Expand description
String slices.
The str
type, also called a ‘string slice’, is the most primitive string
type. It is usually seen in its borrowed form, &str
. It is also the type
of string literals, &'static str
.
String slices are always valid UTF-8.
Examples
String literals are string slices:
let hello = "Hello, world!";
// with an explicit type annotation
let hello: &'static str = "Hello, world!";
RunThey are 'static
because they’re stored directly in the final binary, and
so will be valid for the 'static
duration.
Representation
A &str
is made up of two components: a pointer to some bytes, and a
length. You can look at these with the as_ptr
and len
methods:
use std::slice;
use std::str;
let story = "Once upon a time...";
let ptr = story.as_ptr();
let len = story.len();
// story has nineteen bytes
assert_eq!(19, len);
// We can re-build a str out of ptr and len. This is all unsafe because
// we are responsible for making sure the two components are valid:
let s = unsafe {
// First, we build a &[u8]...
let slice = slice::from_raw_parts(ptr, len);
// ... and then convert that slice into a string slice
str::from_utf8(slice)
};
assert_eq!(s, Ok(story));
RunNote: This example shows the internals of &str
. unsafe
should not be
used to get a string slice under normal circumstances. Use as_str
instead.
Implementations
Returns the length of self
.
This length is in bytes, not char
s or graphemes. In other words,
it might not be what a human considers the length of the string.
Examples
Basic usage:
let len = "foo".len();
assert_eq!(3, len);
assert_eq!("ƒoo".len(), 4); // fancy f!
assert_eq!("ƒoo".chars().count(), 3);
RunChecks that index
-th byte is the first byte in a UTF-8 code point
sequence or the end of the string.
The start and end of the string (when index == self.len()
) are
considered to be boundaries.
Returns false
if index
is greater than self.len()
.
Examples
let s = "Löwe 老虎 Léopard";
assert!(s.is_char_boundary(0));
// start of `老`
assert!(s.is_char_boundary(6));
assert!(s.is_char_boundary(s.len()));
// second byte of `ö`
assert!(!s.is_char_boundary(2));
// third byte of `老`
assert!(!s.is_char_boundary(8));
RunConverts a mutable string slice to a mutable byte slice.
Safety
The caller must ensure that the content of the slice is valid UTF-8
before the borrow ends and the underlying str
is used.
Use of a str
whose contents are not valid UTF-8 is undefined behavior.
Examples
Basic usage:
let mut s = String::from("Hello");
let bytes = unsafe { s.as_bytes_mut() };
assert_eq!(b"Hello", bytes);
RunMutability:
let mut s = String::from("🗻∈🌏");
unsafe {
let bytes = s.as_bytes_mut();
bytes[0] = 0xF0;
bytes[1] = 0x9F;
bytes[2] = 0x8D;
bytes[3] = 0x94;
}
assert_eq!("🍔∈🌏", s);
RunConverts a string slice to a raw pointer.
As string slices are a slice of bytes, the raw pointer points to a
u8
. This pointer will be pointing to the first byte of the string
slice.
The caller must ensure that the returned pointer is never written to.
If you need to mutate the contents of the string slice, use as_mut_ptr
.
Examples
Basic usage:
let s = "Hello";
let ptr = s.as_ptr();
RunConverts a mutable string slice to a raw pointer.
As string slices are a slice of bytes, the raw pointer points to a
u8
. This pointer will be pointing to the first byte of the string
slice.
It is your responsibility to make sure that the string slice only gets modified in a way that it remains valid UTF-8.
1.20.0 · sourcepub fn get<I>(&self, i: I) -> Option<&<I as SliceIndex<str>>::Output> where
I: SliceIndex<str>,
pub fn get<I>(&self, i: I) -> Option<&<I as SliceIndex<str>>::Output> where
I: SliceIndex<str>,
Returns a subslice of str
.
This is the non-panicking alternative to indexing the str
. Returns
None
whenever equivalent indexing operation would panic.
Examples
let v = String::from("🗻∈🌏");
assert_eq!(Some("🗻"), v.get(0..4));
// indices not on UTF-8 sequence boundaries
assert!(v.get(1..).is_none());
assert!(v.get(..8).is_none());
// out of bounds
assert!(v.get(..42).is_none());
Run1.20.0 · sourcepub fn get_mut<I>(
&mut self,
i: I
) -> Option<&mut <I as SliceIndex<str>>::Output> where
I: SliceIndex<str>,
pub fn get_mut<I>(
&mut self,
i: I
) -> Option<&mut <I as SliceIndex<str>>::Output> where
I: SliceIndex<str>,
Returns a mutable subslice of str
.
This is the non-panicking alternative to indexing the str
. Returns
None
whenever equivalent indexing operation would panic.
Examples
let mut v = String::from("hello");
// correct length
assert!(v.get_mut(0..5).is_some());
// out of bounds
assert!(v.get_mut(..42).is_none());
assert_eq!(Some("he"), v.get_mut(0..2).map(|v| &*v));
assert_eq!("hello", v);
{
let s = v.get_mut(0..2);
let s = s.map(|s| {
s.make_ascii_uppercase();
&*s
});
assert_eq!(Some("HE"), s);
}
assert_eq!("HEllo", v);
Run1.20.0 · sourcepub unsafe fn get_unchecked<I>(&self, i: I) -> &<I as SliceIndex<str>>::Output where
I: SliceIndex<str>,
pub unsafe fn get_unchecked<I>(&self, i: I) -> &<I as SliceIndex<str>>::Output where
I: SliceIndex<str>,
Returns an unchecked subslice of str
.
This is the unchecked alternative to indexing the str
.
Safety
Callers of this function are responsible that these preconditions are satisfied:
- The starting index must not exceed the ending index;
- Indexes must be within bounds of the original slice;
- Indexes must lie on UTF-8 sequence boundaries.
Failing that, the returned string slice may reference invalid memory or
violate the invariants communicated by the str
type.
