#[repr(transparent)]
pub struct Wrapping<T>(pub T);
Expand description
Provides intentionally-wrapped arithmetic on T
.
Operations like +
on u32
values are intended to never overflow,
and in some debug configurations overflow is detected and results
in a panic. While most arithmetic falls into this category, some
code explicitly expects and relies upon modular arithmetic (e.g.,
hashing).
Wrapping arithmetic can be achieved either through methods like
wrapping_add
, or through the Wrapping<T>
type, which says that
all standard arithmetic operations on the underlying value are
intended to have wrapping semantics.
The underlying value can be retrieved through the .0
index of the
Wrapping
tuple.
use std::num::Wrapping;
let zero = Wrapping(0u32);
let one = Wrapping(1u32);
assert_eq!(u32::MAX, (zero - one).0);
Run
Wrapping<T>
is guaranteed to have the same layout and ABI as T
.
🔬 This is a nightly-only experimental API. (
wrapping_int_impl
#32463)
Returns the smallest value that can be represented by this integer type.
Basic usage:
#![feature(wrapping_int_impl)]
use std::num::Wrapping;
assert_eq!(<Wrapping<usize>>::MIN, Wrapping(usize::MIN));
Run
🔬 This is a nightly-only experimental API. (
wrapping_int_impl
#32463)
Returns the largest value that can be represented by this integer type.
Basic usage:
#![feature(wrapping_int_impl)]
use std::num::Wrapping;
assert_eq!(<Wrapping<usize>>::MAX, Wrapping(usize::MAX));
Run
🔬 This is a nightly-only experimental API. (
wrapping_int_impl
#32463)
Returns the size of this integer type in bits.
Basic usage:
#![feature(wrapping_int_impl)]
use std::num::Wrapping;
assert_eq!(<Wrapping<usize>>::BITS, usize::BITS);
Run
🔬 This is a nightly-only experimental API. (
wrapping_int_impl
#32463)
Returns the number of ones in the binary representation of self
.
Basic usage:
#![feature(wrapping_int_impl)]
use std::num::Wrapping;
let n = Wrapping(0b01001100usize);
assert_eq!(n.count_ones(), 3);
Run
🔬 This is a nightly-only experimental API. (
wrapping_int_impl
#32463)
Returns the number of zeros in the binary representation of self
.
Basic usage:
#![feature(wrapping_int_impl)]
use std::num::Wrapping;
assert_eq!(Wrapping(!0usize).count_zeros(), 0);
Run
🔬 This is a nightly-only experimental API. (
wrapping_int_impl
#32463)
Returns the number of trailing zeros in the binary representation of self
.
Basic usage:
#![feature(wrapping_int_impl)]
use std::num::Wrapping;
let n = Wrapping(0b0101000usize);
assert_eq!(n.trailing_zeros(), 3);
Run
🔬 This is a nightly-only experimental API. (
wrapping_int_impl
#32463)
Shifts the bits to the left by a specified amount, n
,
wrapping the truncated bits to the end of the resulting
integer.
Please note this isn’t the same operation as the <<
shifting
operator!
Basic usage:
#![feature(wrapping_int_impl)]
use std::num::Wrapping;
let n: Wrapping<i64> = Wrapping(0x0123456789ABCDEF);
let m: Wrapping<i64> = Wrapping(-0x76543210FEDCBA99);
assert_eq!(n.rotate_left(32), m);
Run
🔬 This is a nightly-only experimental API. (
wrapping_int_impl
#32463)
Shifts the bits to the right by a specified amount, n
,
wrapping the truncated bits to the beginning of the resulting
integer.
Please note this isn’t the same operation as the >>
shifting
operator!
Basic usage:
#![feature(wrapping_int_impl)]
use std::num::Wrapping;
let n: Wrapping<i64> = Wrapping(0x0123456789ABCDEF);
let m: Wrapping<i64> = Wrapping(-0xFEDCBA987654322);
assert_eq!(n.rotate_right(4), m);
Run
🔬 This is a nightly-only experimental API. (
wrapping_int_impl
#32463)
Reverses the byte order of the integer.
Basic usage:
#![feature(wrapping_int_impl)]
use std::num::Wrapping;
let n: Wrapping<i16> = Wrapping(0b0000000_01010101);
assert_eq!(n, Wrapping(85));
let m = n.swap_bytes();
assert_eq!(m, Wrapping(0b01010101_00000000));
assert_eq!(m, Wrapping(21760));
Run
1.37.0 (const: 1.37.0) ·
source
Reverses the bit pattern of the integer.
Please note that this example is shared between integer types.
Which explains why i16
is used here.
Basic usage:
use std::num::Wrapping;
let n = Wrapping(0b0000000_01010101i16);
assert_eq!(n, Wrapping(85));
let m = n.reverse_bits();
assert_eq!(m.0 as u16, 0b10101010_00000000);
assert_eq!(m, Wrapping(-22016));
Run
🔬 This is a nightly-only experimental API. (
wrapping_int_impl
#32463)
Converts an integer from big endian to the target’s endianness.
On big endian this is a no-op. On little endian the bytes are
swapped.
Basic usage:
#![feature(wrapping_int_impl)]
use std::num::Wrapping;
let n = Wrapping(0x1Ausize);
if cfg!(target_endian = "big") {
assert_eq!(<Wrapping<usize>>::from_be(n), n)
} else {
assert_eq!(<Wrapping<usize>>::from_be(n), n.swap_bytes())
}
Run
🔬 This is a nightly-only experimental API. (
wrapping_int_impl
#32463)
Converts an integer from little endian to the target’s endianness.
On little endian this is a no-op. On big endian the bytes are
swapped.
Basic usage:
#![feature(wrapping_int_impl)]
use std::num::Wrapping;
let n = Wrapping(0x1Ausize);
if cfg!(target_endian = "little") {
assert_eq!(<Wrapping<usize>>::from_le(n), n)
} else {
assert_eq!(<Wrapping<usize>>::from_le(n), n.swap_bytes())
}
Run
🔬 This is a nightly-only experimental API. (
wrapping_int_impl
#32463)
Converts self
to big endian from the target’s endianness.
On big endian this is a no-op. On little endian the bytes are
swapped.
Basic usage:
#![feature(wrapping_int_impl)]
use std::num::Wrapping;
let n = Wrapping(0x1Ausize);
if cfg!(target_endian = "big") {
assert_eq!(n.to_be(), n)
} else {
assert_eq!(n.to_be(), n.swap_bytes())
}
Run
🔬 This is a nightly-only experimental API. (
wrapping_int_impl
#32463)
Converts self
to little endian from the target’s endianness.
On little endian this is a no-op. On big endian the bytes are
swapped.
Basic usage:
#![feature(wrapping_int_impl)]
use std::num::Wrapping;
let n = Wrapping(0x1Ausize);
if cfg!(target_endian = "little") {
assert_eq!(n.to_le(), n)
} else {
assert_eq!(n.to_le(), n.swap_bytes())
}
Run
🔬 This is a nightly-only experimental API. (
wrapping_int_impl
#32463)
Raises self to the power of exp
, using exponentiation by squaring.
Basic usage:
#![feature(wrapping_int_impl)]
use std::num::Wrapping;
assert_eq!(Wrapping(3usize).pow(4), Wrapping(81));
Run
Results that are too large are wrapped:
#![feature(wrapping_int_impl)]
use std::num::Wrapping;
assert_eq!(Wrapping(3i8).pow(5), Wrapping(-13));
assert_eq!(Wrapping(3i8).pow(6), Wrapping(-39));
Run
🔬 This is a nightly-only experimental API. (
wrapping_int_impl
#32463)
Returns the smallest value that can be represented by this integer type.
Basic usage:
#![feature(wrapping_int_impl)]
use std::num::Wrapping;
assert_eq!(<Wrapping<u8>>::MIN, Wrapping(u8::MIN));
Run
🔬 This is a nightly-only experimental API. (
wrapping_int_impl
#32463)
Returns the largest value that can be represented by this integer type.
Basic usage:
#![feature(wrapping_int_impl)]
use std::num::Wrapping;
assert_eq!(<Wrapping<u8>>::MAX, Wrapping(u8::MAX));
Run
🔬 This is a nightly-only experimental API. (
wrapping_int_impl
#32463)
Returns the size of this integer type in bits.
Basic usage:
#![feature(wrapping_int_impl)]
use std::num::Wrapping;
assert_eq!(<Wrapping<u8>>::BITS, u8::BITS);
Run
🔬 This is a nightly-only experimental API. (
wrapping_int_impl
#32463)
Returns the number of ones in the binary representation of self
.
Basic usage:
#![feature(wrapping_int_impl)]
use std::num::Wrapping;
let n = Wrapping(0b01001100u8);
assert_eq!(n.count_ones(), 3);
Run
🔬 This is a nightly-only experimental API. (
wrapping_int_impl
#32463)
Returns the number of zeros in the binary representation of self
.
Basic usage:
#![feature(wrapping_int_impl)]
use std::num::Wrapping;
assert_eq!(Wrapping(!0u8).count_zeros(), 0);
Run
🔬 This is a nightly-only experimental API. (
wrapping_int_impl
#32463)
Returns the number of trailing zeros in the binary representation of self
.
Basic usage:
#![feature(wrapping_int_impl)]
use std::num::Wrapping;
let n = Wrapping(0b0101000u8);
assert_eq!(n.trailing_zeros(), 3);
Run
🔬 This is a nightly-only experimental API. (
wrapping_int_impl
#32463)
Shifts the bits to the left by a specified amount, n
,
wrapping the truncated bits to the end of the resulting
integer.
Please note this isn’t the same operation as the <<
shifting
operator!
Basic usage:
#![feature(wrapping_int_impl)]
use std::num::Wrapping;
let n: Wrapping<i64> = Wrapping(0x0123456789ABCDEF);
let m: Wrapping<i64> = Wrapping(-0x76543210FEDCBA99);
assert_eq!(n.rotate_left(32), m);
Run
🔬 This is a nightly-only experimental API. (
wrapping_int_impl
#32463)
Shifts the bits to the right by a specified amount, n
,
wrapping the truncated bits to the beginning of the resulting
integer.
Please note this isn’t the same operation as the >>
shifting
operator!
Basic usage:
#![feature(wrapping_int_impl)]
use std::num::Wrapping;
let n: Wrapping<i64> = Wrapping(0x0123456789ABCDEF);
let m: Wrapping<i64> = Wrapping(-0xFEDCBA987654322);
assert_eq!(n.rotate_right(4), m);
Run
🔬 This is a nightly-only experimental API. (
wrapping_int_impl
#32463)
Reverses the byte order of the integer.
Basic usage:
#![feature(wrapping_int_impl)]
use std::num::Wrapping;
let n: Wrapping<i16> = Wrapping(0b0000000_01010101);
assert_eq!(n, Wrapping(85));
let m = n.swap_bytes();
assert_eq!(m, Wrapping(0b01010101_00000000));
assert_eq!(m, Wrapping(21760));
Run
1.37.0 (const: 1.37.0) ·
source
Reverses the bit pattern of the integer.
Please note that this example is shared between integer types.
Which explains why i16
is used here.
Basic usage:
use std::num::Wrapping;
let n = Wrapping(0b0000000_01010101i16);
assert_eq!(n, Wrapping(85));
let m = n.reverse_bits();
assert_eq!(m.0 as u16, 0b10101010_00000000);
assert_eq!(m, Wrapping(-22016));
Run
🔬 This is a nightly-only experimental API. (
wrapping_int_impl
#32463)
Converts an integer from big endian to the target’s endianness.
On big endian this is a no-op. On little endian the bytes are
swapped.
Basic usage:
#![feature(wrapping_int_impl)]
use std::num::Wrapping;
let n = Wrapping(0x1Au8);
if cfg!(target_endian = "big") {
assert_eq!(<Wrapping<u8>>::from_be(n), n)
} else {
assert_eq!(<Wrapping<u8>>::from_be(n), n.swap_bytes())
}
Run
🔬 This is a nightly-only experimental API. (
wrapping_int_impl
#32463)
Converts an integer from little endian to the target’s endianness.
On little endian this is a no-op. On big endian the bytes are
swapped.
Basic usage:
#![feature(wrapping_int_impl)]
use std::num::Wrapping;
let n = Wrapping(0x1Au8);
if cfg!(target_endian = "little") {
assert_eq!(<Wrapping<u8>>::from_le(n), n)
} else {
assert_eq!(<Wrapping<u8>>::from_le(n), n.swap_bytes())
}
Run
🔬 This is a nightly-only experimental API. (
wrapping_int_impl
#32463)
Converts self
to big endian from the target’s endianness.
On big endian this is a no-op. On little endian the bytes are
swapped.
Basic usage:
#![feature(wrapping_int_impl)]
use std::num::Wrapping;
let n = Wrapping(0x1Au8);
if cfg!(target_endian = "big") {
assert_eq!(n.to_be(), n)
} else {
assert_eq!(n.to_be(), n.swap_bytes())
}
Run
🔬 This is a nightly-only experimental API. (
wrapping_int_impl
#32463)
Converts self
to little endian from the target’s endianness.
On little endian this is a no-op. On big endian the bytes are
swapped.
Basic usage:
#![feature(wrapping_int_impl)]
use std::num::Wrapping;
let n = Wrapping(0x1Au8);
if cfg!(target_endian = "little") {
assert_eq!(n.to_le(), n)
} else {
assert_eq!(n.to_le(), n.swap_bytes())
}
Run
🔬 This is a nightly-only experimental API. (
wrapping_int_impl
#32463)
Raises self to the power of exp
, using exponentiation by squaring.
Basic usage:
#![feature(wrapping_int_impl)]
use std::num::Wrapping;
assert_eq!(Wrapping(3u8).pow(4), Wrapping(81));
Run
Results that are too large are wrapped:
#![feature(wrapping_int_impl)]
use std::num::Wrapping;
assert_eq!(Wrapping(3i8).pow(5), Wrapping(-13));
assert_eq!(Wrapping(3i8).pow(6), Wrapping(-39));
Run
🔬 This is a nightly-only experimental API. (
wrapping_int_impl
#32463)
Returns the smallest value that can be represented by this integer type.
Basic usage:
#![feature(wrapping_int_impl)]
use std::num::Wrapping;
assert_eq!(<Wrapping<u16>>::MIN, Wrapping(u16::MIN));
Run
🔬 This is a nightly-only experimental API. (
wrapping_int_impl
#32463)
Returns the largest value that can be represented by this integer type.
Basic usage:
#![feature(wrapping_int_impl)]
use std::num::Wrapping;
assert_eq!(<Wrapping<u16>>::MAX, Wrapping(u16::MAX));
Run
🔬 This is a nightly-only experimental API. (
wrapping_int_impl
#32463)
Returns the size of this integer type in bits.
Basic usage:
#![feature(wrapping_int_impl)]
use std::num::Wrapping;
assert_eq!(<Wrapping<u16>>::BITS, u16::BITS);
Run
🔬 This is a nightly-only experimental API. (
wrapping_int_impl
#32463)
Returns the number of ones in the binary representation of self
.
Basic usage:
#![feature(wrapping_int_impl)]
use std::num::Wrapping;
let n = Wrapping(0b01001100u16);
assert_eq!(n.count_ones(), 3);
Run
🔬 This is a nightly-only experimental API. (
wrapping_int_impl
#32463)
Returns the number of zeros in the binary representation of self
.
Basic usage:
#![feature(wrapping_int_impl)]
use std::num::Wrapping;
assert_eq!(Wrapping(!0u16).count_zeros(), 0);
Run
🔬 This is a nightly-only experimental API. (
wrapping_int_impl
#32463)
Returns the number of trailing zeros in the binary representation of self
.
