasher: S) -> HashSet<T, S>
1.7.0 · source
pub fn with_capacity_and_hasher(capacity: usize, hasher: S) -> HashSet<T, S>
1.7.0 · sourceCreates an empty HashSet with the specified capacity, using
hasher to hash the keys.
The hash set will be able to hold at least capacity elements without
reallocating. If capacity is 0, the hash set will not allocate.
Warning: hasher is normally randomly generated, and
is designed to allow HashSets to be resistant to attacks that
cause many collisions and very poor performance. Setting it
manually using this function can expose a DoS attack vector.
The hash_builder passed should implement the BuildHasher trait for
the HashMap to be useful, see its documentation for details.
Examples
use std::collections::HashSet;
use std::collections::hash_map::RandomState;
let s = RandomState::new();
let mut set = HashSet::with_capacity_and_hasher(10, s);
set.insert(1);Runpub fn hasher(&self) -> &S
1.9.0 · source
pub fn hasher(&self) -> &S
1.9.0 · sourceReturns a reference to the set’s BuildHasher.
Examples
use std::collections::HashSet;
use std::collections::hash_map::RandomState;
let hasher = RandomState::new();
let set: HashSet<i32> = HashSet::with_hasher(hasher);
let hasher: &RandomState = set.hasher();Runimpl<T, S> HashSet<T, S> where
T: Eq + Hash,
S: BuildHasher,
source
impl<T, S> HashSet<T, S> where
T: Eq + Hash,
S: BuildHasher,
sourcepub fn reserve(&mut self, additional: usize)
source
pub fn reserve(&mut self, additional: usize)
sourceReserves capacity for at least additional more elements to be inserted
in the HashSet. The collection may reserve more space to avoid
frequent reallocations.
Panics
Panics if the new allocation size overflows usize.
Examples
use std::collections::HashSet;
let mut set: HashSet<i32> = HashSet::new();
set.reserve(10);
assert!(set.capacity() >= 10);Runpub fn try_reserve(&mut self, additional: usize) -> Result<(), TryReserveError>
1.57.0 · source
pub fn try_reserve(&mut self, additional: usize) -> Result<(), TryReserveError>
1.57.0 · sourceTries to reserve capacity for at least additional more elements to be inserted
in the given HashSet<K, V>. The collection may reserve more space to avoid
frequent reallocations.
Errors
If the capacity overflows, or the allocator reports a failure, then an error is returned.
Examples
use std::collections::HashSet;
let mut set: HashSet<i32> = HashSet::new();
set.try_reserve(10).expect("why is the test harness OOMing on 10 bytes?");Runpub fn shrink_to_fit(&mut self)
source
pub fn shrink_to_fit(&mut self)
sourceShrinks the capacity of the set as much as possible. It will drop down as much as possible while maintaining the internal rules and possibly leaving some space in accordance with the resize policy.
Examples
use std::collections::HashSet;
let mut set = HashSet::with_capacity(100);
set.insert(1);
set.insert(2);
assert!(set.capacity() >= 100);
set.shrink_to_fit();
assert!(set.capacity() >= 2);Runpub fn shrink_to(&mut self, min_capacity: usize)
1.56.0 · source
pub fn shrink_to(&mut self, min_capacity: usize)
1.56.0 · sourceShrinks the capacity of the set with a lower limit. It will drop down no lower than the supplied limit while maintaining the internal rules and possibly leaving some space in accordance with the resize policy.
If the current capacity is less than the lower limit, this is a no-op.
Examples
use std::collections::HashSet;
let mut set = HashSet::with_capacity(100);
set.insert(1);
set.insert(2);
assert!(set.capacity() >= 100);
set.shrink_to(10);
assert!(set.capacity() >= 10);
set.shrink_to(0);
assert!(set.capacity() >= 2);Runpub fn difference<'a>(
&'a self,
other: &'a HashSet<T, S>
) -> Difference<'a, T, S>ⓘNotable traits for Difference<'a, T, S>impl<'a, T, S> Iterator for Difference<'a, T, S> where
T: Eq + Hash,
S: BuildHasher, type Item = &'a T;
source
pub fn difference<'a>(
&'a self,
other: &'a HashSet<T, S>
) -> Difference<'a, T, S>ⓘNotable traits for Difference<'a, T, S>impl<'a, T, S> Iterator for Difference<'a, T, S> where
T: Eq + Hash,
S: BuildHasher, type Item = &'a T;
sourceT: Eq + Hash,
S: BuildHasher, type Item = &'a T;
Visits the values representing the difference,
i.e., the values that are in self but not in other.