Examples
let v = "🗻∈🌏";
unsafe {
assert_eq!("🗻", v.get_unchecked(0..4));
assert_eq!("∈", v.get_unchecked(4..7));
assert_eq!("🌏", v.get_unchecked(7..11));
}
Run1.20.0 · sourcepub unsafe fn get_unchecked_mut<I>(
&mut self,
i: I
) -> &mut <I as SliceIndex<str>>::Output where
I: SliceIndex<str>,
pub unsafe fn get_unchecked_mut<I>(
&mut self,
i: I
) -> &mut <I as SliceIndex<str>>::Output where
I: SliceIndex<str>,
Returns a mutable, unchecked subslice of str
.
This is the unchecked alternative to indexing the str
.
Safety
Callers of this function are responsible that these preconditions are satisfied:
- The starting index must not exceed the ending index;
- Indexes must be within bounds of the original slice;
- Indexes must lie on UTF-8 sequence boundaries.
Failing that, the returned string slice may reference invalid memory or
violate the invariants communicated by the str
type.
Examples
let mut v = String::from("🗻∈🌏");
unsafe {
assert_eq!("🗻", v.get_unchecked_mut(0..4));
assert_eq!("∈", v.get_unchecked_mut(4..7));
assert_eq!("🌏", v.get_unchecked_mut(7..11));
}
Run👎 Deprecated since 1.29.0: use get_unchecked(begin..end)
instead
use get_unchecked(begin..end)
instead
Creates a string slice from another string slice, bypassing safety checks.
This is generally not recommended, use with caution! For a safe
alternative see str
and Index
.
This new slice goes from begin
to end
, including begin
but
excluding end
.
To get a mutable string slice instead, see the
slice_mut_unchecked
method.
Safety
Callers of this function are responsible that three preconditions are satisfied:
begin
must not exceedend
.begin
andend
must be byte positions within the string slice.begin
andend
must lie on UTF-8 sequence boundaries.
Examples
Basic usage:
let s = "Löwe 老虎 Léopard";
unsafe {
assert_eq!("Löwe 老虎 Léopard", s.slice_unchecked(0, 21));
}
let s = "Hello, world!";
unsafe {
assert_eq!("world", s.slice_unchecked(7, 12));
}
Run👎 Deprecated since 1.29.0: use get_unchecked_mut(begin..end)
instead
use get_unchecked_mut(begin..end)
instead
Creates a string slice from another string slice, bypassing safety
checks.
This is generally not recommended, use with caution! For a safe
alternative see str
and IndexMut
.
This new slice goes from begin
to end
, including begin
but
excluding end
.
To get an immutable string slice instead, see the
slice_unchecked
method.
Safety
Callers of this function are responsible that three preconditions are satisfied:
begin
must not exceedend
.begin
andend
must be byte positions within the string slice.begin
andend
must lie on UTF-8 sequence boundaries.
Divide one string slice into two at an index.
The argument, mid
, should be a byte offset from the start of the
string. It must also be on the boundary of a UTF-8 code point.
The two slices returned go from the start of the string slice to mid
,
and from mid
to the end of the string slice.
To get mutable string slices instead, see the split_at_mut
method.
Panics
Panics if mid
is not on a UTF-8 code point boundary, or if it is
past the end of the last code point of the string slice.
Examples
Basic usage:
let s = "Per Martin-Löf";
let (first, last) = s.split_at(3);
assert_eq!("Per", first);
assert_eq!(" Martin-Löf", last);
RunDivide one mutable string slice into two at an index.
The argument, mid
, should be a byte offset from the start of the
string. It must also be on the boundary of a UTF-8 code point.
The two slices returned go from the start of the string slice to mid
,
and from mid
to the end of the string slice.
To get immutable string slices instead, see the split_at
method.
Panics
Panics if mid
is not on a UTF-8 code point boundary, or if it is
past the end of the last code point of the string slice.
Examples
Basic usage:
let mut s = "Per Martin-Löf".to_string();
{
let (first, last) = s.split_at_mut(3);
first.make_ascii_uppercase();
assert_eq!("PER", first);
assert_eq!(" Martin-Löf", last);
}
assert_eq!("PER Martin-Löf", s);
RunReturns an iterator over the char
s of a string slice.
As a string slice consists of valid UTF-8, we can iterate through a
string slice by char
. This method returns such an iterator.
It’s important to remember that char
represents a Unicode Scalar
Value, and might not match your idea of what a ‘character’ is. Iteration
over grapheme clusters may be what you actually want. This functionality
is not provided by Rust’s standard library, check crates.io instead.
Examples
Basic usage:
let word = "goodbye";
let count = word.chars().count();
assert_eq!(7, count);
let mut chars = word.chars();
assert_eq!(Some('g'), chars.next());
assert_eq!(Some('o'), chars.next());
assert_eq!(Some('o'), chars.next());
assert_eq!(Some('d'), chars.next());
assert_eq!(Some('b'), chars.next());
assert_eq!(Some('y'), chars.next());
assert_eq!(Some('e'), chars.next());
assert_eq!(None, chars.next());
RunRemember, char
s might not match your intuition about characters:
let y = "y̆";
let mut chars = y.chars();
assert_eq!(Some('y'), chars.next()); // not 'y̆'
assert_eq!(Some('\u{0306}'), chars.next());
assert_eq!(None, chars.next());
Runpub fn char_indices(&self) -> CharIndices<'_>ⓘNotable traits for CharIndices<'a>impl<'a> Iterator for CharIndices<'a> type Item = (usize, char);
pub fn char_indices(&self) -> CharIndices<'_>ⓘNotable traits for CharIndices<'a>impl<'a> Iterator for CharIndices<'a> type Item = (usize, char);
impl<'a> Iterator for CharIndices<'a> type Item = (usize, char);
Returns an iterator over the char
s of a string slice, and their
positions.
As a string slice consists of valid UTF-8, we can iterate through a
string slice by char
. This method returns an iterator of both
these char
s, as well as their byte positions.
The iterator yields tuples. The position is first, the char
is
second.