Basic usage:
#![feature(wrapping_int_impl)]
use std::num::Wrapping;
let n = Wrapping(0b0101000u16);
assert_eq!(n.trailing_zeros(), 3);
Run
🔬 This is a nightly-only experimental API. (
wrapping_int_impl
#32463)
Shifts the bits to the left by a specified amount, n
,
wrapping the truncated bits to the end of the resulting
integer.
Please note this isn’t the same operation as the <<
shifting
operator!
Basic usage:
#![feature(wrapping_int_impl)]
use std::num::Wrapping;
let n: Wrapping<i64> = Wrapping(0x0123456789ABCDEF);
let m: Wrapping<i64> = Wrapping(-0x76543210FEDCBA99);
assert_eq!(n.rotate_left(32), m);
Run
🔬 This is a nightly-only experimental API. (
wrapping_int_impl
#32463)
Shifts the bits to the right by a specified amount, n
,
wrapping the truncated bits to the beginning of the resulting
integer.
Please note this isn’t the same operation as the >>
shifting
operator!
Basic usage:
#![feature(wrapping_int_impl)]
use std::num::Wrapping;
let n: Wrapping<i64> = Wrapping(0x0123456789ABCDEF);
let m: Wrapping<i64> = Wrapping(-0xFEDCBA987654322);
assert_eq!(n.rotate_right(4), m);
Run
🔬 This is a nightly-only experimental API. (
wrapping_int_impl
#32463)
Reverses the byte order of the integer.
Basic usage:
#![feature(wrapping_int_impl)]
use std::num::Wrapping;
let n: Wrapping<i16> = Wrapping(0b0000000_01010101);
assert_eq!(n, Wrapping(85));
let m = n.swap_bytes();
assert_eq!(m, Wrapping(0b01010101_00000000));
assert_eq!(m, Wrapping(21760));
Run
1.37.0 (const: 1.37.0) ·
source
Reverses the bit pattern of the integer.
Please note that this example is shared between integer types.
Which explains why i16
is used here.
Basic usage:
use std::num::Wrapping;
let n = Wrapping(0b0000000_01010101i16);
assert_eq!(n, Wrapping(85));
let m = n.reverse_bits();
assert_eq!(m.0 as u16, 0b10101010_00000000);
assert_eq!(m, Wrapping(-22016));
Run
🔬 This is a nightly-only experimental API. (
wrapping_int_impl
#32463)
Converts an integer from big endian to the target’s endianness.
On big endian this is a no-op. On little endian the bytes are
swapped.
Basic usage:
#![feature(wrapping_int_impl)]
use std::num::Wrapping;
let n = Wrapping(0x1Au16);
if cfg!(target_endian = "big") {
assert_eq!(<Wrapping<u16>>::from_be(n), n)
} else {
assert_eq!(<Wrapping<u16>>::from_be(n), n.swap_bytes())
}
Run
🔬 This is a nightly-only experimental API. (
wrapping_int_impl
#32463)
Converts an integer from little endian to the target’s endianness.
On little endian this is a no-op. On big endian the bytes are
swapped.
Basic usage:
#![feature(wrapping_int_impl)]
use std::num::Wrapping;
let n = Wrapping(0x1Au16);
if cfg!(target_endian = "little") {
assert_eq!(<Wrapping<u16>>::from_le(n), n)
} else {
assert_eq!(<Wrapping<u16>>::from_le(n), n.swap_bytes())
}
Run
🔬 This is a nightly-only experimental API. (
wrapping_int_impl
#32463)
Converts self
to big endian from the target’s endianness.
On big endian this is a no-op. On little endian the bytes are
swapped.
Basic usage:
#![feature(wrapping_int_impl)]
use std::num::Wrapping;
let n = Wrapping(0x1Au16);
if cfg!(target_endian = "big") {
assert_eq!(n.to_be(), n)
} else {
assert_eq!(n.to_be(), n.swap_bytes())
}
Run
🔬 This is a nightly-only experimental API. (
wrapping_int_impl
#32463)
Converts self
to little endian from the target’s endianness.
On little endian this is a no-op. On big endian the bytes are
swapped.
Basic usage:
#![feature(wrapping_int_impl)]
use std::num::Wrapping;
let n = Wrapping(0x1Au16);
if cfg!(target_endian = "little") {
assert_eq!(n.to_le(), n)
} else {
assert_eq!(n.to_le(), n.swap_bytes())
}
Run
🔬 This is a nightly-only experimental API. (
wrapping_int_impl
#32463)
Raises self to the power of exp
, using exponentiation by squaring.
Basic usage:
#![feature(wrapping_int_impl)]
use std::num::Wrapping;
assert_eq!(Wrapping(3u16).pow(4), Wrapping(81));
Run
Results that are too large are wrapped:
#![feature(wrapping_int_impl)]
use std::num::Wrapping;
assert_eq!(Wrapping(3i8).pow(5), Wrapping(-13));
assert_eq!(Wrapping(3i8).pow(6), Wrapping(-39));
Run
🔬 This is a nightly-only experimental API. (
wrapping_int_impl
#32463)
Returns the smallest value that can be represented by this integer type.
Basic usage:
#![feature(wrapping_int_impl)]
use std::num::Wrapping;
assert_eq!(<Wrapping<u32>>::MIN, Wrapping(u32::MIN));
Run
🔬 This is a nightly-only experimental API. (
wrapping_int_impl
#32463)
Returns the largest value that can be represented by this integer type.
Basic usage:
#![feature(wrapping_int_impl)]
use std::num::Wrapping;
assert_eq!(<Wrapping<u32>>::MAX, Wrapping(u32::MAX));
Run
🔬 This is a nightly-only experimental API. (
wrapping_int_impl
#32463)
Returns the size of this integer type in bits.
Basic usage:
#![feature(wrapping_int_impl)]
use std::num::Wrapping;
assert_eq!(<Wrapping<u32>>::BITS, u32::BITS);
Run
🔬 This is a nightly-only experimental API. (
wrapping_int_impl
#32463)
Returns the number of ones in the binary representation of self
.
Basic usage:
#![feature(wrapping_int_impl)]
use std::num::Wrapping;
let n = Wrapping(0b01001100u32);
assert_eq!(n.count_ones(), 3);
Run
🔬 This is a nightly-only experimental API. (
wrapping_int_impl
#32463)
Returns the number of zeros in the binary representation of self
.
Basic usage:
#![feature(wrapping_int_impl)]
use std::num::Wrapping;
assert_eq!(Wrapping(!0u32).count_zeros(), 0);
Run
🔬 This is a nightly-only experimental API. (
wrapping_int_impl
#32463)
Returns the number of trailing zeros in the binary representation of self
.
Basic usage:
#![feature(wrapping_int_impl)]
use std::num::Wrapping;
let n = Wrapping(0b0101000u32);
assert_eq!(n.trailing_zeros(), 3);
Run
🔬 This is a nightly-only experimental API. (
wrapping_int_impl
#32463)
Shifts the bits to the left by a specified amount, n
,
wrapping the truncated bits to the end of the resulting
integer.
Please note this isn’t the same operation as the <<
shifting
operator!
Basic usage:
#![feature(wrapping_int_impl)]
use std::num::Wrapping;
let n: Wrapping<i64> = Wrapping(0x0123456789ABCDEF);
let m: Wrapping<i64> = Wrapping(-0x76543210FEDCBA99);
assert_eq!(n.rotate_left(32), m);
Run
🔬 This is a nightly-only experimental API. (
wrapping_int_impl
#32463)
Shifts the bits to the right by a specified amount, n
,
wrapping the truncated bits to the beginning of the resulting
integer.
Please note this isn’t the same operation as the >>
shifting
operator!
Basic usage:
#![feature(wrapping_int_impl)]
use std::num::Wrapping;
let n: Wrapping<i64> = Wrapping(0x0123456789ABCDEF);
let m: Wrapping<i64> = Wrapping(-0xFEDCBA987654322);
assert_eq!(n.rotate_right(4), m);
Run
🔬 This is a nightly-only experimental API. (
wrapping_int_impl
#32463)
Reverses the byte order of the integer.
Basic usage:
#![feature(wrapping_int_impl)]
use std::num::Wrapping;
let n: Wrapping<i16> = Wrapping(0b0000000_01010101);
assert_eq!(n, Wrapping(85));
let m = n.swap_bytes();
assert_eq!(m, Wrapping(0b01010101_00000000));
assert_eq!(m, Wrapping(21760));
Run
1.37.0 (const: 1.37.0) ·
source
Reverses the bit pattern of the integer.
Please note that this example is shared between integer types.
Which explains why i16
is used here.
Basic usage:
use std::num::Wrapping;
let n = Wrapping(0b0000000_01010101i16);
assert_eq!(n, Wrapping(85));
let m = n.reverse_bits();
assert_eq!(m.0 as u16, 0b10101010_00000000);
assert_eq!(m, Wrapping(-22016));
Run
🔬 This is a nightly-only experimental API. (
wrapping_int_impl
#32463)
Converts an integer from big endian to the target’s endianness.
On big endian this is a no-op. On little endian the bytes are
swapped.
Basic usage:
#![feature(wrapping_int_impl)]
use std::num::Wrapping;
let n = Wrapping(0x1Au32);
if cfg!(target_endian = "big") {
assert_eq!(<Wrapping<u32>>::from_be(n), n)
} else {
assert_eq!(<Wrapping<u32>>::from_be(n), n.swap_bytes())
}
Run
🔬 This is a nightly-only experimental API. (
wrapping_int_impl
#32463)
Converts an integer from little endian to the target’s endianness.
On little endian this is a no-op. On big endian the bytes are
swapped.
Basic usage:
#![feature(wrapping_int_impl)]
use std::num::Wrapping;
let n = Wrapping(0x1Au32);
if cfg!(target_endian = "little") {
assert_eq!(<Wrapping<u32>>::from_le(n), n)
} else {
assert_eq!(<Wrapping<u32>>::from_le(n), n.swap_bytes())
}
Run
🔬 This is a nightly-only experimental API. (
wrapping_int_impl
#32463)
Converts self
to big endian from the target’s endianness.
On big endian this is a no-op. On little endian the bytes are
swapped.
Basic usage:
#![feature(wrapping_int_impl)]
use std::num::Wrapping;
let n = Wrapping(0x1Au32);
if cfg!(target_endian = "big") {
assert_eq!(n.to_be(), n)
} else {
assert_eq!(n.to_be(), n.swap_bytes())
}
Run
🔬 This is a nightly-only experimental API. (
wrapping_int_impl
#32463)
Converts self
to little endian from the target’s endianness.
On little endian this is a no-op. On big endian the bytes are
swapped.
Basic usage:
#![feature(wrapping_int_impl)]
use std::num::Wrapping;
let n = Wrapping(0x1Au32);
if cfg!(target_endian = "little") {
assert_eq!(n.to_le(), n)
} else {
assert_eq!(n.to_le(), n.swap_bytes())
}
Run
🔬 This is a nightly-only experimental API. (
wrapping_int_impl
#32463)
Raises self to the power of exp
, using exponentiation by squaring.
Basic usage:
#![feature(wrapping_int_impl)]
use std::num::Wrapping;
assert_eq!(Wrapping(3u32).pow(4), Wrapping(81));
Run
Results that are too large are wrapped:
#![feature(wrapping_int_impl)]
use std::num::Wrapping;
assert_eq!(Wrapping(3i8).pow(5), Wrapping(-13));
assert_eq!(Wrapping(3i8).pow(6), Wrapping(-39));
Run
🔬 This is a nightly-only experimental API. (
wrapping_int_impl
#32463)
Returns the smallest value that can be represented by this integer type.
Basic usage:
#![feature(wrapping_int_impl)]
use std::num::Wrapping;
assert_eq!(<Wrapping<u64>>::MIN, Wrapping(u64::MIN));
Run
🔬 This is a nightly-only experimental API. (
wrapping_int_impl
#32463)
Returns the largest value that can be represented by this integer type.
Basic usage:
#![feature(wrapping_int_impl)]
use std::num::Wrapping;
assert_eq!(<Wrapping<u64>>::MAX, Wrapping(u64::MAX));
Run
🔬 This is a nightly-only experimental API. (
wrapping_int_impl
#32463)
Returns the size of this integer type in bits.
Basic usage:
#![feature(wrapping_int_impl)]
use std::num::Wrapping;
assert_eq!(<Wrapping<u64>>::BITS, u64::BITS);
Run
🔬 This is a nightly-only experimental API. (
wrapping_int_impl
#32463)
Returns the number of ones in the binary representation of self
.
Basic usage:
#![feature(wrapping_int_impl)]
use std::num::Wrapping;
let n = Wrapping(0b01001100u64);
assert_eq!(n.count_ones(), 3);
Run
🔬 This is a nightly-only experimental API. (
wrapping_int_impl
#32463)
Returns the number of zeros in the binary representation of self
.
Basic usage:
#![feature(wrapping_int_impl)]
use std::num::Wrapping;
assert_eq!(Wrapping(!0u64).count_zeros(), 0);
Run
🔬 This is a nightly-only experimental API. (
wrapping_int_impl
#32463)
Returns the number of trailing zeros in the binary representation of self
.
Basic usage:
#![feature(wrapping_int_impl)]
use std::num::Wrapping;
let n = Wrapping(0b0101000u64);
assert_eq!(n.trailing_zeros(), 3);
Run
🔬 This is a nightly-only experimental API. (
wrapping_int_impl
#32463)
Shifts the bits to the left by a specified amount, n
,
wrapping the truncated bits to the end of the resulting
integer.
Please note this isn’t the same operation as the <<
shifting
operator!
Basic usage:
#![feature(wrapping_int_impl)]
use std::num::Wrapping;
let n: Wrapping<i64> = Wrapping(0x0123456789ABCDEF);
let m: Wrapping<i64> = Wrapping(-0x76543210FEDCBA99);
assert_eq!(n.rotate_left(32), m);
Run
🔬 This is a nightly-only experimental API. (
wrapping_int_impl
#32463)
Shifts the bits to the right by a specified amount, n
,
wrapping the truncated bits to the beginning of the resulting
integer.
Please note this isn’t the same operation as the >>
shifting
operator!
Basic usage:
#![feature(wrapping_int_impl)]
use std::num::Wrapping;
let n: Wrapping<i64> = Wrapping(0x0123456789ABCDEF);
let m: Wrapping<i64> = Wrapping(-0xFEDCBA987654322);
assert_eq!(n.rotate_right(4), m);
Run
🔬 This is a nightly-only experimental API. (
wrapping_int_impl
#32463)
Reverses the byte order of the integer.
Basic usage:
#![feature(wrapping_int_impl)]
use std::num::Wrapping;
let n: Wrapping<i16> = Wrapping(0b0000000_01010101);
assert_eq!(n, Wrapping(85));
let m = n.swap_bytes();
assert_eq!(m, Wrapping(0b01010101_00000000));
assert_eq!(m, Wrapping(21760));
Run
1.37.0 (const: 1.37.0) ·
source
Reverses the bit pattern of the integer.
Please note that this example is shared between integer types.
Which explains why i16
is used here.
Basic usage:
use std::num::Wrapping;
let n = Wrapping(0b0000000_01010101i16);
assert_eq!(n, Wrapping(85));
let m = n.reverse_bits();
assert_eq!(m.0 as u16, 0b10101010_00000000);
assert_eq!(m, Wrapping(-22016));
Run
🔬 This is a nightly-only experimental API. (
wrapping_int_impl
#32463)
Converts an integer from big endian to the target’s endianness.
On big endian this is a no-op. On little endian the bytes are
swapped.
Basic usage:
#![feature(wrapping_int_impl)]
use std::num::Wrapping;
let n = Wrapping(0x1Au64);
if cfg!(target_endian = "big") {
assert_eq!(<Wrapping<u64>>::from_be(n), n)
} else {
assert_eq!(<Wrapping<u64>>::from_be(n), n.swap_bytes())
}
Run
🔬 This is a nightly-only experimental API. (
wrapping_int_impl
#32463)
Converts an integer from little endian to the target’s endianness.