Examples
use std::collections::HashSet;
let a = HashSet::from([1, 2, 3]);
let b = HashSet::from([4, 2, 3, 4]);
// Can be seen as `a - b`.
for x in a.difference(&b) {
println!("{x}"); // Print 1
}
let diff: HashSet<_> = a.difference(&b).collect();
assert_eq!(diff, [1].iter().collect());
// Note that difference is not symmetric,
// and `b - a` means something else:
let diff: HashSet<_> = b.difference(&a).collect();
assert_eq!(diff, [4].iter().collect());Runpub fn symmetric_difference<'a>(
&'a self,
other: &'a HashSet<T, S>
) -> SymmetricDifference<'a, T, S>ⓘNotable traits for SymmetricDifference<'a, T, S>impl<'a, T, S> Iterator for SymmetricDifference<'a, T, S> where
T: Eq + Hash,
S: BuildHasher, type Item = &'a T;
source
pub fn symmetric_difference<'a>(
&'a self,
other: &'a HashSet<T, S>
) -> SymmetricDifference<'a, T, S>ⓘNotable traits for SymmetricDifference<'a, T, S>impl<'a, T, S> Iterator for SymmetricDifference<'a, T, S> where
T: Eq + Hash,
S: BuildHasher, type Item = &'a T;
sourceT: Eq + Hash,
S: BuildHasher, type Item = &'a T;
Visits the values representing the symmetric difference,
i.e., the values that are in self or in other but not in both.
Examples
use std::collections::HashSet;
let a = HashSet::from([1, 2, 3]);
let b = HashSet::from([4, 2, 3, 4]);
// Print 1, 4 in arbitrary order.
for x in a.symmetric_difference(&b) {
println!("{x}");
}
let diff1: HashSet<_> = a.symmetric_difference(&b).collect();
let diff2: HashSet<_> = b.symmetric_difference(&a).collect();
assert_eq!(diff1, diff2);
assert_eq!(diff1, [1, 4].iter().collect());Runpub fn intersection<'a>(
&'a self,
other: &'a HashSet<T, S>
) -> Intersection<'a, T, S>ⓘNotable traits for Intersection<'a, T, S>impl<'a, T, S> Iterator for Intersection<'a, T, S> where
T: Eq + Hash,
S: BuildHasher, type Item = &'a T;
source
pub fn intersection<'a>(
&'a self,
other: &'a HashSet<T, S>
) -> Intersection<'a, T, S>ⓘNotable traits for Intersection<'a, T, S>impl<'a, T, S> Iterator for Intersection<'a, T, S> where
T: Eq + Hash,
S: BuildHasher, type Item = &'a T;
sourceT: Eq + Hash,
S: BuildHasher, type Item = &'a T;
Visits the values representing the intersection,
i.e., the values that are both in self and other.
Examples
use std::collections::HashSet;
let a = HashSet::from([1, 2, 3]);
let b = HashSet::from([4, 2, 3, 4]);
// Print 2, 3 in arbitrary order.
for x in a.intersection(&b) {
println!("{x}");
}
let intersection: HashSet<_> = a.intersection(&b).collect();
assert_eq!(intersection, [2, 3].iter().collect());Runpub fn union<'a>(&'a self, other: &'a HashSet<T, S>) -> Union<'a, T, S>ⓘNotable traits for Union<'a, T, S>impl<'a, T, S> Iterator for Union<'a, T, S> where
T: Eq + Hash,
S: BuildHasher, type Item = &'a T;
source
pub fn union<'a>(&'a self, other: &'a HashSet<T, S>) -> Union<'a, T, S>ⓘNotable traits for Union<'a, T, S>impl<'a, T, S> Iterator for Union<'a, T, S> where
T: Eq + Hash,
S: BuildHasher, type Item = &'a T;
sourceT: Eq + Hash,
S: BuildHasher, type Item = &'a T;
Visits the values representing the union,
i.e., all the values in self or other, without duplicates.