Examples
Basic usage:
let word = "goodbye";
let count = word.char_indices().count();
assert_eq!(7, count);
let mut char_indices = word.char_indices();
assert_eq!(Some((0, 'g')), char_indices.next());
assert_eq!(Some((1, 'o')), char_indices.next());
assert_eq!(Some((2, 'o')), char_indices.next());
assert_eq!(Some((3, 'd')), char_indices.next());
assert_eq!(Some((4, 'b')), char_indices.next());
assert_eq!(Some((5, 'y')), char_indices.next());
assert_eq!(Some((6, 'e')), char_indices.next());
assert_eq!(None, char_indices.next());
RunRemember, char
s might not match your intuition about characters:
let yes = "y̆es";
let mut char_indices = yes.char_indices();
assert_eq!(Some((0, 'y')), char_indices.next()); // not (0, 'y̆')
assert_eq!(Some((1, '\u{0306}')), char_indices.next());
// note the 3 here - the last character took up two bytes
assert_eq!(Some((3, 'e')), char_indices.next());
assert_eq!(Some((4, 's')), char_indices.next());
assert_eq!(None, char_indices.next());
RunAn iterator over the bytes of a string slice.
As a string slice consists of a sequence of bytes, we can iterate through a string slice by byte. This method returns such an iterator.
Examples
Basic usage:
let mut bytes = "bors".bytes();
assert_eq!(Some(b'b'), bytes.next());
assert_eq!(Some(b'o'), bytes.next());
assert_eq!(Some(b'r'), bytes.next());
assert_eq!(Some(b's'), bytes.next());
assert_eq!(None, bytes.next());
Run1.1.0 · sourcepub fn split_whitespace(&self) -> SplitWhitespace<'_>ⓘNotable traits for SplitWhitespace<'a>impl<'a> Iterator for SplitWhitespace<'a> type Item = &'a str;
pub fn split_whitespace(&self) -> SplitWhitespace<'_>ⓘNotable traits for SplitWhitespace<'a>impl<'a> Iterator for SplitWhitespace<'a> type Item = &'a str;
impl<'a> Iterator for SplitWhitespace<'a> type Item = &'a str;
Splits a string slice by whitespace.
The iterator returned will return string slices that are sub-slices of the original string slice, separated by any amount of whitespace.
‘Whitespace’ is defined according to the terms of the Unicode Derived
Core Property White_Space
. If you only want to split on ASCII whitespace
instead, use split_ascii_whitespace
.
Examples
Basic usage:
let mut iter = "A few words".split_whitespace();
assert_eq!(Some("A"), iter.next());
assert_eq!(Some("few"), iter.next());
assert_eq!(Some("words"), iter.next());
assert_eq!(None, iter.next());
RunAll kinds of whitespace are considered:
let mut iter = " Mary had\ta\u{2009}little \n\t lamb".split_whitespace();
assert_eq!(Some("Mary"), iter.next());
assert_eq!(Some("had"), iter.next());
assert_eq!(Some("a"), iter.next());
assert_eq!(Some("little"), iter.next());
assert_eq!(Some("lamb"), iter.next());
assert_eq!(None, iter.next());
Run1.34.0 · sourcepub fn split_ascii_whitespace(&self) -> SplitAsciiWhitespace<'_>ⓘNotable traits for SplitAsciiWhitespace<'a>impl<'a> Iterator for SplitAsciiWhitespace<'a> type Item = &'a str;
pub fn split_ascii_whitespace(&self) -> SplitAsciiWhitespace<'_>ⓘNotable traits for SplitAsciiWhitespace<'a>impl<'a> Iterator for SplitAsciiWhitespace<'a> type Item = &'a str;
impl<'a> Iterator for SplitAsciiWhitespace<'a> type Item = &'a str;
Splits a string slice by ASCII whitespace.
The iterator returned will return string slices that are sub-slices of the original string slice, separated by any amount of ASCII whitespace.
To split by Unicode Whitespace
instead, use split_whitespace
.
Examples
Basic usage:
let mut iter = "A few words".split_ascii_whitespace();
assert_eq!(Some("A"), iter.next());
assert_eq!(Some("few"), iter.next());
assert_eq!(Some("words"), iter.next());
assert_eq!(None, iter.next());
RunAll kinds of ASCII whitespace are considered:
let mut iter = " Mary had\ta little \n\t lamb".split_ascii_whitespace();
assert_eq!(Some("Mary"), iter.next());
assert_eq!(Some("had"), iter.next());
assert_eq!(Some("a"), iter.next());
assert_eq!(Some("little"), iter.next());
assert_eq!(Some("lamb"), iter.next());
assert_eq!(None, iter.next());
RunAn iterator over the lines of a string, as string slices.
Lines are ended with either a newline (\n
) or a carriage return with
a line feed (\r\n
).
The final line ending is optional. A string that ends with a final line ending will return the same lines as an otherwise identical string without a final line ending.
Examples
Basic usage:
let text = "foo\r\nbar\n\nbaz\n";
let mut lines = text.lines();
assert_eq!(Some("foo"), lines.next());
assert_eq!(Some("bar"), lines.next());
assert_eq!(Some(""), lines.next());
assert_eq!(Some("baz"), lines.next());
assert_eq!(None, lines.next());
RunThe final line ending isn’t required:
let text = "foo\nbar\n\r\nbaz";
let mut lines = text.lines();
assert_eq!(Some("foo"), lines.next());
assert_eq!(Some("bar"), lines.next());
assert_eq!(Some(""), lines.next());
assert_eq!(Some("baz"), lines.next());
assert_eq!(None, lines.next());
Run👎 Deprecated since 1.4.0: use lines() instead now
use lines() instead now
An iterator over the lines of a string.
1.8.0 · sourcepub fn encode_utf16(&self) -> EncodeUtf16<'_>ⓘNotable traits for EncodeUtf16<'a>impl<'a> Iterator for EncodeUtf16<'a> type Item = u16;
pub fn encode_utf16(&self) -> EncodeUtf16<'_>ⓘNotable traits for EncodeUtf16<'a>impl<'a> Iterator for EncodeUtf16<'a> type Item = u16;
impl<'a> Iterator for EncodeUtf16<'a> type Item = u16;
Returns true
if the given pattern matches a sub-slice of
this string slice.
Returns false
if it does not.
The pattern can be a &str
, char
, a slice of char
s, or a
function or closure that determines if a character matches.
Examples
Basic usage:
let bananas = "bananas";
assert!(bananas.contains("nana"));
assert!(!bananas.contains("apples"));
RunReturns true
if the given pattern matches a prefix of this
string slice.
Returns false
if it does not.