On little endian this is a no-op. On big endian the bytes are
swapped.
Basic usage:
#![feature(wrapping_int_impl)]
use std::num::Wrapping;
let n = Wrapping(0x1Au64);
if cfg!(target_endian = "little") {
assert_eq!(<Wrapping<u64>>::from_le(n), n)
} else {
assert_eq!(<Wrapping<u64>>::from_le(n), n.swap_bytes())
}
Run
🔬 This is a nightly-only experimental API. (
wrapping_int_impl
#32463)
Converts self
to big endian from the target’s endianness.
On big endian this is a no-op. On little endian the bytes are
swapped.
Basic usage:
#![feature(wrapping_int_impl)]
use std::num::Wrapping;
let n = Wrapping(0x1Au64);
if cfg!(target_endian = "big") {
assert_eq!(n.to_be(), n)
} else {
assert_eq!(n.to_be(), n.swap_bytes())
}
Run
🔬 This is a nightly-only experimental API. (
wrapping_int_impl
#32463)
Converts self
to little endian from the target’s endianness.
On little endian this is a no-op. On big endian the bytes are
swapped.
Basic usage:
#![feature(wrapping_int_impl)]
use std::num::Wrapping;
let n = Wrapping(0x1Au64);
if cfg!(target_endian = "little") {
assert_eq!(n.to_le(), n)
} else {
assert_eq!(n.to_le(), n.swap_bytes())
}
Run
🔬 This is a nightly-only experimental API. (
wrapping_int_impl
#32463)
Raises self to the power of exp
, using exponentiation by squaring.
Basic usage:
#![feature(wrapping_int_impl)]
use std::num::Wrapping;
assert_eq!(Wrapping(3u64).pow(4), Wrapping(81));
Run
Results that are too large are wrapped:
#![feature(wrapping_int_impl)]
use std::num::Wrapping;
assert_eq!(Wrapping(3i8).pow(5), Wrapping(-13));
assert_eq!(Wrapping(3i8).pow(6), Wrapping(-39));
Run
🔬 This is a nightly-only experimental API. (
wrapping_int_impl
#32463)
Returns the smallest value that can be represented by this integer type.
Basic usage:
#![feature(wrapping_int_impl)]
use std::num::Wrapping;
assert_eq!(<Wrapping<u128>>::MIN, Wrapping(u128::MIN));
Run
🔬 This is a nightly-only experimental API. (
wrapping_int_impl
#32463)
Returns the largest value that can be represented by this integer type.
Basic usage:
#![feature(wrapping_int_impl)]
use std::num::Wrapping;
assert_eq!(<Wrapping<u128>>::MAX, Wrapping(u128::MAX));
Run
🔬 This is a nightly-only experimental API. (
wrapping_int_impl
#32463)
Returns the size of this integer type in bits.
Basic usage:
#![feature(wrapping_int_impl)]
use std::num::Wrapping;
assert_eq!(<Wrapping<u128>>::BITS, u128::BITS);
Run
🔬 This is a nightly-only experimental API. (
wrapping_int_impl
#32463)
Returns the number of ones in the binary representation of self
.
Basic usage:
#![feature(wrapping_int_impl)]
use std::num::Wrapping;
let n = Wrapping(0b01001100u128);
assert_eq!(n.count_ones(), 3);
Run
🔬 This is a nightly-only experimental API. (
wrapping_int_impl
#32463)
Returns the number of zeros in the binary representation of self
.
Basic usage:
#![feature(wrapping_int_impl)]
use std::num::Wrapping;
assert_eq!(Wrapping(!0u128).count_zeros(), 0);
Run
🔬 This is a nightly-only experimental API. (
wrapping_int_impl
#32463)
Returns the number of trailing zeros in the binary representation of self
.
Basic usage:
#![feature(wrapping_int_impl)]
use std::num::Wrapping;
let n = Wrapping(0b0101000u128);
assert_eq!(n.trailing_zeros(), 3);
Run
🔬 This is a nightly-only experimental API. (
wrapping_int_impl
#32463)
Shifts the bits to the left by a specified amount, n
,
wrapping the truncated bits to the end of the resulting
integer.
Please note this isn’t the same operation as the <<
shifting
operator!
Basic usage:
#![feature(wrapping_int_impl)]
use std::num::Wrapping;
let n: Wrapping<i64> = Wrapping(0x0123456789ABCDEF);
let m: Wrapping<i64> = Wrapping(-0x76543210FEDCBA99);
assert_eq!(n.rotate_left(32), m);
Run
🔬 This is a nightly-only experimental API. (
wrapping_int_impl
#32463)
Shifts the bits to the right by a specified amount, n
,
wrapping the truncated bits to the beginning of the resulting
integer.
Please note this isn’t the same operation as the >>
shifting
operator!
Basic usage:
#![feature(wrapping_int_impl)]
use std::num::Wrapping;
let n: Wrapping<i64> = Wrapping(0x0123456789ABCDEF);
let m: Wrapping<i64> = Wrapping(-0xFEDCBA987654322);
assert_eq!(n.rotate_right(4), m);
Run
🔬 This is a nightly-only experimental API. (
wrapping_int_impl
#32463)
Reverses the byte order of the integer.
Basic usage:
#![feature(wrapping_int_impl)]
use std::num::Wrapping;
let n: Wrapping<i16> = Wrapping(0b0000000_01010101);
assert_eq!(n, Wrapping(85));
let m = n.swap_bytes();
assert_eq!(m, Wrapping(0b01010101_00000000));
assert_eq!(m, Wrapping(21760));
Run
1.37.0 (const: 1.37.0) ·
source
Reverses the bit pattern of the integer.
Please note that this example is shared between integer types.
Which explains why i16
is used here.
Basic usage:
use std::num::Wrapping;
let n = Wrapping(0b0000000_01010101i16);
assert_eq!(n, Wrapping(85));
let m = n.reverse_bits();
assert_eq!(m.0 as u16, 0b10101010_00000000);
assert_eq!(m, Wrapping(-22016));
Run
🔬 This is a nightly-only experimental API. (
wrapping_int_impl
#32463)
Converts an integer from big endian to the target’s endianness.
On big endian this is a no-op. On little endian the bytes are
swapped.
Basic usage:
#![feature(wrapping_int_impl)]
use std::num::Wrapping;
let n = Wrapping(0x1Au128);
if cfg!(target_endian = "big") {
assert_eq!(<Wrapping<u128>>::from_be(n), n)
} else {
assert_eq!(<Wrapping<u128>>::from_be(n), n.swap_bytes())
}
Run
🔬 This is a nightly-only experimental API. (
wrapping_int_impl
#32463)
Converts an integer from little endian to the target’s endianness.
On little endian this is a no-op. On big endian the bytes are
swapped.
Basic usage:
#![feature(wrapping_int_impl)]
use std::num::Wrapping;
let n = Wrapping(0x1Au128);
if cfg!(target_endian = "little") {
assert_eq!(<Wrapping<u128>>::from_le(n), n)
} else {
assert_eq!(<Wrapping<u128>>::from_le(n), n.swap_bytes())
}
Run
🔬 This is a nightly-only experimental API. (
wrapping_int_impl
#32463)
Converts self
to big endian from the target’s endianness.
On big endian this is a no-op. On little endian the bytes are
swapped.
Basic usage:
#![feature(wrapping_int_impl)]
use std::num::Wrapping;
let n = Wrapping(0x1Au128);
if cfg!(target_endian = "big") {
assert_eq!(n.to_be(), n)
} else {
assert_eq!(n.to_be(), n.swap_bytes())
}
Run
🔬 This is a nightly-only experimental API. (
wrapping_int_impl
#32463)
Converts self
to little endian from the target’s endianness.
On little endian this is a no-op. On big endian the bytes are
swapped.
Basic usage:
#![feature(wrapping_int_impl)]
use std::num::Wrapping;
let n = Wrapping(0x1Au128);
if cfg!(target_endian = "little") {
assert_eq!(n.to_le(), n)
} else {
assert_eq!(n.to_le(), n.swap_bytes())
}
Run
🔬 This is a nightly-only experimental API. (
wrapping_int_impl
#32463)
Raises self to the power of exp
, using exponentiation by squaring.
Basic usage:
#![feature(wrapping_int_impl)]
use std::num::Wrapping;
assert_eq!(Wrapping(3u128).pow(4), Wrapping(81));
Run
Results that are too large are wrapped:
#![feature(wrapping_int_impl)]
use std::num::Wrapping;
assert_eq!(Wrapping(3i8).pow(5), Wrapping(-13));
assert_eq!(Wrapping(3i8).pow(6), Wrapping(-39));
Run
🔬 This is a nightly-only experimental API. (
wrapping_int_impl
#32463)
Returns the smallest value that can be represented by this integer type.
Basic usage:
#![feature(wrapping_int_impl)]
use std::num::Wrapping;
assert_eq!(<Wrapping<isize>>::MIN, Wrapping(isize::MIN));
Run
🔬 This is a nightly-only experimental API. (
wrapping_int_impl
#32463)
Returns the largest value that can be represented by this integer type.
Basic usage:
#![feature(wrapping_int_impl)]
use std::num::Wrapping;
assert_eq!(<Wrapping<isize>>::MAX, Wrapping(isize::MAX));
Run
🔬 This is a nightly-only experimental API. (
wrapping_int_impl
#32463)
Returns the size of this integer type in bits.
Basic usage:
#![feature(wrapping_int_impl)]
use std::num::Wrapping;
assert_eq!(<Wrapping<isize>>::BITS, isize::BITS);
Run
🔬 This is a nightly-only experimental API. (
wrapping_int_impl
#32463)
Returns the number of ones in the binary representation of self
.
Basic usage:
#![feature(wrapping_int_impl)]
use std::num::Wrapping;
let n = Wrapping(0b01001100isize);
assert_eq!(n.count_ones(), 3);
Run
🔬 This is a nightly-only experimental API. (
wrapping_int_impl
#32463)
Returns the number of zeros in the binary representation of self
.
Basic usage:
#![feature(wrapping_int_impl)]
use std::num::Wrapping;
assert_eq!(Wrapping(!0isize).count_zeros(), 0);
Run
🔬 This is a nightly-only experimental API. (
wrapping_int_impl
#32463)
Returns the number of trailing zeros in the binary representation of self
.
Basic usage:
#![feature(wrapping_int_impl)]
use std::num::Wrapping;
let n = Wrapping(0b0101000isize);
assert_eq!(n.trailing_zeros(), 3);
Run
🔬 This is a nightly-only experimental API. (
wrapping_int_impl
#32463)
Shifts the bits to the left by a specified amount, n
,
wrapping the truncated bits to the end of the resulting
integer.
Please note this isn’t the same operation as the <<
shifting
operator!
Basic usage:
#![feature(wrapping_int_impl)]
use std::num::Wrapping;
let n: Wrapping<i64> = Wrapping(0x0123456789ABCDEF);
let m: Wrapping<i64> = Wrapping(-0x76543210FEDCBA99);
assert_eq!(n.rotate_left(32), m);
Run
🔬 This is a nightly-only experimental API. (
wrapping_int_impl
#32463)
Shifts the bits to the right by a specified amount, n
,
wrapping the truncated bits to the beginning of the resulting
integer.
Please note this isn’t the same operation as the >>
shifting
operator!
Basic usage:
#![feature(wrapping_int_impl)]
use std::num::Wrapping;
let n: Wrapping<i64> = Wrapping(0x0123456789ABCDEF);
let m: Wrapping<i64> = Wrapping(-0xFEDCBA987654322);
assert_eq!(n.rotate_right(4), m);
Run
🔬 This is a nightly-only experimental API. (
wrapping_int_impl
#32463)
Reverses the byte order of the integer.
Basic usage:
#![feature(wrapping_int_impl)]
use std::num::Wrapping;
let n: Wrapping<i16> = Wrapping(0b0000000_01010101);
assert_eq!(n, Wrapping(85));
let m = n.swap_bytes();
assert_eq!(m, Wrapping(0b01010101_00000000));
assert_eq!(m, Wrapping(21760));
Run
1.37.0 (const: 1.37.0) ·
source
Reverses the bit pattern of the integer.
Please note that this example is shared between integer types.
Which explains why i16
is used here.
Basic usage:
use std::num::Wrapping;
let n = Wrapping(0b0000000_01010101i16);
assert_eq!(n, Wrapping(85));
let m = n.reverse_bits();
assert_eq!(m.0 as u16, 0b10101010_00000000);
assert_eq!(m, Wrapping(-22016));
Run
🔬 This is a nightly-only experimental API. (
wrapping_int_impl
#32463)
Converts an integer from big endian to the target’s endianness.
On big endian this is a no-op. On little endian the bytes are
swapped.
Basic usage:
#![feature(wrapping_int_impl)]
use std::num::Wrapping;
let n = Wrapping(0x1Aisize);
if cfg!(target_endian = "big") {
assert_eq!(<Wrapping<isize>>::from_be(n), n)
} else {
assert_eq!(<Wrapping<isize>>::from_be(n), n.swap_bytes())
}
Run
🔬 This is a nightly-only experimental API. (
wrapping_int_impl
#32463)
Converts an integer from little endian to the target’s endianness.
On little endian this is a no-op. On big endian the bytes are
swapped.
Basic usage:
#![feature(wrapping_int_impl)]
use std::num::Wrapping;
let n = Wrapping(0x1Aisize);
if cfg!(target_endian = "little") {
assert_eq!(<Wrapping<isize>>::from_le(n), n)
} else {
assert_eq!(<Wrapping<isize>>::from_le(n), n.swap_bytes())
}
Run
🔬 This is a nightly-only experimental API. (
wrapping_int_impl
#32463)
Converts self
to big endian from the target’s endianness.
On big endian this is a no-op. On little endian the bytes are
swapped.
Basic usage:
#![feature(wrapping_int_impl)]
use std::num::Wrapping;
let n = Wrapping(0x1Aisize);
if cfg!(target_endian = "big") {
assert_eq!(n.to_be(), n)
} else {
assert_eq!(n.to_be(), n.swap_bytes())
}
Run
🔬 This is a nightly-only experimental API. (
wrapping_int_impl
#32463)
Converts self
to little endian from the target’s endianness.
On little endian this is a no-op. On big endian the bytes are
swapped.
Basic usage:
#![feature(wrapping_int_impl)]
use std::num::Wrapping;
let n = Wrapping(0x1Aisize);
if cfg!(target_endian = "little") {
assert_eq!(n.to_le(), n)
} else {
assert_eq!(n.to_le(), n.swap_bytes())
}
Run
🔬 This is a nightly-only experimental API. (
wrapping_int_impl
#32463)
Raises self to the power of exp
, using exponentiation by squaring.
Basic usage:
#![feature(wrapping_int_impl)]
use std::num::Wrapping;
assert_eq!(Wrapping(3isize).pow(4), Wrapping(81));
Run
Results that are too large are wrapped:
#![feature(wrapping_int_impl)]
use std::num::Wrapping;
assert_eq!(Wrapping(3i8).pow(5), Wrapping(-13));
assert_eq!(Wrapping(3i8).pow(6), Wrapping(-39));
Run
🔬 This is a nightly-only experimental API. (
wrapping_int_impl
#32463)
Returns the smallest value that can be represented by this integer type.
Basic usage:
#![feature(wrapping_int_impl)]
use std::num::Wrapping;
assert_eq!(<Wrapping<i8>>::MIN, Wrapping(i8::MIN));
Run
🔬 This is a nightly-only experimental API. (
wrapping_int_impl
#32463)
Returns the largest value that can be represented by this integer type.
