pub trait Ord: Eq + PartialOrd<Self> {
fn cmp(&self, other: &Self) -> Ordering;
fn max(self, other: Self) -> Self
where
Self: Sized,
{ ... }
fn min(self, other: Self) -> Self
where
Self: Sized,
{ ... }
fn clamp(self, min: Self, max: Self) -> Self
where
Self: Sized,
{ ... }
}
Expand description
Trait for types that form a total order.
Implementations must be consistent with the PartialOrd
implementation, and ensure
max
, min
, and clamp
are consistent with cmp
:
partial_cmp(a, b) == Some(cmp(a, b))
.max(a, b) == max_by(a, b, cmp)
(ensured by the default implementation).min(a, b) == min_by(a, b, cmp)
(ensured by the default implementation).- For
a.clamp(min, max)
, see the method docs (ensured by the default implementation).
It’s easy to accidentally make cmp
and partial_cmp
disagree by
deriving some of the traits and manually implementing others.
Corollaries
From the above and the requirements of PartialOrd
, it follows that <
defines a strict total order.
This means that for all a
, b
and c
:
- exactly one of
a < b
,a == b
ora > b
is true; and <
is transitive:a < b
andb < c
impliesa < c
. The same must hold for both==
and>
.
Derivable
This trait can be used with #[derive]
.
When derive
d on structs, it will produce a
lexicographic ordering
based on the top-to-bottom declaration order of the struct’s members.
When derive
d on enums, variants are ordered by their discriminants.
By default, the discriminant is smallest for variants at the top, and
largest for variants at the bottom. Here’s an example:
#[derive(PartialEq, Eq, PartialOrd, Ord)]
enum E {
Top,
Bottom,
}
assert!(E::Top < E::Bottom);
RunHowever, manually setting the discriminants can override this default behavior:
#[derive(PartialEq, Eq, PartialOrd, Ord)]
enum E {
Top = 2,
Bottom = 1,
}
assert!(E::Bottom < E::Top);
RunLexicographical comparison
Lexicographical comparison is an operation with the following properties:
- Two sequences are compared element by element.
- The first mismatching element defines which sequence is lexicographically less or greater than the other.
- If one sequence is a prefix of another, the shorter sequence is lexicographically less than the other.
- If two sequence have equivalent elements and are of the same length, then the sequences are lexicographically equal.
- An empty sequence is lexicographically less than any non-empty sequence.
- Two empty sequences are lexicographically equal.
How can I implement Ord
?
Ord
requires that the type also be PartialOrd
and Eq
(which requires PartialEq
).
Then you must define an implementation for cmp
. You may find it useful to use
cmp
on your type’s fields.
Here’s an example where you want to sort people by height only, disregarding id
and name
:
use std::cmp::Ordering;
#[derive(Eq)]
struct Person {
id: u32,
name: String,
height: u32,
}
impl Ord for Person {
fn cmp(&self, other: &Self) -> Ordering {
self.height.cmp(&other.height)
}
}
impl PartialOrd for Person {
fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
Some(self.cmp(other))
}
}
impl PartialEq for Person {
fn eq(&self, other: &Self) -> bool {
self.height == other.height
}
}
RunRequired methods
This method returns an Ordering
between self
and other
.
By convention, self.cmp(&other)
returns the ordering matching the expression
self <operator> other
if true.
Examples
use std::cmp::Ordering;
assert_eq!(5.cmp(&10), Ordering::Less);
assert_eq!(10.cmp(&5), Ordering::Greater);
assert_eq!(5.cmp(&5), Ordering::Equal);
RunProvided methods
Implementors
Implements ordering of strings.
Strings are ordered lexicographically by their byte values. This orders Unicode code
points based on their positions in the code charts. This is not necessarily the same as
“alphabetical” order, which varies by language and locale. Sorting strings according to
culturally-accepted standards requires locale-specific data that is outside the scope of
the str
type.
