Expand description
A 64-bit floating point type (specifically, the “binary64” type defined in IEEE 754-2008).
This type is very similar to f32, but has increased
precision by using twice as many bits. Please see the documentation for
f32 or Wikipedia on double precision
values for more information.
Implementations
impl f64
source
impl f64
sourcepub const MANTISSA_DIGITS: u32 = 53u32
1.43.0 · source
pub const MANTISSA_DIGITS: u32 = 53u32
1.43.0 · sourceNumber of significant digits in base 2.
pub const EPSILON: f64 = 2.2204460492503131E-16f64
1.43.0 · source
pub const EPSILON: f64 = 2.2204460492503131E-16f64
1.43.0 · sourceMachine epsilon value for f64.
This is the difference between 1.0 and the next larger representable number.
pub const MIN_POSITIVE: f64 = 2.2250738585072014E-308f64
1.43.0 · source
pub const MIN_POSITIVE: f64 = 2.2250738585072014E-308f64
1.43.0 · sourceSmallest positive normal f64 value.
pub const MIN_EXP: i32 = -1_021i32
1.43.0 · source
pub const MIN_EXP: i32 = -1_021i32
1.43.0 · sourceOne greater than the minimum possible normal power of 2 exponent.
pub const MIN_10_EXP: i32 = -307i32
1.43.0 · source
pub const MIN_10_EXP: i32 = -307i32
1.43.0 · sourceMinimum possible normal power of 10 exponent.
pub const MAX_10_EXP: i32 = 308i32
1.43.0 · source
pub const MAX_10_EXP: i32 = 308i32
1.43.0 · sourceMaximum possible power of 10 exponent.
pub const NAN: f64 = NaNf64
1.43.0 · source
pub const NAN: f64 = NaNf64
1.43.0 · sourceNot a Number (NaN).
Note that IEEE-745 doesn’t define just a single NaN value; a plethora of bit patterns are considered to be NaN. Furthermore, the standard makes a difference between a “signaling” and a “quiet” NaN, and allows inspecting its “payload” (the unspecified bits in the bit pattern). This constant isn’t guaranteed to equal to any specific NaN bitpattern, and the stability of its representation over Rust versions and target platforms isn’t guaranteed.
pub const NEG_INFINITY: f64 = -Inff64
1.43.0 · source
pub const NEG_INFINITY: f64 = -Inff64
1.43.0 · sourceNegative infinity (−∞).
pub fn is_nan(self) -> bool
const: unstable · source
pub fn is_nan(self) -> bool
const: unstable · sourceReturns true if this value is NaN.
let nan = f64::NAN;
let f = 7.0_f64;
assert!(nan.is_nan());
assert!(!f.is_nan());Runpub fn is_infinite(self) -> bool
const: unstable · source
pub fn is_infinite(self) -> bool
const: unstable · sourceReturns true if this value is positive infinity or negative infinity, and
false otherwise.
let f = 7.0f64;
let inf = f64::INFINITY;
let neg_inf = f64::NEG_INFINITY;
let nan = f64::NAN;
assert!(!f.is_infinite());
assert!(!nan.is_infinite());
assert!(inf.is_infinite());
assert!(neg_inf.is_infinite());Runpub fn is_finite(self) -> bool
const: unstable · source
pub fn is_finite(self) -> bool
const: unstable · sourceReturns true if this number is neither infinite nor NaN.
let f = 7.0f64;
let inf: f64 = f64::INFINITY;
let neg_inf: f64 = f64::NEG_INFINITY;
let nan: f64 = f64::NAN;
assert!(f.is_finite());
assert!(!nan.is_finite());
assert!(!inf.is_finite());
assert!(!neg_inf.is_finite());Runpub fn is_subnormal(self) -> bool
1.53.0 (const: unstable) · source
pub fn is_subnormal(self) -> bool
1.53.0 (const: unstable) · sourceReturns true if the number is subnormal.
let min = f64::MIN_POSITIVE; // 2.2250738585072014e-308_f64
let max = f64::MAX;
let lower_than_min = 1.0e-308_f64;
let zero = 0.0_f64;
assert!(!min.is_subnormal());
assert!(!max.is_subnormal());
assert!(!zero.is_subnormal());
assert!(!f64::NAN.is_subnormal());
assert!(!f64::INFINITY.is_subnormal());
// Values between `0` and `min` are Subnormal.