The pattern can be a &str
, char
, a slice of char
s, or a
function or closure that determines if a character matches.
Examples
Basic usage:
let bananas = "bananas";
assert!(bananas.starts_with("bana"));
assert!(!bananas.starts_with("nana"));
RunReturns true
if the given pattern matches a suffix of this
string slice.
Returns false
if it does not.
The pattern can be a &str
, char
, a slice of char
s, or a
function or closure that determines if a character matches.
Examples
Basic usage:
let bananas = "bananas";
assert!(bananas.ends_with("anas"));
assert!(!bananas.ends_with("nana"));
RunReturns the byte index of the first character of this string slice that matches the pattern.
Returns None
if the pattern doesn’t match.
The pattern can be a &str
, char
, a slice of char
s, or a
function or closure that determines if a character matches.
Examples
Simple patterns:
let s = "Löwe 老虎 Léopard Gepardi";
assert_eq!(s.find('L'), Some(0));
assert_eq!(s.find('é'), Some(14));
assert_eq!(s.find("pard"), Some(17));
RunMore complex patterns using point-free style and closures:
let s = "Löwe 老虎 Léopard";
assert_eq!(s.find(char::is_whitespace), Some(5));
assert_eq!(s.find(char::is_lowercase), Some(1));
assert_eq!(s.find(|c: char| c.is_whitespace() || c.is_lowercase()), Some(1));
assert_eq!(s.find(|c: char| (c < 'o') && (c > 'a')), Some(4));
RunNot finding the pattern:
let s = "Löwe 老虎 Léopard";
let x: &[_] = &['1', '2'];
assert_eq!(s.find(x), None);
RunReturns the byte index for the first character of the rightmost match of the pattern in this string slice.
Returns None
if the pattern doesn’t match.
The pattern can be a &str
, char
, a slice of char
s, or a
function or closure that determines if a character matches.
Examples
Simple patterns:
let s = "Löwe 老虎 Léopard Gepardi";
assert_eq!(s.rfind('L'), Some(13));
assert_eq!(s.rfind('é'), Some(14));
assert_eq!(s.rfind("pard"), Some(24));
RunMore complex patterns with closures:
let s = "Löwe 老虎 Léopard";
assert_eq!(s.rfind(char::is_whitespace), Some(12));
assert_eq!(s.rfind(char::is_lowercase), Some(20));
RunNot finding the pattern:
let s = "Löwe 老虎 Léopard";
let x: &[_] = &['1', '2'];
assert_eq!(s.rfind(x), None);
RunAn iterator over substrings of this string slice, separated by characters matched by a pattern.
The pattern can be a &str
, char
, a slice of char
s, or a
function or closure that determines if a character matches.
Iterator behavior
The returned iterator will be a DoubleEndedIterator
if the pattern
allows a reverse search and forward/reverse search yields the same
elements. This is true for, e.g., char
, but not for &str
.
If the pattern allows a reverse search but its results might differ
from a forward search, the rsplit
method can be used.
Examples
Simple patterns:
let v: Vec<&str> = "Mary had a little lamb".split(' ').collect();
assert_eq!(v, ["Mary", "had", "a", "little", "lamb"]);
let v: Vec<&str> = "".split('X').collect();
assert_eq!(v, [""]);
let v: Vec<&str> = "lionXXtigerXleopard".split('X').collect();
assert_eq!(v, ["lion", "", "tiger", "leopard"]);
let v: Vec<&str> = "lion::tiger::leopard".split("::").collect();
assert_eq!(v, ["lion", "tiger", "leopard"]);
let v: Vec<&str> = "abc1def2ghi".split(char::is_numeric).collect();
assert_eq!(v, ["abc", "def", "ghi"]);
let v: Vec<&str> = "lionXtigerXleopard".split(char::is_uppercase).collect();
assert_eq!(v, ["lion", "tiger", "leopard"]);
RunIf the pattern is a slice of chars, split on each occurrence of any of the characters:
let v: Vec<&str> = "2020-11-03 23:59".split(&['-', ' ', ':', '@'][..]).collect();
assert_eq!(v, ["2020", "11", "03", "23", "59"]);
RunA more complex pattern, using a closure:
let v: Vec<&str> = "abc1defXghi".split(|c| c == '1' || c == 'X').collect();
assert_eq!(v, ["abc", "def", "ghi"]);
RunIf a string contains multiple contiguous separators, you will end up with empty strings in the output:
let x = "||||a||b|c".to_string();
let d: Vec<_> = x.split('|').collect();
assert_eq!(d, &["", "", "", "", "a", "", "b", "c"]);
RunContiguous separators are separated by the empty string.
let x = "(///)".to_string();
let d: Vec<_> = x.split('/').collect();
assert_eq!(d, &["(", "", "", ")"]);
RunSeparators at the start or end of a string are neighbored by empty strings.
let d: Vec<_> = "010".split("0").collect();
assert_eq!(d, &["", "1", ""]);
RunWhen the empty string is used as a separator, it separates every character in the string, along with the beginning and end of the string.
let f: Vec<_> = "rust".split("").collect();
assert_eq!(f, &["", "r", "u", "s", "t", ""]);
RunContiguous separators can lead to possibly surprising behavior when whitespace is used as the separator. This code is correct:
let x = " a b c".to_string();
let d: Vec<_> = x.split(' ').collect();
assert_eq!(d, &["", "", "", "", "a", "", "b", "c"]);
RunIt does not give you:
assert_eq!(d, &["a", "b", "c"]);
RunUse split_whitespace
for this behavior.
1.51.0 · sourcepub fn split_inclusive<'a, P>(&'a self, pat: P) -> SplitInclusive<'a, P>ⓘNotable traits for SplitInclusive<'a, P>impl<'a, P> Iterator for SplitInclusive<'a, P> where
P: Pattern<'a>, type Item = &'a str;
where
P: Pattern<'a>,
pub fn split_inclusive<'a, P>(&'a self, pat: P) -> SplitInclusive<'a, P>ⓘNotable traits for SplitInclusive<'a, P>impl<'a, P> Iterator for SplitInclusive<'a, P> where
P: Pattern<'a>, type Item = &'a str;
where
P: Pattern<'a>,
impl<'a, P> Iterator for SplitInclusive<'a, P> where
P: Pattern<'a>, type Item = &'a str;
An iterator over substrings of this string slice, separated by
characters matched by a pattern. Differs from the iterator produced by
split
in that split_inclusive
leaves the matched part as the
terminator of the substring.