impl<A: Ord, B: Ord, C: Ord, D: Ord, E: Ord, F: Ord, G: Ord> Ord for (A, B, C, D, E, F, G) where
G: ?Sized,
impl<A: Ord, B: Ord, C: Ord, D: Ord, E: Ord, F: Ord, G: Ord, H: Ord> Ord for (A, B, C, D, E, F, G, H) where
H: ?Sized,
impl<A: Ord, B: Ord, C: Ord, D: Ord, E: Ord, F: Ord, G: Ord, H: Ord, I: Ord> Ord for (A, B, C, D, E, F, G, H, I) where
I: ?Sized,
impl<A: Ord, B: Ord, C: Ord, D: Ord, E: Ord, F: Ord, G: Ord, H: Ord, I: Ord, J: Ord> Ord for (A, B, C, D, E, F, G, H, I, J) where
J: ?Sized,
impl<A: Ord, B: Ord, C: Ord, D: Ord, E: Ord, F: Ord, G: Ord, H: Ord, I: Ord, J: Ord, K: Ord> Ord for (A, B, C, D, E, F, G, H, I, J, K) where
K: ?Sized,
impl<A: Ord, B: Ord, C: Ord, D: Ord, E: Ord, F: Ord, G: Ord, H: Ord, I: Ord, J: Ord, K: Ord, L: Ord> Ord for (A, B, C, D, E, F, G, H, I, J, K, L) where
L: ?Sized,
impl<Ret, A, B, C, D> Ord for unsafe extern "C" fn(_: A, _: B, _: C, _: D, ...) -> Ret
impl<Ret, A, B, C, D, E> Ord for extern "C" fn(_: A, _: B, _: C, _: D, _: E, ...) -> Ret
impl<Ret, A, B, C, D, E> Ord for unsafe extern "C" fn(_: A, _: B, _: C, _: D, _: E) -> Ret
impl<Ret, A, B, C, D, E> Ord for unsafe extern "C" fn(_: A, _: B, _: C, _: D, _: E, ...) -> Ret
impl<Ret, A, B, C, D, E, F> Ord for extern "C" fn(_: A, _: B, _: C, _: D, _: E, _: F) -> Ret
impl<Ret, A, B, C, D, E, F> Ord for extern "C" fn(_: A, _: B, _: C, _: D, _: E, _: F, ...) -> Ret
impl<Ret, A, B, C, D, E, F> Ord for unsafe fn(_: A, _: B, _: C, _: D, _: E, _: F) -> Ret
impl<Ret, A, B, C, D, E, F> Ord for unsafe extern "C" fn(_: A, _: B, _: C, _: D, _: E, _: F) -> Ret
impl<Ret, A, B, C, D, E, F> Ord for unsafe extern "C" fn(_: A, _: B, _: C, _: D, _: E, _: F, ...) -> Ret
impl<Ret, A, B, C, D, E, F, G> Ord for fn(_: A, _: B, _: C, _: D, _: E, _: F, _: G) -> Ret
impl<Ret, A, B, C, D, E, F, G> Ord for extern "C" fn(_: A, _: B, _: C, _: D, _: E, _: F, _: G) -> Ret
impl<Ret, A, B, C, D, E, F, G> Ord for extern "C" fn(_: A, _: B, _: C, _: D, _: E, _: F, _: G, ...) -> Ret
impl<Ret, A, B, C, D, E, F, G> Ord for unsafe fn(_: A, _: B, _: C, _: D, _: E, _: F, _: G) -> Ret
impl<Ret, A, B, C, D, E, F, G> Ord for unsafe extern "C" fn(_: A, _: B, _: C, _: D, _: E, _: F, _: G) -> Ret
impl<Ret, A, B, C, D, E, F, G> Ord for unsafe extern "C" fn(_: A, _: B, _: C, _: D, _: E, _: F, _: G, ...) -> Ret
impl<Ret, A, B, C, D, E, F, G, H> Ord for fn(_: A, _: B, _: C, _: D, _: E, _: F, _: G, _: H) -> Ret
impl<Ret, A, B, C, D, E, F, G, H> Ord for extern "C" fn(_: A, _: B, _: C, _: D, _: E, _: F, _: G, _: H) -> Ret
impl<Ret, A, B, C, D, E, F, G, H> Ord for extern "C" fn(_: A, _: B, _: C, _: D, _: E, _: F, _: G, _: H, ...) -> Ret
impl<Ret, A, B, C, D, E, F, G, H> Ord for unsafe fn(_: A, _: B, _: C, _: D, _: E, _: F, _: G, _: H) -> Ret
impl<Ret, A, B, C, D, E, F, G, H> Ord for unsafe extern "C" fn(_: A, _: B, _: C, _: D, _: E, _: F, _: G, _: H) -> Ret
impl<Ret, A, B, C, D, E, F, G, H> Ord for unsafe extern "C" fn(_: A, _: B, _: C, _: D, _: E, _: F, _: G, _: H, ...) -> Ret
impl<Ret, A, B, C, D, E, F, G, H, I> Ord for fn(_: A, _: B, _: C, _: D, _: E, _: F, _: G, _: H, _: I) -> Ret
impl<Ret, A, B, C, D, E, F, G, H, I> Ord for extern "C" fn(_: A, _: B, _: C, _: D, _: E, _: F, _: G, _: H, _: I) -> Ret