Examples
use std::collections::HashSet;
let a = HashSet::from([1, 2, 3]);
let b = HashSet::from([4, 2, 3, 4]);
// Print 1, 2, 3, 4 in arbitrary order.
for x in a.union(&b) {
println!("{x}");
}
let union: HashSet<_> = a.union(&b).collect();
assert_eq!(union, [1, 2, 3, 4].iter().collect());Runpub fn contains<Q: ?Sized>(&self, value: &Q) -> bool where
T: Borrow<Q>,
Q: Hash + Eq,
source
pub fn contains<Q: ?Sized>(&self, value: &Q) -> bool where
T: Borrow<Q>,
Q: Hash + Eq,
sourceReturns true if the set contains a value.
The value may be any borrowed form of the set’s value type, but
Hash and Eq on the borrowed form must match those for
the value type.
Examples
use std::collections::HashSet;
let set = HashSet::from([1, 2, 3]);
assert_eq!(set.contains(&1), true);
assert_eq!(set.contains(&4), false);Runpub fn get<Q: ?Sized>(&self, value: &Q) -> Option<&T> where
T: Borrow<Q>,
Q: Hash + Eq,
1.9.0 · source
pub fn get<Q: ?Sized>(&self, value: &Q) -> Option<&T> where
T: Borrow<Q>,
Q: Hash + Eq,
1.9.0 · sourceReturns a reference to the value in the set, if any, that is equal to the given value.
The value may be any borrowed form of the set’s value type, but
Hash and Eq on the borrowed form must match those for
the value type.
Examples
use std::collections::HashSet;
let set = HashSet::from([1, 2, 3]);
assert_eq!(set.get(&2), Some(&2));
assert_eq!(set.get(&4), None);Runpub fn get_or_insert(&mut self, value: T) -> &T
source
pub fn get_or_insert(&mut self, value: T) -> &T
sourceInserts the given value into the set if it is not present, then
returns a reference to the value in the set.
Examples
#![feature(hash_set_entry)]
use std::collections::HashSet;
let mut set = HashSet::from([1, 2, 3]);
assert_eq!(set.len(), 3);
assert_eq!(set.get_or_insert(2), &2);
assert_eq!(set.get_or_insert(100), &100);
assert_eq!(set.len(), 4); // 100 was insertedRunpub fn get_or_insert_owned<Q: ?Sized>(&mut self, value: &Q) -> &T where
T: Borrow<Q>,
Q: Hash + Eq + ToOwned<Owned = T>,
source
pub fn get_or_insert_owned<Q: ?Sized>(&mut self, value: &Q) -> &T where
T: Borrow<Q>,
Q: Hash + Eq + ToOwned<Owned = T>,
sourceInserts an owned copy of the given value into the set if it is not
present, then returns a reference to the value in the set.
Examples
#![feature(hash_set_entry)]
use std::collections::HashSet;
let mut set: HashSet<String> = ["cat", "dog", "horse"]
.iter().map(|&pet| pet.to_owned()).collect();
assert_eq!(set.len(), 3);
for &pet in &["cat", "dog", "fish"] {
let value = set.get_or_insert_owned(pet);
assert_eq!(value, pet);
}
assert_eq!(set.len(), 4); // a new "fish" was insertedRunpub fn get_or_insert_with<Q: ?Sized, F>(&mut self, value: &Q, f: F) -> &T where
T: Borrow<Q>,
Q: Hash + Eq,
F: FnOnce(&Q) -> T,
source
pub fn get_or_insert_with<Q: ?Sized, F>(&mut self, value: &Q, f: F) -> &T where
T: Borrow<Q>,
Q: Hash + Eq,
F: FnOnce(&Q) -> T,
sourceInserts a value computed from f into the set if the given value is
not present, then returns a reference to the value in the set.
Examples
#![feature(hash_set_entry)]
use std::collections::HashSet;
let mut set: HashSet<String> = ["cat", "dog", "horse"]
.iter().map(|&pet| pet.to_owned()).collect();
assert_eq!(set.len(), 3);
for &pet in &["cat", "dog", "fish"] {
let value = set.get_or_insert_with(pet, str::to_owned);
assert_eq!(value, pet);
}
assert_eq!(set.len(), 4); // a new "fish" was insertedRunpub fn is_disjoint(&self, other: &HashSet<T, S>) -> bool
source
pub fn is_disjoint(&self, other: &HashSet<T, S>) -> bool
sourceReturns true if self has no elements in common with other.