assert!(lower_than_min.is_subnormal());Runpub fn is_normal(self) -> bool
const: unstable · source
pub fn is_normal(self) -> bool
const: unstable · sourceReturns true if the number is neither zero, infinite,
subnormal, or NaN.
let min = f64::MIN_POSITIVE; // 2.2250738585072014e-308f64
let max = f64::MAX;
let lower_than_min = 1.0e-308_f64;
let zero = 0.0f64;
assert!(min.is_normal());
assert!(max.is_normal());
assert!(!zero.is_normal());
assert!(!f64::NAN.is_normal());
assert!(!f64::INFINITY.is_normal());
// Values between `0` and `min` are Subnormal.
assert!(!lower_than_min.is_normal());Runpub fn classify(self) -> FpCategory
const: unstable · source
pub fn classify(self) -> FpCategory
const: unstable · sourceReturns the floating point category of the number. If only one property is going to be tested, it is generally faster to use the specific predicate instead.
use std::num::FpCategory;
let num = 12.4_f64;
let inf = f64::INFINITY;
assert_eq!(num.classify(), FpCategory::Normal);
assert_eq!(inf.classify(), FpCategory::Infinite);Runpub fn is_sign_positive(self) -> bool
const: unstable · source
pub fn is_sign_positive(self) -> bool
const: unstable · sourceReturns true if self has a positive sign, including +0.0, NaNs with
positive sign bit and positive infinity. Note that IEEE-745 doesn’t assign any
meaning to the sign bit in case of a NaN, and as Rust doesn’t guarantee that
the bit pattern of NaNs are conserved over arithmetic operations, the result of
is_sign_positive on a NaN might produce an unexpected result in some cases.
See explanation of NaN as a special value for more info.
let f = 7.0_f64;
let g = -7.0_f64;
assert!(f.is_sign_positive());
assert!(!g.is_sign_positive());Runpub fn is_sign_negative(self) -> bool
const: unstable · source
pub fn is_sign_negative(self) -> bool
const: unstable · sourceReturns true if self has a negative sign, including -0.0, NaNs with
negative sign bit and negative infinity. Note that IEEE-745 doesn’t assign any
meaning to the sign bit in case of a NaN, and as Rust doesn’t guarantee that
the bit pattern of NaNs are conserved over arithmetic operations, the result of
is_sign_negative on a NaN might produce an unexpected result in some cases.
See explanation of NaN as a special value for more info.
let f = 7.0_f64;
let g = -7.0_f64;
assert!(!f.is_sign_negative());
assert!(g.is_sign_negative());Runpub fn recip(self) -> f64
source
pub fn recip(self) -> f64
sourceTakes the reciprocal (inverse) of a number, 1/x.
let x = 2.0_f64;
let abs_difference = (x.recip() - (1.0 / x)).abs();
assert!(abs_difference < 1e-10);Runpub fn to_degrees(self) -> f64
source
pub fn to_degrees(self) -> f64
sourceConverts radians to degrees.
let angle = std::f64::consts::PI;
let abs_difference = (angle.to_degrees() - 180.0).abs();
assert!(abs_difference < 1e-10);Runpub fn to_radians(self) -> f64
source
pub fn to_radians(self) -> f64
sourceConverts degrees to radians.
let angle = 180.0_f64;
let abs_difference = (angle.to_radians() - std::f64::consts::PI).abs();
assert!(abs_difference < 1e-10);Runpub fn max(self, other: f64) -> f64
source
pub fn max(self, other: f64) -> f64
sourceReturns the maximum of the two numbers, ignoring NaN.
If one of the arguments is NaN, then the other argument is returned. This follows the IEEE-754 2008 semantics for maxNum, except for handling of signaling NaNs; this function handles all NaNs the same way and avoids maxNum’s problems with associativity. This also matches the behavior of libm’s fmax.
let x = 1.0_f64;
let y = 2.0_f64;
assert_eq!(x.max(y), y);Runpub fn min(self, other: f64) -> f64
source
pub fn min(self, other: f64) -> f64
sourceReturns the minimum of the two numbers, ignoring NaN.
If one of the arguments is NaN, then the other argument is returned. This follows the IEEE-754 2008 semantics for minNum, except for handling of signaling NaNs; this function handles all NaNs the same way and avoids minNum’s problems with associativity. This also matches the behavior of libm’s fmin.
let x = 1.0_f64;
let y = 2.0_f64;
assert_eq!(x.min(y), x);Runpub fn maximum(self, other: f64) -> f64
source
pub fn maximum(self, other: f64) -> f64
sourceReturns the maximum of the two numbers, propagating NaN.