The pattern can be a &str
, char
, a slice of char
s, or a
function or closure that determines if a character matches.
Examples
let v: Vec<&str> = "Mary had a little lamb\nlittle lamb\nlittle lamb."
.split_inclusive('\n').collect();
assert_eq!(v, ["Mary had a little lamb\n", "little lamb\n", "little lamb."]);
RunIf the last element of the string is matched, that element will be considered the terminator of the preceding substring. That substring will be the last item returned by the iterator.
let v: Vec<&str> = "Mary had a little lamb\nlittle lamb\nlittle lamb.\n"
.split_inclusive('\n').collect();
assert_eq!(v, ["Mary had a little lamb\n", "little lamb\n", "little lamb.\n"]);
RunAn iterator over substrings of the given string slice, separated by characters matched by a pattern and yielded in reverse order.
The pattern can be a &str
, char
, a slice of char
s, or a
function or closure that determines if a character matches.
Iterator behavior
The returned iterator requires that the pattern supports a reverse
search, and it will be a DoubleEndedIterator
if a forward/reverse
search yields the same elements.
For iterating from the front, the split
method can be used.
Examples
Simple patterns:
let v: Vec<&str> = "Mary had a little lamb".rsplit(' ').collect();
assert_eq!(v, ["lamb", "little", "a", "had", "Mary"]);
let v: Vec<&str> = "".rsplit('X').collect();
assert_eq!(v, [""]);
let v: Vec<&str> = "lionXXtigerXleopard".rsplit('X').collect();
assert_eq!(v, ["leopard", "tiger", "", "lion"]);
let v: Vec<&str> = "lion::tiger::leopard".rsplit("::").collect();
assert_eq!(v, ["leopard", "tiger", "lion"]);
RunA more complex pattern, using a closure:
let v: Vec<&str> = "abc1defXghi".rsplit(|c| c == '1' || c == 'X').collect();
assert_eq!(v, ["ghi", "def", "abc"]);
Runpub fn split_terminator<'a, P>(&'a self, pat: P) -> SplitTerminator<'a, P>ⓘNotable traits for SplitTerminator<'a, P>impl<'a, P> Iterator for SplitTerminator<'a, P> where
P: Pattern<'a>, type Item = &'a str;
where
P: Pattern<'a>,
pub fn split_terminator<'a, P>(&'a self, pat: P) -> SplitTerminator<'a, P>ⓘNotable traits for SplitTerminator<'a, P>impl<'a, P> Iterator for SplitTerminator<'a, P> where
P: Pattern<'a>, type Item = &'a str;
where
P: Pattern<'a>,
impl<'a, P> Iterator for SplitTerminator<'a, P> where
P: Pattern<'a>, type Item = &'a str;
An iterator over substrings of the given string slice, separated by characters matched by a pattern.
The pattern can be a &str
, char
, a slice of char
s, or a
function or closure that determines if a character matches.
Equivalent to split
, except that the trailing substring
is skipped if empty.
This method can be used for string data that is terminated, rather than separated by a pattern.
Iterator behavior
The returned iterator will be a DoubleEndedIterator
if the pattern
allows a reverse search and forward/reverse search yields the same
elements. This is true for, e.g., char
, but not for &str
.
If the pattern allows a reverse search but its results might differ
from a forward search, the rsplit_terminator
method can be used.
Examples
Basic usage:
let v: Vec<&str> = "A.B.".split_terminator('.').collect();
assert_eq!(v, ["A", "B"]);
let v: Vec<&str> = "A..B..".split_terminator(".").collect();
assert_eq!(v, ["A", "", "B", ""]);
let v: Vec<&str> = "A.B:C.D".split_terminator(&['.', ':'][..]).collect();
assert_eq!(v, ["A", "B", "C", "D"]);
Runpub fn rsplit_terminator<'a, P>(&'a self, pat: P) -> RSplitTerminator<'a, P>ⓘNotable traits for RSplitTerminator<'a, P>impl<'a, P> Iterator for RSplitTerminator<'a, P> where
P: Pattern<'a>,
<P as Pattern<'a>>::Searcher: ReverseSearcher<'a>, type Item = &'a str;
where
P: Pattern<'a>,
<P as Pattern<'a>>::Searcher: ReverseSearcher<'a>,
pub fn rsplit_terminator<'a, P>(&'a self, pat: P) -> RSplitTerminator<'a, P>ⓘNotable traits for RSplitTerminator<'a, P>impl<'a, P> Iterator for RSplitTerminator<'a, P> where
P: Pattern<'a>,
<P as Pattern<'a>>::Searcher: ReverseSearcher<'a>, type Item = &'a str;
where
P: Pattern<'a>,
<P as Pattern<'a>>::Searcher: ReverseSearcher<'a>,
impl<'a, P> Iterator for RSplitTerminator<'a, P> where
P: Pattern<'a>,
<P as Pattern<'a>>::Searcher: ReverseSearcher<'a>, type Item = &'a str;
An iterator over substrings of self
, separated by characters
matched by a pattern and yielded in reverse order.
The pattern can be a &str
, char
, a slice of char
s, or a
function or closure that determines if a character matches.
Equivalent to split
, except that the trailing substring is
skipped if empty.
This method can be used for string data that is terminated, rather than separated by a pattern.
Iterator behavior
The returned iterator requires that the pattern supports a reverse search, and it will be double ended if a forward/reverse search yields the same elements.
For iterating from the front, the split_terminator
method can be
used.
Examples
let v: Vec<&str> = "A.B.".rsplit_terminator('.').collect();
assert_eq!(v, ["B", "A"]);
let v: Vec<&str> = "A..B..".rsplit_terminator(".").collect();
assert_eq!(v, ["", "B", "", "A"]);
let v: Vec<&str> = "A.B:C.D".rsplit_terminator(&['.', ':'][..]).collect();
assert_eq!(v, ["D", "C", "B", "A"]);
RunAn iterator over substrings of the given string slice, separated by a
pattern, restricted to returning at most n
items.