This is equivalent to checking for an empty intersection.
Examples
use std::collections::HashSet;
let a = HashSet::from([1, 2, 3]);
let mut b = HashSet::new();
assert_eq!(a.is_disjoint(&b), true);
b.insert(4);
assert_eq!(a.is_disjoint(&b), true);
b.insert(1);
assert_eq!(a.is_disjoint(&b), false);Runpub fn is_subset(&self, other: &HashSet<T, S>) -> bool
source
pub fn is_subset(&self, other: &HashSet<T, S>) -> bool
sourceReturns true if the set is a subset of another,
i.e., other contains at least all the values in self.
Examples
use std::collections::HashSet;
let sup = HashSet::from([1, 2, 3]);
let mut set = HashSet::new();
assert_eq!(set.is_subset(&sup), true);
set.insert(2);
assert_eq!(set.is_subset(&sup), true);
set.insert(4);
assert_eq!(set.is_subset(&sup), false);Runpub fn is_superset(&self, other: &HashSet<T, S>) -> bool
source
pub fn is_superset(&self, other: &HashSet<T, S>) -> bool
sourceReturns true if the set is a superset of another,
i.e., self contains at least all the values in other.
Examples
use std::collections::HashSet;
let sub = HashSet::from([1, 2]);
let mut set = HashSet::new();
assert_eq!(set.is_superset(&sub), false);
set.insert(0);
set.insert(1);
assert_eq!(set.is_superset(&sub), false);
set.insert(2);
assert_eq!(set.is_superset(&sub), true);Runpub fn insert(&mut self, value: T) -> bool
source
pub fn insert(&mut self, value: T) -> bool
sourceAdds a value to the set.
If the set did not have this value present, true is returned.
If the set did have this value present, false is returned.
Examples
use std::collections::HashSet;
let mut set = HashSet::new();
assert_eq!(set.insert(2), true);
assert_eq!(set.insert(2), false);
assert_eq!(set.len(), 1);Runpub fn replace(&mut self, value: T) -> Option<T>
1.9.0 · source
pub fn replace(&mut self, value: T) -> Option<T>
1.9.0 · sourceAdds a value to the set, replacing the existing value, if any, that is equal to the given one. Returns the replaced value.
Examples
use std::collections::HashSet;
let mut set = HashSet::new();
set.insert(Vec::<i32>::new());
assert_eq!(set.get(&[][..]).unwrap().capacity(), 0);
set.replace(Vec::with_capacity(10));
assert_eq!(set.get(&[][..]).unwrap().capacity(), 10);Runpub fn remove<Q: ?Sized>(&mut self, value: &Q) -> bool where
T: Borrow<Q>,
Q: Hash + Eq,
source
pub fn remove<Q: ?Sized>(&mut self, value: &Q) -> bool where
T: Borrow<Q>,
Q: Hash + Eq,
sourceRemoves a value from the set. Returns whether the value was present in the set.
The value may be any borrowed form of the set’s value type, but
Hash and Eq on the borrowed form must match those for
the value type.
Examples
use std::collections::HashSet;
let mut set = HashSet::new();
set.insert(2);
assert_eq!(set.remove(&2), true);
assert_eq!(set.remove(&2), false);Runpub fn take<Q: ?Sized>(&mut self, value: &Q) -> Option<T> where
T: Borrow<Q>,
Q: Hash + Eq,
1.9.0 · source
pub fn take<Q: ?Sized>(&mut self, value: &Q) -> Option<T> where
T: Borrow<Q>,
Q: Hash + Eq,
1.9.0 · sourceRemoves and returns the value in the set, if any, that is equal to the given one.
The value may be any borrowed form of the set’s value type, but
Hash and Eq on the borrowed form must match those for
the value type.