This returns NaN when either argument is NaN, as opposed to
f64::max which only returns NaN when both arguments are NaN.
#![feature(float_minimum_maximum)]
let x = 1.0_f64;
let y = 2.0_f64;
assert_eq!(x.maximum(y), y);
assert!(x.maximum(f64::NAN).is_nan());RunIf one of the arguments is NaN, then NaN is returned. Otherwise this returns the greater of the two numbers. For this operation, -0.0 is considered to be less than +0.0. Note that this follows the semantics specified in IEEE 754-2019.
Also note that “propagation” of NaNs here doesn’t necessarily mean that the bitpattern of a NaN operand is conserved; see explanation of NaN as a special value for more info.
pub fn minimum(self, other: f64) -> f64
source
pub fn minimum(self, other: f64) -> f64
sourceReturns the minimum of the two numbers, propagating NaN.
This returns NaN when either argument is NaN, as opposed to
f64::min which only returns NaN when both arguments are NaN.
#![feature(float_minimum_maximum)]
let x = 1.0_f64;
let y = 2.0_f64;
assert_eq!(x.minimum(y), x);
assert!(x.minimum(f64::NAN).is_nan());RunIf one of the arguments is NaN, then NaN is returned. Otherwise this returns the lesser of the two numbers. For this operation, -0.0 is considered to be less than +0.0. Note that this follows the semantics specified in IEEE 754-2019.
Also note that “propagation” of NaNs here doesn’t necessarily mean that the bitpattern of a NaN operand is conserved; see explanation of NaN as a special value for more info.
pub unsafe fn to_int_unchecked<Int>(self) -> Int where
Self: FloatToInt<Int>,
1.44.0 · source
pub unsafe fn to_int_unchecked<Int>(self) -> Int where
Self: FloatToInt<Int>,
1.44.0 · sourceRounds toward zero and converts to any primitive integer type, assuming that the value is finite and fits in that type.
let value = 4.6_f64;
let rounded = unsafe { value.to_int_unchecked::<u16>() };
assert_eq!(rounded, 4);
let value = -128.9_f64;
let rounded = unsafe { value.to_int_unchecked::<i8>() };
assert_eq!(rounded, i8::MIN);RunSafety
The value must:
- Not be
NaN - Not be infinite
- Be representable in the return type
Int, after truncating off its fractional part
pub fn to_bits(self) -> u64
1.20.0 (const: unstable) · source
pub fn to_bits(self) -> u64
1.20.0 (const: unstable) · sourceRaw transmutation to u64.
This is currently identical to transmute::<f64, u64>(self) on all platforms.
See from_bits for some discussion of the
portability of this operation (there are almost no issues).
Note that this function is distinct from as casting, which attempts to
preserve the numeric value, and not the bitwise value.
Examples
assert!((1f64).to_bits() != 1f64 as u64); // to_bits() is not casting!
assert_eq!((12.5f64).to_bits(), 0x4029000000000000);
Runpub fn from_bits(v: u64) -> Self
1.20.0 (const: unstable) · source
pub fn from_bits(v: u64) -> Self
1.20.0 (const: unstable) · sourceRaw transmutation from u64.
This is currently identical to transmute::<u64, f64>(v) on all platforms.
It turns out this is incredibly portable, for two reasons:
- Floats and Ints have the same endianness on all supported platforms.
- IEEE-754 very precisely specifies the bit layout of floats.
However there is one caveat: prior to the 2008 version of IEEE-754, how to interpret the NaN signaling bit wasn’t actually specified. Most platforms (notably x86 and ARM) picked the interpretation that was ultimately standardized in 2008, but some didn’t (notably MIPS). As a result, all signaling NaNs on MIPS are quiet NaNs on x86, and vice-versa.
Rather than trying to preserve signaling-ness cross-platform, this implementation favors preserving the exact bits. This means that any payloads encoded in NaNs will be preserved even if the result of this method is sent over the network from an x86 machine to a MIPS one.
If the results of this method are only manipulated by the same architecture that produced them, then there is no portability concern.
If the input isn’t NaN, then there is no portability concern.
If you don’t care about signaling-ness (very likely), then there is no portability concern.