impl<Ret, A, B, C, D, E, F, G, H, I> Ord for extern "C" fn(_: A, _: B, _: C, _: D, _: E, _: F, _: G, _: H, _: I, ...) -> Ret
impl<Ret, A, B, C, D, E, F, G, H, I> Ord for unsafe fn(_: A, _: B, _: C, _: D, _: E, _: F, _: G, _: H, _: I) -> Ret
impl<Ret, A, B, C, D, E, F, G, H, I> Ord for unsafe extern "C" fn(_: A, _: B, _: C, _: D, _: E, _: F, _: G, _: H, _: I) -> Ret
impl<Ret, A, B, C, D, E, F, G, H, I> Ord for unsafe extern "C" fn(_: A, _: B, _: C, _: D, _: E, _: F, _: G, _: H, _: I, ...) -> Ret
impl<Ret, A, B, C, D, E, F, G, H, I, J> Ord for fn(_: A, _: B, _: C, _: D, _: E, _: F, _: G, _: H, _: I, _: J) -> Ret
impl<Ret, A, B, C, D, E, F, G, H, I, J> Ord for extern "C" fn(_: A, _: B, _: C, _: D, _: E, _: F, _: G, _: H, _: I, _: J) -> Ret
impl<Ret, A, B, C, D, E, F, G, H, I, J> Ord for extern "C" fn(_: A, _: B, _: C, _: D, _: E, _: F, _: G, _: H, _: I, _: J, ...) -> Ret
impl<Ret, A, B, C, D, E, F, G, H, I, J> Ord for unsafe fn(_: A, _: B, _: C, _: D, _: E, _: F, _: G, _: H, _: I, _: J) -> Ret
impl<Ret, A, B, C, D, E, F, G, H, I, J> Ord for unsafe extern "C" fn(_: A, _: B, _: C, _: D, _: E, _: F, _: G, _: H, _: I, _: J) -> Ret
impl<Ret, A, B, C, D, E, F, G, H, I, J> Ord for unsafe extern "C" fn(_: A, _: B, _: C, _: D, _: E, _: F, _: G, _: H, _: I, _: J, ...) -> Ret
impl<Ret, A, B, C, D, E, F, G, H, I, J, K> Ord for fn(_: A, _: B, _: C, _: D, _: E, _: F, _: G, _: H, _: I, _: J, _: K) -> Ret
impl<Ret, A, B, C, D, E, F, G, H, I, J, K> Ord for extern "C" fn(_: A, _: B, _: C, _: D, _: E, _: F, _: G, _: H, _: I, _: J, _: K) -> Ret
impl<Ret, A, B, C, D, E, F, G, H, I, J, K> Ord for extern "C" fn(_: A, _: B, _: C, _: D, _: E, _: F, _: G, _: H, _: I, _: J, _: K, ...) -> Ret
impl<Ret, A, B, C, D, E, F, G, H, I, J, K> Ord for unsafe fn(_: A, _: B, _: C, _: D, _: E, _: F, _: G, _: H, _: I, _: J, _: K) -> Ret
impl<Ret, A, B, C, D, E, F, G, H, I, J, K> Ord for unsafe extern "C" fn(_: A, _: B, _: C, _: D, _: E, _: F, _: G, _: H, _: I, _: J, _: K) -> Ret
impl<Ret, A, B, C, D, E, F, G, H, I, J, K> Ord for unsafe extern "C" fn(_: A, _: B, _: C, _: D, _: E, _: F, _: G, _: H, _: I, _: J, _: K, ...) -> Ret
impl<Ret, A, B, C, D, E, F, G, H, I, J, K, L> Ord for fn(_: A, _: B, _: C, _: D, _: E, _: F, _: G, _: H, _: I, _: J, _: K, _: L) -> Ret
impl<Ret, A, B, C, D, E, F, G, H, I, J, K, L> Ord for extern "C" fn(_: A, _: B, _: C, _: D, _: E, _: F, _: G, _: H, _: I, _: J, _: K, _: L) -> Ret
impl<Ret, A, B, C, D, E, F, G, H, I, J, K, L> Ord for extern "C" fn(_: A, _: B, _: C, _: D, _: E, _: F, _: G, _: H, _: I, _: J, _: K, _: L, ...) -> Ret
impl<Ret, A, B, C, D, E, F, G, H, I, J, K, L> Ord for unsafe fn(_: A, _: B, _: C, _: D, _: E, _: F, _: G, _: H, _: I, _: J, _: K, _: L) -> Ret
impl<Ret, A, B, C, D, E, F, G, H, I, J, K, L> Ord for unsafe extern "C" fn(_: A, _: B, _: C, _: D, _: E, _: F, _: G, _: H, _: I, _: J, _: K, _: L) -> Ret
impl<Ret, A, B, C, D, E, F, G, H, I, J, K, L> Ord for unsafe extern "C" fn(_: A, _: B, _: C, _: D, _: E, _: F, _: G, _: H, _: I, _: J, _: K, _: L, ...) -> Ret
impl<T, const LANES: usize> Ord for Simd<T, LANES> where
LaneCount<LANES>: SupportedLaneCount,
T: SimdElement + Ord,
Implements comparison of vectors lexicographically.
Implements comparison of arrays lexicographically.