Examples
use std::collections::HashSet;
let mut set = HashSet::from([1, 2, 3]);
assert_eq!(set.take(&2), Some(2));
assert_eq!(set.take(&2), None);RunTrait Implementations
impl<T, S> BitAnd<&'_ HashSet<T, S>> for &HashSet<T, S> where
T: Eq + Hash + Clone,
S: BuildHasher + Default,
source
impl<T, S> BitAnd<&'_ HashSet<T, S>> for &HashSet<T, S> where
T: Eq + Hash + Clone,
S: BuildHasher + Default,
sourcefn bitand(self, rhs: &HashSet<T, S>) -> HashSet<T, S>
source
fn bitand(self, rhs: &HashSet<T, S>) -> HashSet<T, S>
sourceReturns the intersection of self and rhs as a new HashSet<T, S>.
Examples
use std::collections::HashSet;
let a = HashSet::from([1, 2, 3]);
let b = HashSet::from([2, 3, 4]);
let set = &a & &b;
let mut i = 0;
let expected = [2, 3];
for x in &set {
assert!(expected.contains(x));
i += 1;
}
assert_eq!(i, expected.len());Runimpl<T, S> BitOr<&'_ HashSet<T, S>> for &HashSet<T, S> where
T: Eq + Hash + Clone,
S: BuildHasher + Default,
source
impl<T, S> BitOr<&'_ HashSet<T, S>> for &HashSet<T, S> where
T: Eq + Hash + Clone,
S: BuildHasher + Default,
sourcefn bitor(self, rhs: &HashSet<T, S>) -> HashSet<T, S>
source
fn bitor(self, rhs: &HashSet<T, S>) -> HashSet<T, S>
sourceReturns the union of self and rhs as a new HashSet<T, S>.
Examples
use std::collections::HashSet;
let a = HashSet::from([1, 2, 3]);
let b = HashSet::from([3, 4, 5]);
let set = &a | &b;
let mut i = 0;
let expected = [1, 2, 3, 4, 5];
for x in &set {
assert!(expected.contains(x));
i += 1;
}
assert_eq!(i, expected.len());Runimpl<T, S> BitXor<&'_ HashSet<T, S>> for &HashSet<T, S> where
T: Eq + Hash + Clone,
S: BuildHasher + Default,
source
impl<T, S> BitXor<&'_ HashSet<T, S>> for &HashSet<T, S> where
T: Eq + Hash + Clone,
S: BuildHasher + Default,
sourcefn bitxor(self, rhs: &HashSet<T, S>) -> HashSet<T, S>
source
fn bitxor(self, rhs: &HashSet<T, S>) -> HashSet<T, S>
sourceReturns the symmetric difference of self and rhs as a new HashSet<T, S>.
Examples
use std::collections::HashSet;
let a = HashSet::from([1, 2, 3]);
let b = HashSet::from([3, 4, 5]);
let set = &a ^ &b;
let mut i = 0;
let expected = [1, 2, 4, 5];
for x in &set {
assert!(expected.contains(x));
i += 1;
}
assert_eq!(i, expected.len());Runimpl<'a, T, S> Extend<&'a T> for HashSet<T, S> where
T: 'a + Eq + Hash + Copy,
S: BuildHasher,
1.4.0 · source
impl<'a, T, S> Extend<&'a T> for HashSet<T, S> where
T: 'a + Eq + Hash + Copy,
S: BuildHasher,
1.4.0 · sourcefn extend<I: IntoIterator<Item = &'a T>>(&mut self, iter: I)
source
fn extend<I: IntoIterator<Item = &'a T>>(&mut self, iter: I)
sourceExtends a collection with the contents of an iterator. Read more
fn extend_reserve(&mut self, additional: usize)
source
fn extend_reserve(&mut self, additional: usize)
sourceReserves capacity in a collection for the given number of additional elements. Read more
impl<T, S> Extend<T> for HashSet<T, S> where
T: Eq + Hash,
S: BuildHasher,
source
impl<T, S> Extend<T> for HashSet<T, S> where
T: Eq + Hash,
S: BuildHasher,
sourcefn extend<I: IntoIterator<Item = T>>(&mut self, iter: I)
source
fn extend<I: IntoIterator<Item = T>>(&mut self, iter: I)
sourceExtends a collection with the contents of an iterator. Read more
fn extend_reserve(&mut self, additional: usize)
source
fn extend_reserve(&mut self, additional: usize)