If n
substrings are returned, the last substring (the n
th substring)
will contain the remainder of the string.
The pattern can be a &str
, char
, a slice of char
s, or a
function or closure that determines if a character matches.
Iterator behavior
The returned iterator will not be double ended, because it is not efficient to support.
If the pattern allows a reverse search, the rsplitn
method can be
used.
Examples
Simple patterns:
let v: Vec<&str> = "Mary had a little lambda".splitn(3, ' ').collect();
assert_eq!(v, ["Mary", "had", "a little lambda"]);
let v: Vec<&str> = "lionXXtigerXleopard".splitn(3, "X").collect();
assert_eq!(v, ["lion", "", "tigerXleopard"]);
let v: Vec<&str> = "abcXdef".splitn(1, 'X').collect();
assert_eq!(v, ["abcXdef"]);
let v: Vec<&str> = "".splitn(1, 'X').collect();
assert_eq!(v, [""]);
RunA more complex pattern, using a closure:
let v: Vec<&str> = "abc1defXghi".splitn(2, |c| c == '1' || c == 'X').collect();
assert_eq!(v, ["abc", "defXghi"]);
RunAn iterator over substrings of this string slice, separated by a
pattern, starting from the end of the string, restricted to returning
at most n
items.
If n
substrings are returned, the last substring (the n
th substring)
will contain the remainder of the string.
The pattern can be a &str
, char
, a slice of char
s, or a
function or closure that determines if a character matches.
Iterator behavior
The returned iterator will not be double ended, because it is not efficient to support.
For splitting from the front, the splitn
method can be used.
Examples
Simple patterns:
let v: Vec<&str> = "Mary had a little lamb".rsplitn(3, ' ').collect();
assert_eq!(v, ["lamb", "little", "Mary had a"]);
let v: Vec<&str> = "lionXXtigerXleopard".rsplitn(3, 'X').collect();
assert_eq!(v, ["leopard", "tiger", "lionX"]);
let v: Vec<&str> = "lion::tiger::leopard".rsplitn(2, "::").collect();
assert_eq!(v, ["leopard", "lion::tiger"]);
RunA more complex pattern, using a closure:
let v: Vec<&str> = "abc1defXghi".rsplitn(2, |c| c == '1' || c == 'X').collect();
assert_eq!(v, ["ghi", "abc1def"]);
RunSplits the string on the first occurrence of the specified delimiter and returns prefix before delimiter and suffix after delimiter.
Examples
assert_eq!("cfg".split_once('='), None);
assert_eq!("cfg=foo".split_once('='), Some(("cfg", "foo")));
assert_eq!("cfg=foo=bar".split_once('='), Some(("cfg", "foo=bar")));
RunSplits the string on the last occurrence of the specified delimiter and returns prefix before delimiter and suffix after delimiter.
Examples
assert_eq!("cfg".rsplit_once('='), None);
assert_eq!("cfg=foo".rsplit_once('='), Some(("cfg", "foo")));
assert_eq!("cfg=foo=bar".rsplit_once('='), Some(("cfg=foo", "bar")));
RunAn iterator over the disjoint matches of a pattern within the given string slice.
The pattern can be a &str
, char
, a slice of char
s, or a
function or closure that determines if a character matches.
Iterator behavior
The returned iterator will be a DoubleEndedIterator
if the pattern
allows a reverse search and forward/reverse search yields the same
elements. This is true for, e.g., char
, but not for &str
.
If the pattern allows a reverse search but its results might differ
from a forward search, the rmatches
method can be used.
Examples
Basic usage:
let v: Vec<&str> = "abcXXXabcYYYabc".matches("abc").collect();
assert_eq!(v, ["abc", "abc", "abc"]);
let v: Vec<&str> = "1abc2abc3".matches(char::is_numeric).collect();
assert_eq!(v, ["1", "2", "3"]);
RunAn iterator over the disjoint matches of a pattern within this string slice, yielded in reverse order.
The pattern can be a &str
, char
, a slice of char
s, or a
function or closure that determines if a character matches.
Iterator behavior
The returned iterator requires that the pattern supports a reverse
search, and it will be a DoubleEndedIterator
if a forward/reverse
search yields the same elements.
For iterating from the front, the matches
method can be used.
Examples
Basic usage:
let v: Vec<&str> = "abcXXXabcYYYabc".rmatches("abc").collect();
assert_eq!(v, ["abc", "abc", "abc"]);
let v: Vec<&str> = "1abc2abc3".rmatches(char::is_numeric).collect();
assert_eq!(v, ["3", "2", "1"]);
Run1.5.0 · sourcepub fn match_indices<'a, P>(&'a self, pat: P) -> MatchIndices<'a, P>ⓘNotable traits for MatchIndices<'a, P>impl<'a, P> Iterator for MatchIndices<'a, P> where
P: Pattern<'a>, type Item = (usize, &'a str);
where
P: Pattern<'a>,
pub fn match_indices<'a, P>(&'a self, pat: P) -> MatchIndices<'a, P>ⓘNotable traits for MatchIndices<'a, P>impl<'a, P> Iterator for MatchIndices<'a, P> where
P: Pattern<'a>, type Item = (usize, &'a str);
where
P: Pattern<'a>,
impl<'a, P> Iterator for MatchIndices<'a, P> where
P: Pattern<'a>, type Item = (usize, &'a str);
An iterator over the disjoint matches of a pattern within this string slice as well as the index that the match starts at.
For matches of pat
within self
that overlap, only the indices
corresponding to the first match are returned.
The pattern can be a &str
, char
, a slice of char
s, or a
function or closure that determines if a character matches.
Iterator behavior
The returned iterator will be a DoubleEndedIterator
if the pattern
allows a reverse search and forward/reverse search yields the same
elements. This is true for, e.g., char
, but not for &str
.
If the pattern allows a reverse search but its results might differ
from a forward search, the rmatch_indices
method can be used.