Note that this function is distinct from as casting, which attempts to
preserve the numeric value, and not the bitwise value.
Examples
let v = f64::from_bits(0x4029000000000000);
assert_eq!(v, 12.5);Runpub fn to_be_bytes(self) -> [u8; 8]
1.40.0 (const: unstable) · source
pub fn to_be_bytes(self) -> [u8; 8]
1.40.0 (const: unstable) · sourceReturn the memory representation of this floating point number as a byte array in big-endian (network) byte order.
See from_bits for some discussion of the
portability of this operation (there are almost no issues).
Examples
let bytes = 12.5f64.to_be_bytes();
assert_eq!(bytes, [0x40, 0x29, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00]);Runpub fn to_le_bytes(self) -> [u8; 8]
1.40.0 (const: unstable) · source
pub fn to_le_bytes(self) -> [u8; 8]
1.40.0 (const: unstable) · sourceReturn the memory representation of this floating point number as a byte array in little-endian byte order.
See from_bits for some discussion of the
portability of this operation (there are almost no issues).
Examples
let bytes = 12.5f64.to_le_bytes();
assert_eq!(bytes, [0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x29, 0x40]);Runpub fn to_ne_bytes(self) -> [u8; 8]
1.40.0 (const: unstable) · source
pub fn to_ne_bytes(self) -> [u8; 8]
1.40.0 (const: unstable) · sourceReturn the memory representation of this floating point number as a byte array in native byte order.
As the target platform’s native endianness is used, portable code
should use to_be_bytes or to_le_bytes, as appropriate, instead.
See from_bits for some discussion of the
portability of this operation (there are almost no issues).
Examples
let bytes = 12.5f64.to_ne_bytes();
assert_eq!(
bytes,
if cfg!(target_endian = "big") {
[0x40, 0x29, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00]
} else {
[0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x29, 0x40]
}
);Runpub fn from_be_bytes(bytes: [u8; 8]) -> Self
1.40.0 (const: unstable) · source
pub fn from_be_bytes(bytes: [u8; 8]) -> Self
1.40.0 (const: unstable) · sourceCreate a floating point value from its representation as a byte array in big endian.
See from_bits for some discussion of the
portability of this operation (there are almost no issues).
Examples
let value = f64::from_be_bytes([0x40, 0x29, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00]);
assert_eq!(value, 12.5);Runpub fn from_le_bytes(bytes: [u8; 8]) -> Self
1.40.0 (const: unstable) · source
pub fn from_le_bytes(bytes: [u8; 8]) -> Self
1.40.0 (const: unstable) · sourceCreate a floating point value from its representation as a byte array in little endian.
See from_bits for some discussion of the
portability of this operation (there are almost no issues).
Examples
let value = f64::from_le_bytes([0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x29, 0x40]);
assert_eq!(value, 12.5);Runpub fn from_ne_bytes(bytes: [u8; 8]) -> Self
1.40.0 (const: unstable) · source
pub fn from_ne_bytes(bytes: [u8; 8]) -> Self
1.40.0 (const: unstable) · sourceCreate a floating point value from its representation as a byte array in native endian.
As the target platform’s native endianness is used, portable code
likely wants to use from_be_bytes or from_le_bytes, as
appropriate instead.
See from_bits for some discussion of the
portability of this operation (there are almost no issues).
Examples
let value = f64::from_ne_bytes(if cfg!(target_endian = "big") {
[0x40, 0x29, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00]
} else {
[0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x29, 0x40]
});
assert_eq!(value, 12.5);Runpub fn total_cmp(&self, other: &Self) -> Ordering
1.62.0 · source
pub fn total_cmp(&self, other: &Self) -> Ordering
1.62.0 · sourceReturn the ordering between self and other.
Unlike the standard partial comparison between floating point numbers,
this comparison always produces an ordering in accordance to
the totalOrder predicate as defined in the IEEE 754 (2008 revision)
floating point standard. The values are ordered in the following sequence:
- negative quiet NaN
- negative signaling NaN
- negative infinity
- negative numbers
- negative subnormal numbers
- negative zero
- positive zero
- positive subnormal numbers
- positive numbers
- positive infinity
- positive signaling NaN
- positive quiet NaN.
The ordering established by this function does not always agree with the
PartialOrd and PartialEq implementations of f64. For example,
they consider negative and positive zero equal, while total_cmp
doesn’t.