Basic usage:
#![feature(wrapping_int_impl)]
use std::num::Wrapping;
assert_eq!(<Wrapping<i8>>::MAX, Wrapping(i8::MAX));
Run
🔬 This is a nightly-only experimental API. (
wrapping_int_impl
#32463)
Returns the size of this integer type in bits.
Basic usage:
#![feature(wrapping_int_impl)]
use std::num::Wrapping;
assert_eq!(<Wrapping<i8>>::BITS, i8::BITS);
Run
🔬 This is a nightly-only experimental API. (
wrapping_int_impl
#32463)
Returns the number of ones in the binary representation of self
.
Basic usage:
#![feature(wrapping_int_impl)]
use std::num::Wrapping;
let n = Wrapping(0b01001100i8);
assert_eq!(n.count_ones(), 3);
Run
🔬 This is a nightly-only experimental API. (
wrapping_int_impl
#32463)
Returns the number of zeros in the binary representation of self
.
Basic usage:
#![feature(wrapping_int_impl)]
use std::num::Wrapping;
assert_eq!(Wrapping(!0i8).count_zeros(), 0);
Run
🔬 This is a nightly-only experimental API. (
wrapping_int_impl
#32463)
Returns the number of trailing zeros in the binary representation of self
.
Basic usage:
#![feature(wrapping_int_impl)]
use std::num::Wrapping;
let n = Wrapping(0b0101000i8);
assert_eq!(n.trailing_zeros(), 3);
Run
🔬 This is a nightly-only experimental API. (
wrapping_int_impl
#32463)
Shifts the bits to the left by a specified amount, n
,
wrapping the truncated bits to the end of the resulting
integer.
Please note this isn’t the same operation as the <<
shifting
operator!
Basic usage:
#![feature(wrapping_int_impl)]
use std::num::Wrapping;
let n: Wrapping<i64> = Wrapping(0x0123456789ABCDEF);
let m: Wrapping<i64> = Wrapping(-0x76543210FEDCBA99);
assert_eq!(n.rotate_left(32), m);
Run
🔬 This is a nightly-only experimental API. (
wrapping_int_impl
#32463)
Shifts the bits to the right by a specified amount, n
,
wrapping the truncated bits to the beginning of the resulting
integer.
Please note this isn’t the same operation as the >>
shifting
operator!
Basic usage:
#![feature(wrapping_int_impl)]
use std::num::Wrapping;
let n: Wrapping<i64> = Wrapping(0x0123456789ABCDEF);
let m: Wrapping<i64> = Wrapping(-0xFEDCBA987654322);
assert_eq!(n.rotate_right(4), m);
Run
🔬 This is a nightly-only experimental API. (
wrapping_int_impl
#32463)
Reverses the byte order of the integer.
Basic usage:
#![feature(wrapping_int_impl)]
use std::num::Wrapping;
let n: Wrapping<i16> = Wrapping(0b0000000_01010101);
assert_eq!(n, Wrapping(85));
let m = n.swap_bytes();
assert_eq!(m, Wrapping(0b01010101_00000000));
assert_eq!(m, Wrapping(21760));
Run
1.37.0 (const: 1.37.0) ·
source
Reverses the bit pattern of the integer.
Please note that this example is shared between integer types.
Which explains why i16
is used here.
Basic usage:
use std::num::Wrapping;
let n = Wrapping(0b0000000_01010101i16);
assert_eq!(n, Wrapping(85));
let m = n.reverse_bits();
assert_eq!(m.0 as u16, 0b10101010_00000000);
assert_eq!(m, Wrapping(-22016));
Run
🔬 This is a nightly-only experimental API. (
wrapping_int_impl
#32463)
Converts an integer from big endian to the target’s endianness.
On big endian this is a no-op. On little endian the bytes are
swapped.
Basic usage:
#![feature(wrapping_int_impl)]
use std::num::Wrapping;
let n = Wrapping(0x1Ai8);
if cfg!(target_endian = "big") {
assert_eq!(<Wrapping<i8>>::from_be(n), n)
} else {
assert_eq!(<Wrapping<i8>>::from_be(n), n.swap_bytes())
}
Run
🔬 This is a nightly-only experimental API. (
wrapping_int_impl
#32463)
Converts an integer from little endian to the target’s endianness.
On little endian this is a no-op. On big endian the bytes are
swapped.
Basic usage:
#![feature(wrapping_int_impl)]
use std::num::Wrapping;
let n = Wrapping(0x1Ai8);
if cfg!(target_endian = "little") {
assert_eq!(<Wrapping<i8>>::from_le(n), n)
} else {
assert_eq!(<Wrapping<i8>>::from_le(n), n.swap_bytes())
}
Run
🔬 This is a nightly-only experimental API. (
wrapping_int_impl
#32463)
Converts self
to big endian from the target’s endianness.
On big endian this is a no-op. On little endian the bytes are
swapped.
Basic usage:
#![feature(wrapping_int_impl)]
use std::num::Wrapping;
let n = Wrapping(0x1Ai8);
if cfg!(target_endian = "big") {
assert_eq!(n.to_be(), n)
} else {
assert_eq!(n.to_be(), n.swap_bytes())
}
Run
🔬 This is a nightly-only experimental API. (
wrapping_int_impl
#32463)
Converts self
to little endian from the target’s endianness.
On little endian this is a no-op. On big endian the bytes are
swapped.
Basic usage:
#![feature(wrapping_int_impl)]
use std::num::Wrapping;
let n = Wrapping(0x1Ai8);
if cfg!(target_endian = "little") {
assert_eq!(n.to_le(), n)
} else {
assert_eq!(n.to_le(), n.swap_bytes())
}
Run
🔬 This is a nightly-only experimental API. (
wrapping_int_impl
#32463)
Raises self to the power of exp
, using exponentiation by squaring.
Basic usage:
#![feature(wrapping_int_impl)]
use std::num::Wrapping;
assert_eq!(Wrapping(3i8).pow(4), Wrapping(81));
Run
Results that are too large are wrapped:
#![feature(wrapping_int_impl)]
use std::num::Wrapping;
assert_eq!(Wrapping(3i8).pow(5), Wrapping(-13));
assert_eq!(Wrapping(3i8).pow(6), Wrapping(-39));
Run
🔬 This is a nightly-only experimental API. (
wrapping_int_impl
#32463)
Returns the smallest value that can be represented by this integer type.
Basic usage:
#![feature(wrapping_int_impl)]
use std::num::Wrapping;
assert_eq!(<Wrapping<i16>>::MIN, Wrapping(i16::MIN));
Run
🔬 This is a nightly-only experimental API. (
wrapping_int_impl
#32463)
Returns the largest value that can be represented by this integer type.
Basic usage:
#![feature(wrapping_int_impl)]
use std::num::Wrapping;
assert_eq!(<Wrapping<i16>>::MAX, Wrapping(i16::MAX));
Run
🔬 This is a nightly-only experimental API. (
wrapping_int_impl
#32463)
Returns the size of this integer type in bits.
Basic usage:
#![feature(wrapping_int_impl)]
use std::num::Wrapping;
assert_eq!(<Wrapping<i16>>::BITS, i16::BITS);
Run
🔬 This is a nightly-only experimental API. (
wrapping_int_impl
#32463)
Returns the number of ones in the binary representation of self
.
Basic usage:
#![feature(wrapping_int_impl)]
use std::num::Wrapping;
let n = Wrapping(0b01001100i16);
assert_eq!(n.count_ones(), 3);
Run
🔬 This is a nightly-only experimental API. (
wrapping_int_impl
#32463)
Returns the number of zeros in the binary representation of self
.
Basic usage:
#![feature(wrapping_int_impl)]
use std::num::Wrapping;
assert_eq!(Wrapping(!0i16).count_zeros(), 0);
Run
🔬 This is a nightly-only experimental API. (
wrapping_int_impl
#32463)
Returns the number of trailing zeros in the binary representation of self
.
Basic usage:
#![feature(wrapping_int_impl)]
use std::num::Wrapping;
let n = Wrapping(0b0101000i16);
assert_eq!(n.trailing_zeros(), 3);
Run
🔬 This is a nightly-only experimental API. (
wrapping_int_impl
#32463)
Shifts the bits to the left by a specified amount, n
,
wrapping the truncated bits to the end of the resulting
integer.
Please note this isn’t the same operation as the <<
shifting
operator!
Basic usage:
#![feature(wrapping_int_impl)]
use std::num::Wrapping;
let n: Wrapping<i64> = Wrapping(0x0123456789ABCDEF);
let m: Wrapping<i64> = Wrapping(-0x76543210FEDCBA99);
assert_eq!(n.rotate_left(32), m);
Run
🔬 This is a nightly-only experimental API. (
wrapping_int_impl
#32463)
Shifts the bits to the right by a specified amount, n
,
wrapping the truncated bits to the beginning of the resulting
integer.
Please note this isn’t the same operation as the >>
shifting
operator!
Basic usage:
#![feature(wrapping_int_impl)]
use std::num::Wrapping;
let n: Wrapping<i64> = Wrapping(0x0123456789ABCDEF);
let m: Wrapping<i64> = Wrapping(-0xFEDCBA987654322);
assert_eq!(n.rotate_right(4), m);
Run
🔬 This is a nightly-only experimental API. (
wrapping_int_impl
#32463)
Reverses the byte order of the integer.
Basic usage:
#![feature(wrapping_int_impl)]
use std::num::Wrapping;
let n: Wrapping<i16> = Wrapping(0b0000000_01010101);
assert_eq!(n, Wrapping(85));
let m = n.swap_bytes();
assert_eq!(m, Wrapping(0b01010101_00000000));
assert_eq!(m, Wrapping(21760));
Run
1.37.0 (const: 1.37.0) ·
source
Reverses the bit pattern of the integer.
Please note that this example is shared between integer types.
Which explains why i16
is used here.
Basic usage:
use std::num::Wrapping;
let n = Wrapping(0b0000000_01010101i16);
assert_eq!(n, Wrapping(85));
let m = n.reverse_bits();
assert_eq!(m.0 as u16, 0b10101010_00000000);
assert_eq!(m, Wrapping(-22016));
Run
🔬 This is a nightly-only experimental API. (
wrapping_int_impl
#32463)
Converts an integer from big endian to the target’s endianness.
On big endian this is a no-op. On little endian the bytes are
swapped.
Basic usage:
#![feature(wrapping_int_impl)]
use std::num::Wrapping;
let n = Wrapping(0x1Ai16);
if cfg!(target_endian = "big") {
assert_eq!(<Wrapping<i16>>::from_be(n), n)
} else {
assert_eq!(<Wrapping<i16>>::from_be(n), n.swap_bytes())
}
Run
🔬 This is a nightly-only experimental API. (
wrapping_int_impl
#32463)
Converts an integer from little endian to the target’s endianness.
On little endian this is a no-op. On big endian the bytes are
swapped.
Basic usage:
#![feature(wrapping_int_impl)]
use std::num::Wrapping;
let n = Wrapping(0x1Ai16);
if cfg!(target_endian = "little") {
assert_eq!(<Wrapping<i16>>::from_le(n), n)
} else {
assert_eq!(<Wrapping<i16>>::from_le(n), n.swap_bytes())
}
Run
🔬 This is a nightly-only experimental API. (
wrapping_int_impl
#32463)
Converts self
to big endian from the target’s endianness.
On big endian this is a no-op. On little endian the bytes are
swapped.
Basic usage:
#![feature(wrapping_int_impl)]
use std::num::Wrapping;
let n = Wrapping(0x1Ai16);
if cfg!(target_endian = "big") {
assert_eq!(n.to_be(), n)
} else {
assert_eq!(n.to_be(), n.swap_bytes())
}
Run
🔬 This is a nightly-only experimental API. (
wrapping_int_impl
#32463)
Converts self
to little endian from the target’s endianness.
On little endian this is a no-op. On big endian the bytes are
swapped.
Basic usage:
#![feature(wrapping_int_impl)]
use std::num::Wrapping;
let n = Wrapping(0x1Ai16);
if cfg!(target_endian = "little") {
assert_eq!(n.to_le(), n)
} else {
assert_eq!(n.to_le(), n.swap_bytes())
}
Run
🔬 This is a nightly-only experimental API. (
wrapping_int_impl
#32463)
Raises self to the power of exp
, using exponentiation by squaring.
Basic usage:
#![feature(wrapping_int_impl)]
use std::num::Wrapping;
assert_eq!(Wrapping(3i16).pow(4), Wrapping(81));
Run
Results that are too large are wrapped:
#![feature(wrapping_int_impl)]
use std::num::Wrapping;
assert_eq!(Wrapping(3i8).pow(5), Wrapping(-13));
assert_eq!(Wrapping(3i8).pow(6), Wrapping(-39));
Run
🔬 This is a nightly-only experimental API. (
wrapping_int_impl
#32463)
Returns the smallest value that can be represented by this integer type.
Basic usage:
#![feature(wrapping_int_impl)]
use std::num::Wrapping;
assert_eq!(<Wrapping<i32>>::MIN, Wrapping(i32::MIN));
Run
🔬 This is a nightly-only experimental API. (
wrapping_int_impl
#32463)
Returns the largest value that can be represented by this integer type.
Basic usage:
#![feature(wrapping_int_impl)]
use std::num::Wrapping;
assert_eq!(<Wrapping<i32>>::MAX, Wrapping(i32::MAX));
Run
🔬 This is a nightly-only experimental API. (
wrapping_int_impl
#32463)
Returns the size of this integer type in bits.
Basic usage:
#![feature(wrapping_int_impl)]
use std::num::Wrapping;
assert_eq!(<Wrapping<i32>>::BITS, i32::BITS);
Run
🔬 This is a nightly-only experimental API. (
wrapping_int_impl
#32463)
Returns the number of ones in the binary representation of self
.
Basic usage:
#![feature(wrapping_int_impl)]
use std::num::Wrapping;
let n = Wrapping(0b01001100i32);
assert_eq!(n.count_ones(), 3);
Run
🔬 This is a nightly-only experimental API. (
wrapping_int_impl
#32463)
Returns the number of zeros in the binary representation of self
.
Basic usage:
#![feature(wrapping_int_impl)]
use std::num::Wrapping;
assert_eq!(Wrapping(!0i32).count_zeros(), 0);
Run
🔬 This is a nightly-only experimental API. (
wrapping_int_impl
#32463)
Returns the number of trailing zeros in the binary representation of self
.
Basic usage:
#![feature(wrapping_int_impl)]
use std::num::Wrapping;
let n = Wrapping(0b0101000i32);
assert_eq!(n.trailing_zeros(), 3);
Run
🔬 This is a nightly-only experimental API. (
wrapping_int_impl
#32463)
Shifts the bits to the left by a specified amount, n
,
wrapping the truncated bits to the end of the resulting
integer.
Please note this isn’t the same operation as the <<
shifting
operator!
Basic usage:
#![feature(wrapping_int_impl)]
use std::num::Wrapping;
let n: Wrapping<i64> = Wrapping(0x0123456789ABCDEF);
let m: Wrapping<i64> = Wrapping(-0x76543210FEDCBA99);
assert_eq!(n.rotate_left(32), m);
Run
🔬 This is a nightly-only experimental API. (
wrapping_int_impl
#32463)
Shifts the bits to the right by a specified amount, n
,
wrapping the truncated bits to the beginning of the resulting
integer.
Please note this isn’t the same operation as the >>
shifting
operator!
Basic usage:
#![feature(wrapping_int_impl)]
use std::num::Wrapping;
let n: Wrapping<i64> = Wrapping(0x0123456789ABCDEF);
let m: Wrapping<i64> = Wrapping(-0xFEDCBA987654322);
assert_eq!(n.rotate_right(4), m);
Run
🔬 This is a nightly-only experimental API. (
wrapping_int_impl
#32463)
Reverses the byte order of the integer.