sourceReserves capacity in a collection for the given number of additional elements. Read more
impl<T, const N: usize> From<[T; N]> for HashSet<T, RandomState> where
T: Eq + Hash,
1.56.0 · source
impl<T, const N: usize> From<[T; N]> for HashSet<T, RandomState> where
T: Eq + Hash,
1.56.0 · sourceimpl<T, S> FromIterator<T> for HashSet<T, S> where
T: Eq + Hash,
S: BuildHasher + Default,
source
impl<T, S> FromIterator<T> for HashSet<T, S> where
T: Eq + Hash,
S: BuildHasher + Default,
sourcefn from_iter<I: IntoIterator<Item = T>>(iter: I) -> HashSet<T, S>
source
fn from_iter<I: IntoIterator<Item = T>>(iter: I) -> HashSet<T, S>
sourceCreates a value from an iterator. Read more
impl<'a, T, S> IntoIterator for &'a HashSet<T, S>
source
impl<'a, T, S> IntoIterator for &'a HashSet<T, S>
sourceimpl<T, S> IntoIterator for HashSet<T, S>
source
impl<T, S> IntoIterator for HashSet<T, S>
sourcefn into_iter(self) -> IntoIter<T>ⓘNotable traits for IntoIter<K>impl<K> Iterator for IntoIter<K> type Item = K;
source
fn into_iter(self) -> IntoIter<T>ⓘNotable traits for IntoIter<K>impl<K> Iterator for IntoIter<K> type Item = K;
sourceCreates a consuming iterator, that is, one that moves each value out of the set in arbitrary order. The set cannot be used after calling this.
Examples
use std::collections::HashSet;
let mut set = HashSet::new();
set.insert("a".to_string());
set.insert("b".to_string());
// Not possible to collect to a Vec<String> with a regular `.iter()`.
let v: Vec<String> = set.into_iter().collect();
// Will print in an arbitrary order.
for x in &v {
println!("{x}");
}Runtype Item = T
type Item = T
The type of the elements being iterated over.
impl<T, S> Sub<&'_ HashSet<T, S>> for &HashSet<T, S> where
T: Eq + Hash + Clone,
S: BuildHasher + Default,
source
impl<T, S> Sub<&'_ HashSet<T, S>> for &HashSet<T, S> where
T: Eq + Hash + Clone,
S: BuildHasher + Default,
sourcefn sub(self, rhs: &HashSet<T, S>) -> HashSet<T, S>
source
fn sub(self, rhs: &HashSet<T, S>) -> HashSet<T, S>
sourceReturns the difference of self and rhs as a new HashSet<T, S>.
Examples
use std::collections::HashSet;
let a = HashSet::from([1, 2, 3]);
let b = HashSet::from([3, 4, 5]);
let set = &a - &b;
let mut i = 0;
let expected = [1, 2];
for x in &set {
assert!(expected.contains(x));
i += 1;
}
assert_eq!(i, expected.len());Runimpl<T, S> Eq for HashSet<T, S> where
T: Eq + Hash,
S: BuildHasher,
sourceAuto Trait Implementations
impl<T, S> RefUnwindSafe for HashSet<T, S> where
S: RefUnwindSafe,
T: RefUnwindSafe,
impl<T, S> Send for HashSet<T, S> where
S: Send,
T: Send,
impl<T, S> Sync for HashSet<T, S> where
S: Sync,
T: Sync,
impl<T, S> Unpin for HashSet<T, S> where
S: Unpin,
T: Unpin,
impl<T, S> UnwindSafe for HashSet<T, S> where
S: UnwindSafe,
T: UnwindSafe,
Blanket Implementations
impl<T> BorrowMut<T> for T where
T: ?Sized,
source
impl<T> BorrowMut<T> for T where
T: ?Sized,
sourcefn borrow_mut(&mut self) -> &mut T
const: unstable · source
fn borrow_mut(&mut self) -> &mut T
const: unstable · sourceMutably borrows from an owned value. Read more
impl<T> ToOwned for T where
T: Clone,
source
impl<T> ToOwned for T where
T: Clone,
sourcetype Owned = T
type Owned = T
The resulting type after obtaining ownership.
fn clone_into(&self, target: &mut T)
source
fn clone_into(&self, target: &mut T)
sourceUses borrowed data to replace owned data, usually by cloning. Read more