The interpretation of the signaling NaN bit follows the definition in the IEEE 754 standard, which may not match the interpretation by some of the older, non-conformant (e.g. MIPS) hardware implementations.
Example
struct GoodBoy {
name: String,
weight: f64,
}
let mut bois = vec![
GoodBoy { name: "Pucci".to_owned(), weight: 0.1 },
GoodBoy { name: "Woofer".to_owned(), weight: 99.0 },
GoodBoy { name: "Yapper".to_owned(), weight: 10.0 },
GoodBoy { name: "Chonk".to_owned(), weight: f64::INFINITY },
GoodBoy { name: "Abs. Unit".to_owned(), weight: f64::NAN },
GoodBoy { name: "Floaty".to_owned(), weight: -5.0 },
];
bois.sort_by(|a, b| a.weight.total_cmp(&b.weight));Runpub fn clamp(self, min: f64, max: f64) -> f64
1.50.0 · source
pub fn clamp(self, min: f64, max: f64) -> f64
1.50.0 · sourceRestrict a value to a certain interval unless it is NaN.
Returns max if self is greater than max, and min if self is
less than min. Otherwise this returns self.
Note that this function returns NaN if the initial value was NaN as well.
Panics
Panics if min > max, min is NaN, or max is NaN.
Examples
assert!((-3.0f64).clamp(-2.0, 1.0) == -2.0);
assert!((0.0f64).clamp(-2.0, 1.0) == 0.0);
assert!((2.0f64).clamp(-2.0, 1.0) == 1.0);
assert!((f64::NAN).clamp(-2.0, 1.0).is_nan());RunTrait Implementations
impl AddAssign<&'_ f64> for f64
1.22.0 (const: unstable) · source
impl AddAssign<&'_ f64> for f64
1.22.0 (const: unstable) · sourcefn add_assign(&mut self, other: &f64)
const: unstable · source
fn add_assign(&mut self, other: &f64)
const: unstable · sourcePerforms the += operation. Read more
impl AddAssign<f64> for f64
1.8.0 (const: unstable) · source
impl AddAssign<f64> for f64
1.8.0 (const: unstable) · sourcefn add_assign(&mut self, other: f64)
const: unstable · source
fn add_assign(&mut self, other: f64)
const: unstable · sourcePerforms the += operation. Read more
impl DivAssign<&'_ f64> for f64
1.22.0 (const: unstable) · source
impl DivAssign<&'_ f64> for f64
1.22.0 (const: unstable) · sourcefn div_assign(&mut self, other: &f64)
const: unstable · source
fn div_assign(&mut self, other: &f64)
const: unstable · sourcePerforms the /= operation. Read more
impl DivAssign<f64> for f64
1.8.0 (const: unstable) · source
impl DivAssign<f64> for f64
1.8.0 (const: unstable) · sourcefn div_assign(&mut self, other: f64)
const: unstable · source
fn div_assign(&mut self, other: f64)
const: unstable · sourcePerforms the /= operation. Read more
impl FromStr for f64
source
impl FromStr for f64
sourcefn from_str(src: &str) -> Result<Self, ParseFloatError>
source
fn from_str(src: &str) -> Result<Self, ParseFloatError>
sourceConverts a string in base 10 to a float. Accepts an optional decimal exponent.
This function accepts strings such as
- ‘3.14’
- ‘-3.14’
- ‘2.5E10’, or equivalently, ‘2.5e10’
- ‘2.5E-10’
- ‘5.’
- ‘.5’, or, equivalently, ‘0.5’
- ‘inf’, ‘-inf’, ‘+infinity’, ‘NaN’
Note that alphabetical characters are not case-sensitive.
Leading and trailing whitespace represent an error.
Grammar
All strings that adhere to the following EBNF grammar when
lowercased will result in an Ok being returned:
Float ::= Sign? ( 'inf' | 'infinity' | 'nan' | Number )
Number ::= ( Digit+ |
'.' Digit* |
Digit+ '.' Digit* |
Digit* '.' Digit+ ) Exp?