Basic usage:
#![feature(wrapping_int_impl)]
use std::num::Wrapping;
let n: Wrapping<i16> = Wrapping(0b0000000_01010101);
assert_eq!(n, Wrapping(85));
let m = n.swap_bytes();
assert_eq!(m, Wrapping(0b01010101_00000000));
assert_eq!(m, Wrapping(21760));
Run
1.37.0 (const: 1.37.0) ·
source
Reverses the bit pattern of the integer.
Please note that this example is shared between integer types.
Which explains why i16
is used here.
Basic usage:
use std::num::Wrapping;
let n = Wrapping(0b0000000_01010101i16);
assert_eq!(n, Wrapping(85));
let m = n.reverse_bits();
assert_eq!(m.0 as u16, 0b10101010_00000000);
assert_eq!(m, Wrapping(-22016));
Run
🔬 This is a nightly-only experimental API. (
wrapping_int_impl
#32463)
Converts an integer from big endian to the target’s endianness.
On big endian this is a no-op. On little endian the bytes are
swapped.
Basic usage:
#![feature(wrapping_int_impl)]
use std::num::Wrapping;
let n = Wrapping(0x1Ai32);
if cfg!(target_endian = "big") {
assert_eq!(<Wrapping<i32>>::from_be(n), n)
} else {
assert_eq!(<Wrapping<i32>>::from_be(n), n.swap_bytes())
}
Run
🔬 This is a nightly-only experimental API. (
wrapping_int_impl
#32463)
Converts an integer from little endian to the target’s endianness.
On little endian this is a no-op. On big endian the bytes are
swapped.
Basic usage:
#![feature(wrapping_int_impl)]
use std::num::Wrapping;
let n = Wrapping(0x1Ai32);
if cfg!(target_endian = "little") {
assert_eq!(<Wrapping<i32>>::from_le(n), n)
} else {
assert_eq!(<Wrapping<i32>>::from_le(n), n.swap_bytes())
}
Run
🔬 This is a nightly-only experimental API. (
wrapping_int_impl
#32463)
Converts self
to big endian from the target’s endianness.
On big endian this is a no-op. On little endian the bytes are
swapped.
Basic usage:
#![feature(wrapping_int_impl)]
use std::num::Wrapping;
let n = Wrapping(0x1Ai32);
if cfg!(target_endian = "big") {
assert_eq!(n.to_be(), n)
} else {
assert_eq!(n.to_be(), n.swap_bytes())
}
Run
🔬 This is a nightly-only experimental API. (
wrapping_int_impl
#32463)
Converts self
to little endian from the target’s endianness.
On little endian this is a no-op. On big endian the bytes are
swapped.
Basic usage:
#![feature(wrapping_int_impl)]
use std::num::Wrapping;
let n = Wrapping(0x1Ai32);
if cfg!(target_endian = "little") {
assert_eq!(n.to_le(), n)
} else {
assert_eq!(n.to_le(), n.swap_bytes())
}
Run
🔬 This is a nightly-only experimental API. (
wrapping_int_impl
#32463)
Raises self to the power of exp
, using exponentiation by squaring.
Basic usage:
#![feature(wrapping_int_impl)]
use std::num::Wrapping;
assert_eq!(Wrapping(3i32).pow(4), Wrapping(81));
Run
Results that are too large are wrapped:
#![feature(wrapping_int_impl)]
use std::num::Wrapping;
assert_eq!(Wrapping(3i8).pow(5), Wrapping(-13));
assert_eq!(Wrapping(3i8).pow(6), Wrapping(-39));
Run
🔬 This is a nightly-only experimental API. (
wrapping_int_impl
#32463)
Returns the smallest value that can be represented by this integer type.
Basic usage:
#![feature(wrapping_int_impl)]
use std::num::Wrapping;
assert_eq!(<Wrapping<i64>>::MIN, Wrapping(i64::MIN));
Run
🔬 This is a nightly-only experimental API. (
wrapping_int_impl
#32463)
Returns the largest value that can be represented by this integer type.
Basic usage:
#![feature(wrapping_int_impl)]
use std::num::Wrapping;
assert_eq!(<Wrapping<i64>>::MAX, Wrapping(i64::MAX));
Run
🔬 This is a nightly-only experimental API. (
wrapping_int_impl
#32463)
Returns the size of this integer type in bits.
Basic usage:
#![feature(wrapping_int_impl)]
use std::num::Wrapping;
assert_eq!(<Wrapping<i64>>::BITS, i64::BITS);
Run
🔬 This is a nightly-only experimental API. (
wrapping_int_impl
#32463)
Returns the number of ones in the binary representation of self
.
Basic usage:
#![feature(wrapping_int_impl)]
use std::num::Wrapping;
let n = Wrapping(0b01001100i64);
assert_eq!(n.count_ones(), 3);
Run
🔬 This is a nightly-only experimental API. (
wrapping_int_impl
#32463)
Returns the number of zeros in the binary representation of self
.
Basic usage:
#![feature(wrapping_int_impl)]
use std::num::Wrapping;
assert_eq!(Wrapping(!0i64).count_zeros(), 0);
Run
🔬 This is a nightly-only experimental API. (
wrapping_int_impl
#32463)
Returns the number of trailing zeros in the binary representation of self
.
Basic usage:
#![feature(wrapping_int_impl)]
use std::num::Wrapping;
let n = Wrapping(0b0101000i64);
assert_eq!(n.trailing_zeros(), 3);
Run
🔬 This is a nightly-only experimental API. (
wrapping_int_impl
#32463)
Shifts the bits to the left by a specified amount, n
,
wrapping the truncated bits to the end of the resulting
integer.
Please note this isn’t the same operation as the <<
shifting
operator!
Basic usage:
#![feature(wrapping_int_impl)]
use std::num::Wrapping;
let n: Wrapping<i64> = Wrapping(0x0123456789ABCDEF);
let m: Wrapping<i64> = Wrapping(-0x76543210FEDCBA99);
assert_eq!(n.rotate_left(32), m);
Run
🔬 This is a nightly-only experimental API. (
wrapping_int_impl
#32463)
Shifts the bits to the right by a specified amount, n
,
wrapping the truncated bits to the beginning of the resulting
integer.
Please note this isn’t the same operation as the >>
shifting
operator!
Basic usage:
#![feature(wrapping_int_impl)]
use std::num::Wrapping;
let n: Wrapping<i64> = Wrapping(0x0123456789ABCDEF);
let m: Wrapping<i64> = Wrapping(-0xFEDCBA987654322);
assert_eq!(n.rotate_right(4), m);
Run
🔬 This is a nightly-only experimental API. (
wrapping_int_impl
#32463)
Reverses the byte order of the integer.
Basic usage:
#![feature(wrapping_int_impl)]
use std::num::Wrapping;
let n: Wrapping<i16> = Wrapping(0b0000000_01010101);
assert_eq!(n, Wrapping(85));
let m = n.swap_bytes();
assert_eq!(m, Wrapping(0b01010101_00000000));
assert_eq!(m, Wrapping(21760));
Run
1.37.0 (const: 1.37.0) ·
source
Reverses the bit pattern of the integer.
Please note that this example is shared between integer types.
Which explains why i16
is used here.
Basic usage:
use std::num::Wrapping;
let n = Wrapping(0b0000000_01010101i16);
assert_eq!(n, Wrapping(85));
let m = n.reverse_bits();
assert_eq!(m.0 as u16, 0b10101010_00000000);
assert_eq!(m, Wrapping(-22016));
Run
🔬 This is a nightly-only experimental API. (
wrapping_int_impl
#32463)
Converts an integer from big endian to the target’s endianness.
On big endian this is a no-op. On little endian the bytes are
swapped.
Basic usage:
#![feature(wrapping_int_impl)]
use std::num::Wrapping;
let n = Wrapping(0x1Ai64);
if cfg!(target_endian = "big") {
assert_eq!(<Wrapping<i64>>::from_be(n), n)
} else {
assert_eq!(<Wrapping<i64>>::from_be(n), n.swap_bytes())
}
Run
🔬 This is a nightly-only experimental API. (
wrapping_int_impl
#32463)
Converts an integer from little endian to the target’s endianness.
On little endian this is a no-op. On big endian the bytes are
swapped.
Basic usage:
#![feature(wrapping_int_impl)]
use std::num::Wrapping;
let n = Wrapping(0x1Ai64);
if cfg!(target_endian = "little") {
assert_eq!(<Wrapping<i64>>::from_le(n), n)
} else {
assert_eq!(<Wrapping<i64>>::from_le(n), n.swap_bytes())
}
Run
🔬 This is a nightly-only experimental API. (
wrapping_int_impl
#32463)
Converts self
to big endian from the target’s endianness.
On big endian this is a no-op. On little endian the bytes are
swapped.
Basic usage:
#![feature(wrapping_int_impl)]
use std::num::Wrapping;
let n = Wrapping(0x1Ai64);
if cfg!(target_endian = "big") {
assert_eq!(n.to_be(), n)
} else {
assert_eq!(n.to_be(), n.swap_bytes())
}
Run
🔬 This is a nightly-only experimental API. (
wrapping_int_impl
#32463)
Converts self
to little endian from the target’s endianness.
On little endian this is a no-op. On big endian the bytes are
swapped.
Basic usage:
#![feature(wrapping_int_impl)]
use std::num::Wrapping;
let n = Wrapping(0x1Ai64);
if cfg!(target_endian = "little") {
assert_eq!(n.to_le(), n)
} else {
assert_eq!(n.to_le(), n.swap_bytes())
}
Run
🔬 This is a nightly-only experimental API. (
wrapping_int_impl
#32463)
Raises self to the power of exp
, using exponentiation by squaring.
Basic usage:
#![feature(wrapping_int_impl)]
use std::num::Wrapping;
assert_eq!(Wrapping(3i64).pow(4), Wrapping(81));
Run
Results that are too large are wrapped:
#![feature(wrapping_int_impl)]
use std::num::Wrapping;
assert_eq!(Wrapping(3i8).pow(5), Wrapping(-13));
assert_eq!(Wrapping(3i8).pow(6), Wrapping(-39));
Run
🔬 This is a nightly-only experimental API. (
wrapping_int_impl
#32463)
Returns the smallest value that can be represented by this integer type.
Basic usage:
#![feature(wrapping_int_impl)]
use std::num::Wrapping;
assert_eq!(<Wrapping<i128>>::MIN, Wrapping(i128::MIN));
Run
🔬 This is a nightly-only experimental API. (
wrapping_int_impl
#32463)
Returns the largest value that can be represented by this integer type.
Basic usage:
#![feature(wrapping_int_impl)]
use std::num::Wrapping;
assert_eq!(<Wrapping<i128>>::MAX, Wrapping(i128::MAX));
Run
🔬 This is a nightly-only experimental API. (
wrapping_int_impl
#32463)
Returns the size of this integer type in bits.
Basic usage:
#![feature(wrapping_int_impl)]
use std::num::Wrapping;
assert_eq!(<Wrapping<i128>>::BITS, i128::BITS);
Run
🔬 This is a nightly-only experimental API. (
wrapping_int_impl
#32463)
Returns the number of ones in the binary representation of self
.
Basic usage:
#![feature(wrapping_int_impl)]
use std::num::Wrapping;
let n = Wrapping(0b01001100i128);
assert_eq!(n.count_ones(), 3);
Run
🔬 This is a nightly-only experimental API. (
wrapping_int_impl
#32463)
Returns the number of zeros in the binary representation of self
.
Basic usage:
#![feature(wrapping_int_impl)]
use std::num::Wrapping;
assert_eq!(Wrapping(!0i128).count_zeros(), 0);
Run
🔬 This is a nightly-only experimental API. (
wrapping_int_impl
#32463)
Returns the number of trailing zeros in the binary representation of self
.
Basic usage:
#![feature(wrapping_int_impl)]
use std::num::Wrapping;
let n = Wrapping(0b0101000i128);
assert_eq!(n.trailing_zeros(), 3);
Run
🔬 This is a nightly-only experimental API. (
wrapping_int_impl
#32463)
Shifts the bits to the left by a specified amount, n
,
wrapping the truncated bits to the end of the resulting
integer.
Please note this isn’t the same operation as the <<
shifting
operator!
Basic usage:
#![feature(wrapping_int_impl)]
use std::num::Wrapping;
let n: Wrapping<i64> = Wrapping(0x0123456789ABCDEF);
let m: Wrapping<i64> = Wrapping(-0x76543210FEDCBA99);
assert_eq!(n.rotate_left(32), m);
Run
🔬 This is a nightly-only experimental API. (
wrapping_int_impl
#32463)
Shifts the bits to the right by a specified amount, n
,
wrapping the truncated bits to the beginning of the resulting
integer.
Please note this isn’t the same operation as the >>
shifting
operator!
Basic usage:
#![feature(wrapping_int_impl)]
use std::num::Wrapping;
let n: Wrapping<i64> = Wrapping(0x0123456789ABCDEF);
let m: Wrapping<i64> = Wrapping(-0xFEDCBA987654322);
assert_eq!(n.rotate_right(4), m);
Run
🔬 This is a nightly-only experimental API. (
wrapping_int_impl
#32463)
Reverses the byte order of the integer.
Basic usage:
#![feature(wrapping_int_impl)]
use std::num::Wrapping;
let n: Wrapping<i16> = Wrapping(0b0000000_01010101);
assert_eq!(n, Wrapping(85));
let m = n.swap_bytes();
assert_eq!(m, Wrapping(0b01010101_00000000));
assert_eq!(m, Wrapping(21760));
Run
1.37.0 (const: 1.37.0) ·
source
Reverses the bit pattern of the integer.
Please note that this example is shared between integer types.
Which explains why i16
is used here.
Basic usage:
use std::num::Wrapping;
let n = Wrapping(0b0000000_01010101i16);
assert_eq!(n, Wrapping(85));
let m = n.reverse_bits();
assert_eq!(m.0 as u16, 0b10101010_00000000);
assert_eq!(m, Wrapping(-22016));
Run
🔬 This is a nightly-only experimental API. (
wrapping_int_impl
#32463)
Converts an integer from big endian to the target’s endianness.
On big endian this is a no-op. On little endian the bytes are
swapped.
Basic usage:
#![feature(wrapping_int_impl)]
use std::num::Wrapping;
let n = Wrapping(0x1Ai128);
if cfg!(target_endian = "big") {
assert_eq!(<Wrapping<i128>>::from_be(n), n)
} else {
assert_eq!(<Wrapping<i128>>::from_be(n), n.swap_bytes())
}
Run
🔬 This is a nightly-only experimental API. (
wrapping_int_impl
#32463)
Converts an integer from little endian to the target’s endianness.
On little endian this is a no-op. On big endian the bytes are
swapped.
Basic usage:
#![feature(wrapping_int_impl)]
use std::num::Wrapping;
let n = Wrapping(0x1Ai128);
if cfg!(target_endian = "little") {
assert_eq!(<Wrapping<i128>>::from_le(n), n)
} else {
assert_eq!(<Wrapping<i128>>::from_le(n), n.swap_bytes())
}
Run
🔬 This is a nightly-only experimental API. (
wrapping_int_impl
#32463)
Converts self
to big endian from the target’s endianness.
On big endian this is a no-op. On little endian the bytes are
swapped.
Basic usage:
#![feature(wrapping_int_impl)]
use std::num::Wrapping;
let n = Wrapping(0x1Ai128);
if cfg!(target_endian = "big") {
assert_eq!(n.to_be(), n)
} else {
assert_eq!(n.to_be(), n.swap_bytes())
}
Run
🔬 This is a nightly-only experimental API. (
wrapping_int_impl
#32463)
Converts self
to little endian from the target’s endianness.
On little endian this is a no-op. On big endian the bytes are
swapped.