Examples
Basic usage:
let v: Vec<_> = "abcXXXabcYYYabc".match_indices("abc").collect();
assert_eq!(v, [(0, "abc"), (6, "abc"), (12, "abc")]);
let v: Vec<_> = "1abcabc2".match_indices("abc").collect();
assert_eq!(v, [(1, "abc"), (4, "abc")]);
let v: Vec<_> = "ababa".match_indices("aba").collect();
assert_eq!(v, [(0, "aba")]); // only the first `aba`
Run1.5.0 · sourcepub fn rmatch_indices<'a, P>(&'a self, pat: P) -> RMatchIndices<'a, P>ⓘNotable traits for RMatchIndices<'a, P>impl<'a, P> Iterator for RMatchIndices<'a, P> where
P: Pattern<'a>,
<P as Pattern<'a>>::Searcher: ReverseSearcher<'a>, type Item = (usize, &'a str);
where
P: Pattern<'a>,
<P as Pattern<'a>>::Searcher: ReverseSearcher<'a>,
pub fn rmatch_indices<'a, P>(&'a self, pat: P) -> RMatchIndices<'a, P>ⓘNotable traits for RMatchIndices<'a, P>impl<'a, P> Iterator for RMatchIndices<'a, P> where
P: Pattern<'a>,
<P as Pattern<'a>>::Searcher: ReverseSearcher<'a>, type Item = (usize, &'a str);
where
P: Pattern<'a>,
<P as Pattern<'a>>::Searcher: ReverseSearcher<'a>,
impl<'a, P> Iterator for RMatchIndices<'a, P> where
P: Pattern<'a>,
<P as Pattern<'a>>::Searcher: ReverseSearcher<'a>, type Item = (usize, &'a str);
An iterator over the disjoint matches of a pattern within self
,
yielded in reverse order along with the index of the match.
For matches of pat
within self
that overlap, only the indices
corresponding to the last match are returned.
The pattern can be a &str
, char
, a slice of char
s, or a
function or closure that determines if a character matches.
Iterator behavior
The returned iterator requires that the pattern supports a reverse
search, and it will be a DoubleEndedIterator
if a forward/reverse
search yields the same elements.
For iterating from the front, the match_indices
method can be used.
Examples
Basic usage:
let v: Vec<_> = "abcXXXabcYYYabc".rmatch_indices("abc").collect();
assert_eq!(v, [(12, "abc"), (6, "abc"), (0, "abc")]);
let v: Vec<_> = "1abcabc2".rmatch_indices("abc").collect();
assert_eq!(v, [(4, "abc"), (1, "abc")]);
let v: Vec<_> = "ababa".rmatch_indices("aba").collect();
assert_eq!(v, [(2, "aba")]); // only the last `aba`
RunReturns a string slice with leading whitespace removed.
‘Whitespace’ is defined according to the terms of the Unicode Derived
Core Property White_Space
.
Text directionality
A string is a sequence of bytes. start
in this context means the first
position of that byte string; for a left-to-right language like English or
Russian, this will be left side, and for right-to-left languages like
Arabic or Hebrew, this will be the right side.
Examples
Basic usage:
let s = " Hello\tworld\t";
assert_eq!("Hello\tworld\t", s.trim_start());
RunDirectionality:
let s = " English ";
assert!(Some('E') == s.trim_start().chars().next());
let s = " עברית ";
assert!(Some('ע') == s.trim_start().chars().next());
RunReturns a string slice with trailing whitespace removed.
‘Whitespace’ is defined according to the terms of the Unicode Derived
Core Property White_Space
.
Text directionality
A string is a sequence of bytes. end
in this context means the last
position of that byte string; for a left-to-right language like English or
Russian, this will be right side, and for right-to-left languages like
Arabic or Hebrew, this will be the left side.
Examples
Basic usage:
let s = " Hello\tworld\t";
assert_eq!(" Hello\tworld", s.trim_end());
RunDirectionality:
let s = " English ";
assert!(Some('h') == s.trim_end().chars().rev().next());
let s = " עברית ";
assert!(Some('ת') == s.trim_end().chars().rev().next());
Run👎 Deprecated since 1.33.0: superseded by trim_start
superseded by trim_start
Returns a string slice with leading whitespace removed.
‘Whitespace’ is defined according to the terms of the Unicode Derived
Core Property White_Space
.
Text directionality
A string is a sequence of bytes. ‘Left’ in this context means the first position of that byte string; for a language like Arabic or Hebrew which are ‘right to left’ rather than ‘left to right’, this will be the right side, not the left.
Examples
Basic usage:
let s = " Hello\tworld\t";
assert_eq!("Hello\tworld\t", s.trim_left());
RunDirectionality:
let s = " English";
assert!(Some('E') == s.trim_left().chars().next());
let s = " עברית";
assert!(Some('ע') == s.trim_left().chars().next());
Run👎 Deprecated since 1.33.0: superseded by trim_end
superseded by trim_end
Returns a string slice with trailing whitespace removed.
‘Whitespace’ is defined according to the terms of the Unicode Derived
Core Property White_Space
.
Text directionality
A string is a sequence of bytes. ‘Right’ in this context means the last position of that byte string; for a language like Arabic or Hebrew which are ‘right to left’ rather than ‘left to right’, this will be the left side, not the right.
Examples
Basic usage:
let s = " Hello\tworld\t";
assert_eq!(" Hello\tworld", s.trim_right());
RunDirectionality:
let s = "English ";
assert!(Some('h') == s.trim_right().chars().rev().next());
let s = "עברית ";
assert!(Some('ת') == s.trim_right().chars().rev().next());
Runpub fn trim_matches<'a, P>(&'a self, pat: P) -> &'a str where
P: Pattern<'a>,
<P as Pattern<'a>>::Searcher: DoubleEndedSearcher<'a>,
pub fn trim_matches<'a, P>(&'a self, pat: P) -> &'a str where
P: Pattern<'a>,
<P as Pattern<'a>>::Searcher: DoubleEndedSearcher<'a>,
Returns a string slice with all prefixes and suffixes that match a pattern repeatedly removed.
The pattern can be a char
, a slice of char
s, or a function
or closure that determines if a character matches.
Examples
Simple patterns:
assert_eq!("11foo1bar11".trim_matches('1'), "foo1bar");
assert_eq!("123foo1bar123".trim_matches(char::is_numeric), "foo1bar");
let x: &[_] = &['1', '2'];
assert_eq!("12foo1bar12".trim_matches(x), "foo1bar");
RunA more complex pattern, using a closure:
assert_eq!("1foo1barXX".trim_matches(|c| c == '1' || c == 'X'), "foo1bar");
RunReturns a string slice with all prefixes that match a pattern repeatedly removed.