Exp ::= 'e' Sign? Digit+
Sign ::= [+-]
Digit ::= [0-9]Arguments
- src - A string
Return value
Err(ParseFloatError) if the string did not represent a valid
number. Otherwise, Ok(n) where n is the floating-point
number represented by src.
type Err = ParseFloatError
type Err = ParseFloatError
The associated error which can be returned from parsing.
impl MulAssign<&'_ f64> for f64
1.22.0 (const: unstable) · source
impl MulAssign<&'_ f64> for f64
1.22.0 (const: unstable) · sourcefn mul_assign(&mut self, other: &f64)
const: unstable · source
fn mul_assign(&mut self, other: &f64)
const: unstable · sourcePerforms the *= operation. Read more
impl MulAssign<f64> for f64
1.8.0 (const: unstable) · source
impl MulAssign<f64> for f64
1.8.0 (const: unstable) · sourcefn mul_assign(&mut self, other: f64)
const: unstable · source
fn mul_assign(&mut self, other: f64)
const: unstable · sourcePerforms the *= operation. Read more
impl PartialOrd<f64> for f64
source
impl PartialOrd<f64> for f64
sourcefn partial_cmp(&self, other: &f64) -> Option<Ordering>
source
fn partial_cmp(&self, other: &f64) -> Option<Ordering>
sourceThis method returns an ordering between self and other values if one exists. Read more
fn lt(&self, other: &f64) -> bool
source
fn lt(&self, other: &f64) -> bool
sourceThis method tests less than (for self and other) and is used by the < operator. Read more
fn le(&self, other: &f64) -> bool
source
fn le(&self, other: &f64) -> bool
sourceThis method tests less than or equal to (for self and other) and is used by the <=
operator. Read more
impl Rem<f64> for f64
const: unstable · source
impl Rem<f64> for f64
const: unstable · sourceThe remainder from the division of two floats.
The remainder has the same sign as the dividend and is computed as:
x - (x / y).trunc() * y.
Examples
let x: f32 = 50.50;
let y: f32 = 8.125;
let remainder = x - (x / y).trunc() * y;
// The answer to both operations is 1.75
assert_eq!(x % y, remainder);Runimpl RemAssign<&'_ f64> for f64
1.22.0 (const: unstable) · source
impl RemAssign<&'_ f64> for f64
1.22.0 (const: unstable) · sourcefn rem_assign(&mut self, other: &f64)
const: unstable · source
fn rem_assign(&mut self, other: &f64)
const: unstable · sourcePerforms the %= operation. Read more
impl RemAssign<f64> for f64
1.8.0 (const: unstable) · source
impl RemAssign<f64> for f64
1.8.0 (const: unstable) · sourcefn rem_assign(&mut self, other: f64)
const: unstable · source
fn rem_assign(&mut self, other: f64)
const: unstable · sourcePerforms the %= operation. Read more
impl SimdElement for f64
source
impl SimdElement for f64
sourceimpl SubAssign<&'_ f64> for f64
1.22.0 (const: unstable) · source
impl SubAssign<&'_ f64> for f64
1.22.0 (const: unstable) · sourcefn sub_assign(&mut self, other: &f64)
const: unstable · source
fn sub_assign(&mut self, other: &f64)
const: unstable · sourcePerforms the -= operation. Read more
impl SubAssign<f64> for f64
1.8.0 (const: unstable) · source
impl SubAssign<f64> for f64
1.8.0 (const: unstable) · sourcefn sub_assign(&mut self, other: f64)
const: unstable · source
fn sub_assign(&mut self, other: f64)
const: unstable · sourcePerforms the -= operation. Read more
impl Copy for f64
sourceimpl FloatToInt<i128> for f64
sourceimpl FloatToInt<i16> for f64
sourceimpl FloatToInt<i32> for f64
sourceimpl FloatToInt<i64> for f64
sourceimpl FloatToInt<i8> for f64
sourceimpl FloatToInt<isize> for f64
sourceimpl FloatToInt<u128> for f64
sourceimpl FloatToInt<u16> for f64
sourceimpl FloatToInt<u32> for f64
sourceimpl FloatToInt<u64> for f64
sourceimpl FloatToInt<u8> for f64
sourceimpl FloatToInt<usize> for f64
sourceAuto Trait Implementations
impl RefUnwindSafe for f64
impl Send for f64
impl Sync for f64
impl Unpin for f64
impl UnwindSafe for f64
Blanket Implementations
impl<T> BorrowMut<T> for T where
T: ?Sized,
source
impl<T> BorrowMut<T> for T where
T: ?Sized,
sourcefn borrow_mut(&mut self) -> &mut T
const: unstable · source
fn borrow_mut(&mut self) -> &mut T
const: unstable · sourceMutably borrows from an owned value. Read more