Basic usage:
#![feature(wrapping_int_impl)]
use std::num::Wrapping;
let n = Wrapping(0x1Ai128);
if cfg!(target_endian = "little") {
assert_eq!(n.to_le(), n)
} else {
assert_eq!(n.to_le(), n.swap_bytes())
}
Run
🔬 This is a nightly-only experimental API. (
wrapping_int_impl
#32463)
Raises self to the power of exp
, using exponentiation by squaring.
Basic usage:
#![feature(wrapping_int_impl)]
use std::num::Wrapping;
assert_eq!(Wrapping(3i128).pow(4), Wrapping(81));
Run
Results that are too large are wrapped:
#![feature(wrapping_int_impl)]
use std::num::Wrapping;
assert_eq!(Wrapping(3i8).pow(5), Wrapping(-13));
assert_eq!(Wrapping(3i8).pow(6), Wrapping(-39));
Run
🔬 This is a nightly-only experimental API. (
wrapping_int_impl
#32463)
Returns the number of leading zeros in the binary representation of self
.
Basic usage:
#![feature(wrapping_int_impl)]
use std::num::Wrapping;
let n = Wrapping(isize::MAX) >> 2;
assert_eq!(n.leading_zeros(), 3);
Run
🔬 This is a nightly-only experimental API. (
wrapping_int_impl
#32463)
Computes the absolute value of self
, wrapping around at
the boundary of the type.
The only case where such wrapping can occur is when one takes the absolute value of the negative
minimal value for the type this is a positive value that is too large to represent in the type. In
such a case, this function returns MIN
itself.
Basic usage:
#![feature(wrapping_int_impl)]
use std::num::Wrapping;
assert_eq!(Wrapping(100isize).abs(), Wrapping(100));
assert_eq!(Wrapping(-100isize).abs(), Wrapping(100));
assert_eq!(Wrapping(isize::MIN).abs(), Wrapping(isize::MIN));
assert_eq!(Wrapping(-128i8).abs().0 as u8, 128u8);
Run
🔬 This is a nightly-only experimental API. (
wrapping_int_impl
#32463)
Returns a number representing sign of self
.
0
if the number is zero
1
if the number is positive
-1
if the number is negative
Basic usage:
#![feature(wrapping_int_impl)]
use std::num::Wrapping;
assert_eq!(Wrapping(10isize).signum(), Wrapping(1));
assert_eq!(Wrapping(0isize).signum(), Wrapping(0));
assert_eq!(Wrapping(-10isize).signum(), Wrapping(-1));
Run
🔬 This is a nightly-only experimental API. (
wrapping_int_impl
#32463)
Returns true
if self
is positive and false
if the number is zero or
negative.
Basic usage:
#![feature(wrapping_int_impl)]
use std::num::Wrapping;
assert!(Wrapping(10isize).is_positive());
assert!(!Wrapping(-10isize).is_positive());
Run
🔬 This is a nightly-only experimental API. (
wrapping_int_impl
#32463)
Returns true
if self
is negative and false
if the number is zero or
positive.
Basic usage:
#![feature(wrapping_int_impl)]
use std::num::Wrapping;
assert!(Wrapping(-10isize).is_negative());
assert!(!Wrapping(10isize).is_negative());
Run
🔬 This is a nightly-only experimental API. (
wrapping_int_impl
#32463)
Returns the number of leading zeros in the binary representation of self
.
Basic usage:
#![feature(wrapping_int_impl)]
use std::num::Wrapping;
let n = Wrapping(i8::MAX) >> 2;
assert_eq!(n.leading_zeros(), 3);
Run
🔬 This is a nightly-only experimental API. (
wrapping_int_impl
#32463)
Computes the absolute value of self
, wrapping around at
the boundary of the type.
The only case where such wrapping can occur is when one takes the absolute value of the negative
minimal value for the type this is a positive value that is too large to represent in the type. In
such a case, this function returns MIN
itself.
Basic usage:
#![feature(wrapping_int_impl)]
use std::num::Wrapping;
assert_eq!(Wrapping(100i8).abs(), Wrapping(100));
assert_eq!(Wrapping(-100i8).abs(), Wrapping(100));
assert_eq!(Wrapping(i8::MIN).abs(), Wrapping(i8::MIN));
assert_eq!(Wrapping(-128i8).abs().0 as u8, 128u8);
Run
🔬 This is a nightly-only experimental API. (
wrapping_int_impl
#32463)
Returns a number representing sign of self
.
0
if the number is zero
1
if the number is positive
-1
if the number is negative
Basic usage:
#![feature(wrapping_int_impl)]
use std::num::Wrapping;
assert_eq!(Wrapping(10i8).signum(), Wrapping(1));
assert_eq!(Wrapping(0i8).signum(), Wrapping(0));
assert_eq!(Wrapping(-10i8).signum(), Wrapping(-1));
Run
🔬 This is a nightly-only experimental API. (
wrapping_int_impl
#32463)
Returns true
if self
is positive and false
if the number is zero or
negative.
Basic usage:
#![feature(wrapping_int_impl)]
use std::num::Wrapping;
assert!(Wrapping(10i8).is_positive());
assert!(!Wrapping(-10i8).is_positive());
Run
🔬 This is a nightly-only experimental API. (
wrapping_int_impl
#32463)
Returns true
if self
is negative and false
if the number is zero or
positive.
Basic usage:
#![feature(wrapping_int_impl)]
use std::num::Wrapping;
assert!(Wrapping(-10i8).is_negative());
assert!(!Wrapping(10i8).is_negative());
Run
🔬 This is a nightly-only experimental API. (
wrapping_int_impl
#32463)
Returns the number of leading zeros in the binary representation of self
.
Basic usage:
#![feature(wrapping_int_impl)]
use std::num::Wrapping;
let n = Wrapping(i16::MAX) >> 2;
assert_eq!(n.leading_zeros(), 3);
Run
🔬 This is a nightly-only experimental API. (
wrapping_int_impl
#32463)
Computes the absolute value of self
, wrapping around at
the boundary of the type.
The only case where such wrapping can occur is when one takes the absolute value of the negative
minimal value for the type this is a positive value that is too large to represent in the type. In
such a case, this function returns MIN
itself.
Basic usage:
#![feature(wrapping_int_impl)]
use std::num::Wrapping;
assert_eq!(Wrapping(100i16).abs(), Wrapping(100));
assert_eq!(Wrapping(-100i16).abs(), Wrapping(100));
assert_eq!(Wrapping(i16::MIN).abs(), Wrapping(i16::MIN));
assert_eq!(Wrapping(-128i8).abs().0 as u8, 128u8);
Run
🔬 This is a nightly-only experimental API. (
wrapping_int_impl
#32463)
Returns a number representing sign of self
.
0
if the number is zero
1
if the number is positive
-1
if the number is negative
Basic usage:
#![feature(wrapping_int_impl)]
use std::num::Wrapping;
assert_eq!(Wrapping(10i16).signum(), Wrapping(1));
assert_eq!(Wrapping(0i16).signum(), Wrapping(0));
assert_eq!(Wrapping(-10i16).signum(), Wrapping(-1));
Run
🔬 This is a nightly-only experimental API. (
wrapping_int_impl
#32463)
Returns true
if self
is positive and false
if the number is zero or
negative.
Basic usage:
#![feature(wrapping_int_impl)]
use std::num::Wrapping;
assert!(Wrapping(10i16).is_positive());
assert!(!Wrapping(-10i16).is_positive());
Run
🔬 This is a nightly-only experimental API. (
wrapping_int_impl
#32463)
Returns true
if self
is negative and false
if the number is zero or
positive.
Basic usage:
#![feature(wrapping_int_impl)]
use std::num::Wrapping;
assert!(Wrapping(-10i16).is_negative());
assert!(!Wrapping(10i16).is_negative());
Run
🔬 This is a nightly-only experimental API. (
wrapping_int_impl
#32463)
Returns the number of leading zeros in the binary representation of self
.
Basic usage:
#![feature(wrapping_int_impl)]
use std::num::Wrapping;
let n = Wrapping(i32::MAX) >> 2;
assert_eq!(n.leading_zeros(), 3);
Run
🔬 This is a nightly-only experimental API. (
wrapping_int_impl
#32463)
Computes the absolute value of self
, wrapping around at
the boundary of the type.
The only case where such wrapping can occur is when one takes the absolute value of the negative
minimal value for the type this is a positive value that is too large to represent in the type. In
such a case, this function returns MIN
itself.
Basic usage:
#![feature(wrapping_int_impl)]
use std::num::Wrapping;
assert_eq!(Wrapping(100i32).abs(), Wrapping(100));
assert_eq!(Wrapping(-100i32).abs(), Wrapping(100));
assert_eq!(Wrapping(i32::MIN).abs(), Wrapping(i32::MIN));
assert_eq!(Wrapping(-128i8).abs().0 as u8, 128u8);
Run
🔬 This is a nightly-only experimental API. (
wrapping_int_impl
#32463)
Returns a number representing sign of self
.
0
if the number is zero
1
if the number is positive
-1
if the number is negative
Basic usage:
#![feature(wrapping_int_impl)]
use std::num::Wrapping;
assert_eq!(Wrapping(10i32).signum(), Wrapping(1));
assert_eq!(Wrapping(0i32).signum(), Wrapping(0));
assert_eq!(Wrapping(-10i32).signum(), Wrapping(-1));
Run
🔬 This is a nightly-only experimental API. (
wrapping_int_impl
#32463)
Returns true
if self
is positive and false
if the number is zero or
negative.
Basic usage:
#![feature(wrapping_int_impl)]
use std::num::Wrapping;
assert!(Wrapping(10i32).is_positive());
assert!(!Wrapping(-10i32).is_positive());
Run
🔬 This is a nightly-only experimental API. (
wrapping_int_impl
#32463)
Returns true
if self
is negative and false
if the number is zero or
positive.
Basic usage:
#![feature(wrapping_int_impl)]
use std::num::Wrapping;
assert!(Wrapping(-10i32).is_negative());
assert!(!Wrapping(10i32).is_negative());
Run
🔬 This is a nightly-only experimental API. (
wrapping_int_impl
#32463)
Returns the number of leading zeros in the binary representation of self
.
Basic usage:
#![feature(wrapping_int_impl)]
use std::num::Wrapping;
let n = Wrapping(i64::MAX) >> 2;
assert_eq!(n.leading_zeros(), 3);
Run
🔬 This is a nightly-only experimental API. (
wrapping_int_impl
#32463)
Computes the absolute value of self
, wrapping around at
the boundary of the type.
The only case where such wrapping can occur is when one takes the absolute value of the negative
minimal value for the type this is a positive value that is too large to represent in the type. In
such a case, this function returns MIN
itself.
Basic usage:
#![feature(wrapping_int_impl)]
use std::num::Wrapping;
assert_eq!(Wrapping(100i64).abs(), Wrapping(100));
assert_eq!(Wrapping(-100i64).abs(), Wrapping(100));
assert_eq!(Wrapping(i64::MIN).abs(), Wrapping(i64::MIN));
assert_eq!(Wrapping(-128i8).abs().0 as u8, 128u8);
Run
🔬 This is a nightly-only experimental API. (
wrapping_int_impl
#32463)
Returns a number representing sign of self
.
0
if the number is zero
1
if the number is positive
-1
if the number is negative
Basic usage:
#![feature(wrapping_int_impl)]
use std::num::Wrapping;
assert_eq!(Wrapping(10i64).signum(), Wrapping(1));
assert_eq!(Wrapping(0i64).signum(), Wrapping(0));
assert_eq!(Wrapping(-10i64).signum(), Wrapping(-1));
Run
🔬 This is a nightly-only experimental API. (
wrapping_int_impl
#32463)
Returns true
if self
is positive and false
if the number is zero or
negative.
Basic usage:
#![feature(wrapping_int_impl)]
use std::num::Wrapping;
assert!(Wrapping(10i64).is_positive());
assert!(!Wrapping(-10i64).is_positive());
Run
🔬 This is a nightly-only experimental API. (
wrapping_int_impl
#32463)
Returns true
if self
is negative and false
if the number is zero or
positive.
Basic usage:
#![feature(wrapping_int_impl)]
use std::num::Wrapping;
assert!(Wrapping(-10i64).is_negative());
assert!(!Wrapping(10i64).is_negative());
Run
🔬 This is a nightly-only experimental API. (
wrapping_int_impl
#32463)
Returns the number of leading zeros in the binary representation of self
.
Basic usage:
#![feature(wrapping_int_impl)]
use std::num::Wrapping;
let n = Wrapping(i128::MAX) >> 2;
assert_eq!(n.leading_zeros(), 3);
Run
🔬 This is a nightly-only experimental API. (
wrapping_int_impl
#32463)
Computes the absolute value of self
, wrapping around at
the boundary of the type.
The only case where such wrapping can occur is when one takes the absolute value of the negative
minimal value for the type this is a positive value that is too large to represent in the type. In
such a case, this function returns MIN
itself.
Basic usage:
#![feature(wrapping_int_impl)]
use std::num::Wrapping;
assert_eq!(Wrapping(100i128).abs(), Wrapping(100));
assert_eq!(Wrapping(-100i128).abs(), Wrapping(100));
assert_eq!(Wrapping(i128::MIN).abs(), Wrapping(i128::MIN));
assert_eq!(Wrapping(-128i8).abs().0 as u8, 128u8);
Run
🔬 This is a nightly-only experimental API. (
wrapping_int_impl
#32463)
Returns a number representing sign of self
.
0
if the number is zero
1
if the number is positive
-1
if the number is negative
Basic usage:
#![feature(wrapping_int_impl)]
use std::num::Wrapping;
assert_eq!(Wrapping(10i128).signum(), Wrapping(1));
assert_eq!(Wrapping(0i128).signum(), Wrapping(0));
assert_eq!(Wrapping(-10i128).signum(), Wrapping(-1));
Run
🔬 This is a nightly-only experimental API. (
wrapping_int_impl
#32463)
Returns true
if self
is positive and false
if the number is zero or
negative.
Basic usage:
#![feature(wrapping_int_impl)]
use std::num::Wrapping;
assert!(Wrapping(10i128).is_positive());
assert!(!Wrapping(-10i128).is_positive());
Run
🔬 This is a nightly-only experimental API. (
wrapping_int_impl
#32463)
Returns true
if self
is negative and false
if the number is zero or
positive.
Basic usage:
#![feature(wrapping_int_impl)]
use std::num::Wrapping;
assert!(Wrapping(-10i128).is_negative());
assert!(!Wrapping(10i128).is_negative());
Run
🔬 This is a nightly-only experimental API. (
wrapping_int_impl
#32463)
Returns the number of leading zeros in the binary representation of self
.
Basic usage:
#![feature(wrapping_int_impl)]
use std::num::Wrapping;
let n = Wrapping(usize::MAX) >> 2;
assert_eq!(n.leading_zeros(), 2);
Run
🔬 This is a nightly-only experimental API. (
wrapping_int_impl
#32463)
Returns true
if and only if self == 2^k
for some k
.
Basic usage:
#![feature(wrapping_int_impl)]
use std::num::Wrapping;
assert!(Wrapping(16usize).is_power_of_two());
assert!(!Wrapping(10usize).is_power_of_two());
Run
🔬 This is a nightly-only experimental API. (
wrapping_next_power_of_two
#32463)
Returns the smallest power of two greater than or equal to self
.
When return value overflows (i.e., self > (1 << (N-1))
for type
uN
), overflows to 2^N = 0
.
Basic usage:
#![feature(wrapping_next_power_of_two)]
use std::num::Wrapping;
assert_eq!(Wrapping(2usize).next_power_of_two(), Wrapping(2));
assert_eq!(Wrapping(3usize).next_power_of_two(), Wrapping(4));
assert_eq!(Wrapping(200_u8).next_power_of_two(), Wrapping(0));
Run
🔬 This is a nightly-only experimental API. (
wrapping_int_impl
#32463)
Returns the number of leading zeros in the binary representation of self
.
Basic usage:
#![feature(wrapping_int_impl)]
use std::num::Wrapping;
let n = Wrapping(u8::MAX) >> 2;
assert_eq!(n.leading_zeros(), 2);
Run
🔬 This is a nightly-only experimental API. (
wrapping_int_impl
#32463)
Returns true
if and only if self == 2^k
for some k
.
Basic usage:
#![feature(wrapping_int_impl)]
use std::num::Wrapping;
assert!(Wrapping(16u8).is_power_of_two());
assert!(!Wrapping(10u8).is_power_of_two());
Run
🔬 This is a nightly-only experimental API. (
wrapping_next_power_of_two
#32463)
Returns the smallest power of two greater than or equal to self
.
When return value overflows (i.e., self > (1 << (N-1))
for type
uN
), overflows to 2^N = 0
.
Basic usage:
#![feature(wrapping_next_power_of_two)]
use std::num::Wrapping;
assert_eq!(Wrapping(2u8).next_power_of_two(), Wrapping(2));
assert_eq!(Wrapping(3u8).next_power_of_two(), Wrapping(4));
assert_eq!(Wrapping(200_u8).next_power_of_two(), Wrapping(0));
Run
🔬 This is a nightly-only experimental API. (
wrapping_int_impl
#32463)
Returns the number of leading zeros in the binary representation of self
.
Basic usage:
#![feature(wrapping_int_impl)]
use std::num::Wrapping;
let n = Wrapping(u16::MAX) >> 2;
assert_eq!(n.leading_zeros(), 2);
Run
🔬 This is a nightly-only experimental API. (
wrapping_int_impl
#32463)
Returns true
if and only if self == 2^k
for some k
.
Basic usage:
#![feature(wrapping_int_impl)]
use std::num::Wrapping;
assert!(Wrapping(16u16).is_power_of_two());
assert!(!Wrapping(10u16).is_power_of_two());
Run
🔬 This is a nightly-only experimental API. (
wrapping_next_power_of_two
#32463)
Returns the smallest power of two greater than or equal to self
.
When return value overflows (i.e., self > (1 << (N-1))
for type
uN
), overflows to 2^N = 0
.
Basic usage:
#![feature(wrapping_next_power_of_two)]
use std::num::Wrapping;
assert_eq!(Wrapping(2u16).next_power_of_two(), Wrapping(2));
assert_eq!(Wrapping(3u16).next_power_of_two(), Wrapping(4));
assert_eq!(Wrapping(200_u8).next_power_of_two(), Wrapping(0));
Run
🔬 This is a nightly-only experimental API. (
wrapping_int_impl
#32463)
Returns the number of leading zeros in the binary representation of self
.
Basic usage:
#![feature(wrapping_int_impl)]
use std::num::Wrapping;
let n = Wrapping(u32::MAX) >> 2;
assert_eq!(n.leading_zeros(), 2);
Run
🔬 This is a nightly-only experimental API. (
wrapping_int_impl
#32463)
Returns true
if and only if self == 2^k
for some k
.
Basic usage:
#![feature(wrapping_int_impl)]
use std::num::Wrapping;
assert!(Wrapping(16u32).is_power_of_two());
assert!(!Wrapping(10u32).is_power_of_two());
Run
🔬 This is a nightly-only experimental API. (
wrapping_next_power_of_two
#32463)
Returns the smallest power of two greater than or equal to self
.
When return value overflows (i.e., self > (1 << (N-1))
for type
uN
), overflows to 2^N = 0
.
Basic usage:
#![feature(wrapping_next_power_of_two)]
use std::num::Wrapping;
assert_eq!(Wrapping(2u32).next_power_of_two(), Wrapping(2));
assert_eq!(Wrapping(3u32).next_power_of_two(), Wrapping(4));
assert_eq!(Wrapping(200_u8).next_power_of_two(), Wrapping(0));
Run
🔬 This is a nightly-only experimental API. (
wrapping_int_impl
#32463)
Returns the number of leading zeros in the binary representation of self
.
Basic usage:
#![feature(wrapping_int_impl)]
use std::num::Wrapping;
let n = Wrapping(u64::MAX) >> 2;
assert_eq!(n.leading_zeros(), 2);
Run
🔬 This is a nightly-only experimental API. (
wrapping_int_impl
#32463)
Returns true
if and only if self == 2^k
for some k
.
Basic usage:
#![feature(wrapping_int_impl)]
use std::num::Wrapping;
assert!(Wrapping(16u64).is_power_of_two());
assert!(!Wrapping(10u64).is_power_of_two());
Run
🔬 This is a nightly-only experimental API. (
wrapping_next_power_of_two
#32463)
Returns the smallest power of two greater than or equal to self
.
When return value overflows (i.e., self > (1 << (N-1))
for type
uN
), overflows to 2^N = 0
.
Basic usage:
#![feature(wrapping_next_power_of_two)]
use std::num::Wrapping;
assert_eq!(Wrapping(2u64).next_power_of_two(), Wrapping(2));
assert_eq!(Wrapping(3u64).next_power_of_two(), Wrapping(4));
assert_eq!(Wrapping(200_u8).next_power_of_two(), Wrapping(0));
Run
🔬 This is a nightly-only experimental API. (
wrapping_int_impl
#32463)
Returns the number of leading zeros in the binary representation of self
.
Basic usage:
#![feature(wrapping_int_impl)]
use std::num::Wrapping;
let n = Wrapping(u128::MAX) >> 2;
assert_eq!(n.leading_zeros(), 2);
Run
🔬 This is a nightly-only experimental API. (
wrapping_int_impl
#32463)
Returns true
if and only if self == 2^k
for some k
.
Basic usage:
#![feature(wrapping_int_impl)]
use std::num::Wrapping;
assert!(Wrapping(16u128).is_power_of_two());
assert!(!Wrapping(10u128).is_power_of_two());
Run
🔬 This is a nightly-only experimental API. (
wrapping_next_power_of_two
#32463)
Returns the smallest power of two greater than or equal to self
.
When return value overflows (i.e., self > (1 << (N-1))
for type
uN
), overflows to 2^N = 0
.
Basic usage:
#![feature(wrapping_next_power_of_two)]
use std::num::Wrapping;
assert_eq!(Wrapping(2u128).next_power_of_two(), Wrapping(2));
assert_eq!(Wrapping(3u128).next_power_of_two(), Wrapping(4));
assert_eq!(Wrapping(200_u8).next_power_of_two(), Wrapping(0));
Run
The resulting type after applying the +
operator.
The resulting type after applying the +
operator.
The resulting type after applying the +
operator.
The resulting type after applying the +
operator.
The resulting type after applying the +
operator.
The resulting type after applying the +
operator.
The resulting type after applying the +
operator.
The resulting type after applying the +
operator.
The resulting type after applying the +
operator.
The resulting type after applying the +
operator.
The resulting type after applying the +
operator.
The resulting type after applying the +
operator.
The resulting type after applying the +
operator.
The resulting type after applying the +
operator.
The resulting type after applying the +
operator.
The resulting type after applying the +
operator.
The resulting type after applying the +
operator.
The resulting type after applying the +
operator.
The resulting type after applying the +
operator.
The resulting type after applying the +
operator.
The resulting type after applying the +
operator.
The resulting type after applying the +
operator.
The resulting type after applying the +
operator.
The resulting type after applying the +
operator.
The resulting type after applying the +
operator.
The resulting type after applying the +
operator.
The resulting type after applying the +
operator.
The resulting type after applying the +
operator.
The resulting type after applying the +
operator.
The resulting type after applying the +
operator.
The resulting type after applying the +
operator.
The resulting type after applying the +
operator.
The resulting type after applying the +
operator.
The resulting type after applying the +
operator.
The resulting type after applying the +
operator.
The resulting type after applying the +
operator.
The resulting type after applying the +
operator.
The resulting type after applying the +
operator.
The resulting type after applying the +
operator.
The resulting type after applying the +
operator.
The resulting type after applying the +
operator.
The resulting type after applying the +
operator.
The resulting type after applying the +
operator.
The resulting type after applying the +
operator.
The resulting type after applying the +
operator.
The resulting type after applying the +
operator.
The resulting type after applying the +
operator.
The resulting type after applying the +
operator.
Formats the value using the given formatter.
The resulting type after applying the &
operator.
The resulting type after applying the &
operator.
The resulting type after applying the &
operator.
The resulting type after applying the &
operator.
The resulting type after applying the &
operator.
The resulting type after applying the &
operator.
The resulting type after applying the &
operator.
The resulting type after applying the &
operator.
The resulting type after applying the &
operator.
The resulting type after applying the &
operator.
The resulting type after applying the &
operator.
The resulting type after applying the &
operator.
The resulting type after applying the &
operator.
The resulting type after applying the &
operator.
The resulting type after applying the &
operator.
The resulting type after applying the &
operator.
The resulting type after applying the &
operator.
The resulting type after applying the &
operator.
The resulting type after applying the &
operator.
The resulting type after applying the &
operator.
The resulting type after applying the &
operator.
The resulting type after applying the &
operator.
The resulting type after applying the &
operator.
The resulting type after applying the &
operator.
The resulting type after applying the &
operator.
The resulting type after applying the &
operator.
The resulting type after applying the &
operator.
The resulting type after applying the &
operator.
The resulting type after applying the &
operator.
The resulting type after applying the &
operator.
The resulting type after applying the &
operator.
The resulting type after applying the &
operator.
The resulting type after applying the &
operator.
The resulting type after applying the &
operator.
The resulting type after applying the &
operator.
The resulting type after applying the &
operator.
The resulting type after applying the &
operator.
The resulting type after applying the &
operator.
The resulting type after applying the &
operator.
The resulting type after applying the &
operator.
The resulting type after applying the &
operator.
The resulting type after applying the &
operator.
The resulting type after applying the &
operator.
The resulting type after applying the &
operator.
The resulting type after applying the &
operator.
The resulting type after applying the &
operator.
The resulting type after applying the &
operator.
The resulting type after applying the &
operator.
The resulting type after applying the |
operator.
The resulting type after applying the |
operator.
The resulting type after applying the |
operator.
The resulting type after applying the |
operator.
The resulting type after applying the |
operator.
The resulting type after applying the |
operator.
The resulting type after applying the |
operator.
The resulting type after applying the |
operator.
The resulting type after applying the |
operator.
The resulting type after applying the |
operator.
The resulting type after applying the |
operator.
The resulting type after applying the |
operator.
The resulting type after applying the |
operator.
The resulting type after applying the |
operator.
The resulting type after applying the |
operator.
The resulting type after applying the |
operator.
The resulting type after applying the |
operator.
The resulting type after applying the |
operator.
The resulting type after applying the |
operator.
The resulting type after applying the |
operator.
The resulting type after applying the |
operator.
The resulting type after applying the |
operator.
The resulting type after applying the |
operator.
The resulting type after applying the |
operator.
The resulting type after applying the |
operator.
The resulting type after applying the |
operator.
The resulting type after applying the |
operator.
The resulting type after applying the |
operator.
The resulting type after applying the |
operator.
The resulting type after applying the |
operator.
The resulting type after applying the |
operator.
The resulting type after applying the |
operator.
The resulting type after applying the |
operator.
The resulting type after applying the |
operator.
The resulting type after applying the |
operator.
The resulting type after applying the |
operator.
The resulting type after applying the |
operator.
The resulting type after applying the |
operator.
The resulting type after applying the |
operator.
The resulting type after applying the |
operator.
The resulting type after applying the |
operator.
The resulting type after applying the |
operator.
The resulting type after applying the |
operator.
The resulting type after applying the |
operator.
The resulting type after applying the |
operator.
The resulting type after applying the |
operator.
The resulting type after applying the |
operator.
The resulting type after applying the |
operator.
The resulting type after applying the ^
operator.
The resulting type after applying the ^
operator.
The resulting type after applying the ^
operator.
The resulting type after applying the ^
operator.
The resulting type after applying the ^
operator.
The resulting type after applying the ^
operator.
The resulting type after applying the ^
operator.
The resulting type after applying the ^
operator.
The resulting type after applying the ^
operator.
The resulting type after applying the ^
operator.
The resulting type after applying the ^
operator.
The resulting type after applying the ^
operator.
The resulting type after applying the ^
operator.
The resulting type after applying the ^
operator.
The resulting type after applying the ^
operator.
The resulting type after applying the ^
operator.
The resulting type after applying the ^
operator.
The resulting type after applying the ^
operator.
The resulting type after applying the ^
operator.
The resulting type after applying the ^
operator.
The resulting type after applying the ^
operator.
The resulting type after applying the ^
operator.
The resulting type after applying the ^
operator.
The resulting type after applying the ^
operator.
The resulting type after applying the ^
operator.
The resulting type after applying the ^
operator.
The resulting type after applying the ^
operator.
The resulting type after applying the ^
operator.
The resulting type after applying the ^
operator.
The resulting type after applying the ^
operator.
The resulting type after applying the ^
operator.
The resulting type after applying the ^
operator.
The resulting type after applying the ^
operator.
The resulting type after applying the ^
operator.
The resulting type after applying the ^
operator.
The resulting type after applying the ^
operator.
The resulting type after applying the ^
operator.
The resulting type after applying the ^
operator.
The resulting type after applying the ^
operator.
The resulting type after applying the ^
operator.
The resulting type after applying the ^
operator.
The resulting type after applying the ^
operator.
The resulting type after applying the ^
operator.
The resulting type after applying the ^
operator.
The resulting type after applying the ^
operator.
The resulting type after applying the ^
operator.
The resulting type after applying the ^
operator.
The resulting type after applying the ^
operator.
Performs copy-assignment from source
. Read more
Formats the value using the given formatter. Read more
Returns the “default value” for a type. Read more
Formats the value using the given formatter. Read more
The resulting type after applying the /
operator.
The resulting type after applying the /
operator.
The resulting type after applying the /
operator.
The resulting type after applying the /
operator.
The resulting type after applying the /
operator.
The resulting type after applying the /
operator.
The resulting type after applying the /
operator.
The resulting type after applying the /
operator.
The resulting type after applying the /
operator.
The resulting type after applying the /
operator.
The resulting type after applying the /
operator.
The resulting type after applying the /
operator.
The resulting type after applying the /
operator.
The resulting type after applying the /
operator.
The resulting type after applying the /
operator.
The resulting type after applying the /
operator.
The resulting type after applying the /
operator.
The resulting type after applying the /
operator.
The resulting type after applying the /
operator.
The resulting type after applying the /
operator.
The resulting type after applying the /
operator.
The resulting type after applying the /
operator.
The resulting type after applying the /
operator.
The resulting type after applying the /
operator.
The resulting type after applying the /
operator.
The resulting type after applying the /
operator.
The resulting type after applying the /
operator.
The resulting type after applying the /
operator.
The resulting type after applying the /
operator.
The resulting type after applying the /
operator.
The resulting type after applying the /
operator.
The resulting type after applying the /
operator.
The resulting type after applying the /
operator.
The resulting type after applying the /
operator.
The resulting type after applying the /
operator.
The resulting type after applying the /
operator.
The resulting type after applying the /
operator.
The resulting type after applying the /
operator.
The resulting type after applying the /
operator.
The resulting type after applying the /
operator.
The resulting type after applying the /
operator.
The resulting type after applying the /
operator.
The resulting type after applying the /
operator.
The resulting type after applying the /
operator.
The resulting type after applying the /
operator.
The resulting type after applying the /
operator.
The resulting type after applying the /
operator.
The resulting type after applying the /
operator.
Formats the value using the given formatter.
The resulting type after applying the *
operator.
The resulting type after applying the *
operator.
The resulting type after applying the *
operator.
The resulting type after applying the *
operator.
The resulting type after applying the *
operator.
The resulting type after applying the *
operator.
The resulting type after applying the *
operator.
The resulting type after applying the *
operator.
The resulting type after applying the *
operator.
The resulting type after applying the *
operator.
The resulting type after applying the *
operator.
The resulting type after applying the *
operator.
The resulting type after applying the *
operator.
The resulting type after applying the *
operator.
The resulting type after applying the *
operator.
The resulting type after applying the *
operator.
The resulting type after applying the *
operator.
The resulting type after applying the *
operator.
The resulting type after applying the *
operator.
The resulting type after applying the *
operator.
The resulting type after applying the *
operator.
The resulting type after applying the *
operator.
The resulting type after applying the *
operator.
The resulting type after applying the *
operator.
The resulting type after applying the *
operator.
The resulting type after applying the *
operator.
The resulting type after applying the *
operator.
The resulting type after applying the *
operator.
The resulting type after applying the *
operator.
The resulting type after applying the *
operator.
The resulting type after applying the *
operator.
The resulting type after applying the *
operator.
The resulting type after applying the *
operator.
The resulting type after applying the *
operator.
The resulting type after applying the *
operator.
The resulting type after applying the *
operator.
The resulting type after applying the *
operator.
The resulting type after applying the *
operator.
The resulting type after applying the *
operator.
The resulting type after applying the *
operator.
The resulting type after applying the *
operator.
The resulting type after applying the *
operator.
The resulting type after applying the *
operator.
The resulting type after applying the *
operator.
The resulting type after applying the *
operator.
The resulting type after applying the *
operator.
The resulting type after applying the *
operator.
The resulting type after applying the *
operator.
The resulting type after applying the -
operator.
The resulting type after applying the -
operator.
The resulting type after applying the -
operator.
The resulting type after applying the -
operator.
The resulting type after applying the -
operator.
The resulting type after applying the -
operator.
The resulting type after applying the -
operator.
The resulting type after applying the -
operator.
The resulting type after applying the -
operator.
The resulting type after applying the -
operator.
The resulting type after applying the -
operator.
The resulting type after applying the -
operator.
The resulting type after applying the -
operator.
The resulting type after applying the -
operator.
The resulting type after applying the -
operator.
The resulting type after applying the -
operator.
The resulting type after applying the -
operator.
The resulting type after applying the -
operator.
The resulting type after applying the -
operator.
The resulting type after applying the -
operator.
The resulting type after applying the -
operator.
The resulting type after applying the -
operator.
The resulting type after applying the -
operator.
The resulting type after applying the -
operator.
The resulting type after applying the !
operator.
The resulting type after applying the !
operator.
The resulting type after applying the !
operator.
The resulting type after applying the !
operator.
The resulting type after applying the !
operator.
The resulting type after applying the !
operator.
The resulting type after applying the !
operator.
The resulting type after applying the !
operator.
The resulting type after applying the !
operator.
The resulting type after applying the !
operator.
The resulting type after applying the !
operator.
The resulting type after applying the !
operator.
The resulting type after applying the !
operator.
The resulting type after applying the !
operator.
The resulting type after applying the !
operator.
The resulting type after applying the !
operator.
The resulting type after applying the !
operator.
The resulting type after applying the !
operator.
The resulting type after applying the !
operator.
The resulting type after applying the !
operator.
The resulting type after applying the !
operator.
The resulting type after applying the !
operator.
The resulting type after applying the !
operator.
The resulting type after applying the !
operator.
Formats the value using the given formatter.
Compares and returns the maximum of two values. Read more
Compares and returns the minimum of two values. Read more
Restrict a value to a certain interval. Read more
This method tests for self
and other
values to be equal, and is used
by ==
. Read more
This method tests for !=
.
This method returns an ordering between self
and other
values if one exists. Read more
This method tests less than (for self
and other
) and is used by the <
operator. Read more
This method tests less than or equal to (for self
and other
) and is used by the <=
operator. Read more
This method tests greater than (for self
and other
) and is used by the >
operator. Read more
This method tests greater than or equal to (for self
and other
) and is used by the >=
operator. Read more
Method which takes an iterator and generates Self
from the elements by
multiplying the items. Read more
Method which takes an iterator and generates Self
from the elements by
multiplying the items. Read more
Method which takes an iterator and generates Self
from the elements by
multiplying the items. Read more
Method which takes an iterator and generates Self
from the elements by
multiplying the items. Read more
Method which takes an iterator and generates Self
from the elements by
multiplying the items. Read more
Method which takes an iterator and generates Self
from the elements by
multiplying the items. Read more
Method which takes an iterator and generates Self
from the elements by
multiplying the items. Read more
Method which takes an iterator and generates Self
from the elements by
multiplying the items. Read more
Method which takes an iterator and generates Self
from the elements by
multiplying the items. Read more
Method which takes an iterator and generates Self
from the elements by
multiplying the items. Read more
Method which takes an iterator and generates Self
from the elements by
multiplying the items. Read more
Method which takes an iterator and generates Self
from the elements by
multiplying the items. Read more
Method which takes an iterator and generates Self
from the elements by
multiplying the items. Read more
Method which takes an iterator and generates Self
from the elements by
multiplying the items. Read more
Method which takes an iterator and generates Self
from the elements by
multiplying the items. Read more
Method which takes an iterator and generates Self
from the elements by
multiplying the items. Read more
Method which takes an iterator and generates Self
from the elements by
multiplying the items. Read more
Method which takes an iterator and generates Self
from the elements by
multiplying the items. Read more
Method which takes an iterator and generates Self
from the elements by
multiplying the items. Read more
Method which takes an iterator and generates Self
from the elements by
multiplying the items. Read more
Method which takes an iterator and generates Self
from the elements by
multiplying the items. Read more
Method which takes an iterator and generates Self
from the elements by
multiplying the items. Read more
Method which takes an iterator and generates Self
from the elements by
multiplying the items. Read more
Method which takes an iterator and generates Self
from the elements by
multiplying the items. Read more
The resulting type after applying the %
operator.
The resulting type after applying the %
operator.
The resulting type after applying the %
operator.
The resulting type after applying the %
operator.
The resulting type after applying the %
operator.
The resulting type after applying the %
operator.
The resulting type after applying the %
operator.
The resulting type after applying the %
operator.
The resulting type after applying the %
operator.
The resulting type after applying the %
operator.
The resulting type after applying the %
operator.
The resulting type after applying the %
operator.
The resulting type after applying the %
operator.
The resulting type after applying the %
operator.
The resulting type after applying the %
operator.
The resulting type after applying the %
operator.
The resulting type after applying the %
operator.
The resulting type after applying the %
operator.
The resulting type after applying the %
operator.
The resulting type after applying the %
operator.
The resulting type after applying the %
operator.
The resulting type after applying the %
operator.
The resulting type after applying the %
operator.
The resulting type after applying the %
operator.
The resulting type after applying the %
operator.
The resulting type after applying the %
operator.
The resulting type after applying the %
operator.
The resulting type after applying the %
operator.
The resulting type after applying the %
operator.
The resulting type after applying the %
operator.
The resulting type after applying the %
operator.
The resulting type after applying the %
operator.
The resulting type after applying the %
operator.
The resulting type after applying the %
operator.
The resulting type after applying the %
operator.
The resulting type after applying the %
operator.
The resulting type after applying the %
operator.
The resulting type after applying the %
operator.
The resulting type after applying the %
operator.
The resulting type after applying the %
operator.
The resulting type after applying the %
operator.
The resulting type after applying the %
operator.
The resulting type after applying the %
operator.
The resulting type after applying the %
operator.
The resulting type after applying the %
operator.
The resulting type after applying the %
operator.
The resulting type after applying the %
operator.
The resulting type after applying the %
operator.
The resulting type after applying the <<
operator.
The resulting type after applying the <<
operator.
The resulting type after applying the <<
operator.
The resulting type after applying the <<
operator.
The resulting type after applying the <<
operator.
The resulting type after applying the <<
operator.
The resulting type after applying the <<
operator.
The resulting type after applying the <<
operator.
The resulting type after applying the <<
operator.
The resulting type after applying the <<
operator.
The resulting type after applying the <<
operator.
The resulting type after applying the <<
operator.
The resulting type after applying the <<
operator.
The resulting type after applying the <<
operator.
The resulting type after applying the <<
operator.
The resulting type after applying the <<
operator.
The resulting type after applying the <<
operator.
The resulting type after applying the <<
operator.
The resulting type after applying the <<
operator.
The resulting type after applying the <<
operator.
The resulting type after applying the <<
operator.
The resulting type after applying the <<
operator.
The resulting type after applying the <<
operator.
The resulting type after applying the <<
operator.
The resulting type after applying the <<
operator.
The resulting type after applying the <<
operator.
The resulting type after applying the <<
operator.
The resulting type after applying the <<
operator.
The resulting type after applying the <<
operator.
The resulting type after applying the <<
operator.
The resulting type after applying the <<
operator.
The resulting type after applying the <<
operator.
The resulting type after applying the <<
operator.
The resulting type after applying the <<
operator.
The resulting type after applying the <<
operator.
The resulting type after applying the <<
operator.
The resulting type after applying the <<
operator.
The resulting type after applying the <<
operator.
The resulting type after applying the <<
operator.
The resulting type after applying the <<
operator.
The resulting type after applying the <<
operator.
The resulting type after applying the <<
operator.
The resulting type after applying the <<
operator.
The resulting type after applying the <<
operator.
The resulting type after applying the <<
operator.
The resulting type after applying the <<
operator.
The resulting type after applying the <<
operator.
The resulting type after applying the <<
operator.
The resulting type after applying the >>
operator.
The resulting type after applying the >>
operator.
The resulting type after applying the >>
operator.
The resulting type after applying the >>
operator.
The resulting type after applying the >>
operator.
The resulting type after applying the >>
operator.
The resulting type after applying the >>
operator.
The resulting type after applying the >>
operator.
The resulting type after applying the >>
operator.
The resulting type after applying the >>
operator.
The resulting type after applying the >>
operator.
The resulting type after applying the >>
operator.
The resulting type after applying the >>
operator.
The resulting type after applying the >>
operator.
The resulting type after applying the >>
operator.
The resulting type after applying the >>
operator.
The resulting type after applying the >>
operator.
The resulting type after applying the >>
operator.
The resulting type after applying the >>
operator.
The resulting type after applying the >>
operator.
The resulting type after applying the >>
operator.
The resulting type after applying the >>
operator.
The resulting type after applying the >>
operator.
The resulting type after applying the >>
operator.
The resulting type after applying the >>
operator.
The resulting type after applying the >>
operator.
The resulting type after applying the >>
operator.
The resulting type after applying the >>
operator.
The resulting type after applying the >>
operator.
The resulting type after applying the >>
operator.
The resulting type after applying the >>
operator.
The resulting type after applying the >>
operator.
The resulting type after applying the >>
operator.
The resulting type after applying the >>
operator.
The resulting type after applying the >>
operator.
The resulting type after applying the >>
operator.
The resulting type after applying the >>
operator.
The resulting type after applying the >>
operator.
The resulting type after applying the >>
operator.
The resulting type after applying the >>
operator.
The resulting type after applying the >>
operator.
The resulting type after applying the >>
operator.
The resulting type after applying the >>
operator.
The resulting type after applying the >>
operator.
The resulting type after applying the >>
operator.
The resulting type after applying the >>
operator.
The resulting type after applying the >>
operator.
The resulting type after applying the >>
operator.
The resulting type after applying the -
operator.
The resulting type after applying the -
operator.
The resulting type after applying the -
operator.
The resulting type after applying the -
operator.
The resulting type after applying the -
operator.
The resulting type after applying the -
operator.
The resulting type after applying the -
operator.
The resulting type after applying the -
operator.
The resulting type after applying the -
operator.
The resulting type after applying the -
operator.
The resulting type after applying the -
operator.
The resulting type after applying the -
operator.
The resulting type after applying the -
operator.
The resulting type after applying the -
operator.
The resulting type after applying the -
operator.
The resulting type after applying the -
operator.
The resulting type after applying the -
operator.
The resulting type after applying the -
operator.
The resulting type after applying the -
operator.
The resulting type after applying the -
operator.
The resulting type after applying the -
operator.
The resulting type after applying the -
operator.
The resulting type after applying the -
operator.
The resulting type after applying the -
operator.
The resulting type after applying the -
operator.
The resulting type after applying the -
operator.
The resulting type after applying the -
operator.
The resulting type after applying the -
operator.
The resulting type after applying the -
operator.
The resulting type after applying the -
operator.
The resulting type after applying the -
operator.
The resulting type after applying the -
operator.
The resulting type after applying the -
operator.
The resulting type after applying the -
operator.
The resulting type after applying the -
operator.
The resulting type after applying the -
operator.
The resulting type after applying the -
operator.
The resulting type after applying the -
operator.
The resulting type after applying the -
operator.
The resulting type after applying the -
operator.
The resulting type after applying the -
operator.
The resulting type after applying the -
operator.
The resulting type after applying the -
operator.
The resulting type after applying the -
operator.
The resulting type after applying the -
operator.
The resulting type after applying the -
operator.
The resulting type after applying the -
operator.
The resulting type after applying the -
operator.
Method which takes an iterator and generates Self
from the elements by
“summing up” the items. Read more
Method which takes an iterator and generates Self
from the elements by
“summing up” the items. Read more
Method which takes an iterator and generates Self
from the elements by
“summing up” the items. Read more
Method which takes an iterator and generates Self
from the elements by
“summing up” the items. Read more
Method which takes an iterator and generates Self
from the elements by
“summing up” the items. Read more
Method which takes an iterator and generates Self
from the elements by
“summing up” the items. Read more
Method which takes an iterator and generates Self
from the elements by
“summing up” the items. Read more
Method which takes an iterator and generates Self
from the elements by
“summing up” the items. Read more
Method which takes an iterator and generates Self
from the elements by
“summing up” the items. Read more
Method which takes an iterator and generates Self
from the elements by
“summing up” the items. Read more
Method which takes an iterator and generates Self
from the elements by
“summing up” the items. Read more
Method which takes an iterator and generates Self
from the elements by
“summing up” the items. Read more
Method which takes an iterator and generates Self
from the elements by
“summing up” the items. Read more
Method which takes an iterator and generates Self
from the elements by
“summing up” the items. Read more
Method which takes an iterator and generates Self
from the elements by
“summing up” the items. Read more
Method which takes an iterator and generates Self
from the elements by
“summing up” the items. Read more
Method which takes an iterator and generates Self
from the elements by
“summing up” the items. Read more
Method which takes an iterator and generates Self
from the elements by
“summing up” the items. Read more
Method which takes an iterator and generates Self
from the elements by
“summing up” the items. Read more
Method which takes an iterator and generates Self
from the elements by
“summing up” the items. Read more
Method which takes an iterator and generates Self
from the elements by
“summing up” the items. Read more
Method which takes an iterator and generates Self
from the elements by
“summing up” the items. Read more
Method which takes an iterator and generates Self
from the elements by
“summing up” the items. Read more
Method which takes an iterator and generates Self
from the elements by
“summing up” the items. Read more
Formats the value using the given formatter.
impl<T> Any for T where
T: 'static + ?Sized,
Immutably borrows from an owned value. Read more
Mutably borrows from an owned value. Read more
impl<T, U> Into<U> for T where
U: From<T>,
The resulting type after obtaining ownership.
Creates owned data from borrowed data, usually by cloning. Read more
🔬 This is a nightly-only experimental API. (
toowned_clone_into
#41263)
Uses borrowed data to replace owned data, usually by cloning. Read more
Converts the given value to a String
. Read more
The type returned in the event of a conversion error.
The type returned in the event of a conversion error.