The pattern can be a &str
, char
, a slice of char
s, or a
function or closure that determines if a character matches.
Text directionality
A string is a sequence of bytes. start
in this context means the first
position of that byte string; for a left-to-right language like English or
Russian, this will be left side, and for right-to-left languages like
Arabic or Hebrew, this will be the right side.
Examples
Basic usage:
assert_eq!("11foo1bar11".trim_start_matches('1'), "foo1bar11");
assert_eq!("123foo1bar123".trim_start_matches(char::is_numeric), "foo1bar123");
let x: &[_] = &['1', '2'];
assert_eq!("12foo1bar12".trim_start_matches(x), "foo1bar12");
Run1.45.0 · sourcepub fn strip_prefix<'a, P>(&'a self, prefix: P) -> Option<&'a str> where
P: Pattern<'a>,
pub fn strip_prefix<'a, P>(&'a self, prefix: P) -> Option<&'a str> where
P: Pattern<'a>,
Returns a string slice with the prefix removed.
If the string starts with the pattern prefix
, returns substring after the prefix, wrapped
in Some
. Unlike trim_start_matches
, this method removes the prefix exactly once.
If the string does not start with prefix
, returns None
.
The pattern can be a &str
, char
, a slice of char
s, or a
function or closure that determines if a character matches.
Examples
assert_eq!("foo:bar".strip_prefix("foo:"), Some("bar"));
assert_eq!("foo:bar".strip_prefix("bar"), None);
assert_eq!("foofoo".strip_prefix("foo"), Some("foo"));
Run1.45.0 · sourcepub fn strip_suffix<'a, P>(&'a self, suffix: P) -> Option<&'a str> where
P: Pattern<'a>,
<P as Pattern<'a>>::Searcher: ReverseSearcher<'a>,
pub fn strip_suffix<'a, P>(&'a self, suffix: P) -> Option<&'a str> where
P: Pattern<'a>,
<P as Pattern<'a>>::Searcher: ReverseSearcher<'a>,
Returns a string slice with the suffix removed.
If the string ends with the pattern suffix
, returns the substring before the suffix,
wrapped in Some
. Unlike trim_end_matches
, this method removes the suffix exactly once.
If the string does not end with suffix
, returns None
.
The pattern can be a &str
, char
, a slice of char
s, or a
function or closure that determines if a character matches.
Examples
assert_eq!("bar:foo".strip_suffix(":foo"), Some("bar"));
assert_eq!("bar:foo".strip_suffix("bar"), None);
assert_eq!("foofoo".strip_suffix("foo"), Some("foo"));
Run1.30.0 · sourcepub fn trim_end_matches<'a, P>(&'a self, pat: P) -> &'a str where
P: Pattern<'a>,
<P as Pattern<'a>>::Searcher: ReverseSearcher<'a>,
pub fn trim_end_matches<'a, P>(&'a self, pat: P) -> &'a str where
P: Pattern<'a>,
<P as Pattern<'a>>::Searcher: ReverseSearcher<'a>,
Returns a string slice with all suffixes that match a pattern repeatedly removed.
The pattern can be a &str
, char
, a slice of char
s, or a
function or closure that determines if a character matches.
Text directionality
A string is a sequence of bytes. end
in this context means the last
position of that byte string; for a left-to-right language like English or
Russian, this will be right side, and for right-to-left languages like
Arabic or Hebrew, this will be the left side.
Examples
Simple patterns:
assert_eq!("11foo1bar11".trim_end_matches('1'), "11foo1bar");
assert_eq!("123foo1bar123".trim_end_matches(char::is_numeric), "123foo1bar");
let x: &[_] = &['1', '2'];
assert_eq!("12foo1bar12".trim_end_matches(x), "12foo1bar");
RunA more complex pattern, using a closure:
assert_eq!("1fooX".trim_end_matches(|c| c == '1' || c == 'X'), "1foo");
Run👎 Deprecated since 1.33.0: superseded by trim_start_matches
superseded by trim_start_matches
Returns a string slice with all prefixes that match a pattern repeatedly removed.
The pattern can be a &str
, char
, a slice of char
s, or a
function or closure that determines if a character matches.
Text directionality
A string is a sequence of bytes. ‘Left’ in this context means the first position of that byte string; for a language like Arabic or Hebrew which are ‘right to left’ rather than ‘left to right’, this will be the right side, not the left.
Examples
Basic usage:
assert_eq!("11foo1bar11".trim_left_matches('1'), "foo1bar11");
assert_eq!("123foo1bar123".trim_left_matches(char::is_numeric), "foo1bar123");
let x: &[_] = &['1', '2'];
assert_eq!("12foo1bar12".trim_left_matches(x), "foo1bar12");
Runpub fn trim_right_matches<'a, P>(&'a self, pat: P) -> &'a str where
P: Pattern<'a>,
<P as Pattern<'a>>::Searcher: ReverseSearcher<'a>,
👎 Deprecated since 1.33.0: superseded by trim_end_matches
pub fn trim_right_matches<'a, P>(&'a self, pat: P) -> &'a str where
P: Pattern<'a>,
<P as Pattern<'a>>::Searcher: ReverseSearcher<'a>,
superseded by trim_end_matches
Returns a string slice with all suffixes that match a pattern repeatedly removed.
The pattern can be a &str
, char
, a slice of char
s, or a
function or closure that determines if a character matches.
Text directionality
A string is a sequence of bytes. ‘Right’ in this context means the last position of that byte string; for a language like Arabic or Hebrew which are ‘right to left’ rather than ‘left to right’, this will be the left side, not the right.
Examples
Simple patterns:
assert_eq!("11foo1bar11".trim_right_matches('1'), "11foo1bar");
assert_eq!("123foo1bar123".trim_right_matches(char::is_numeric), "123foo1bar");
let x: &[_] = &['1', '2'];
assert_eq!("12foo1bar12".trim_right_matches(x), "12foo1bar");
RunA more complex pattern, using a closure:
assert_eq!("1fooX".trim_right_matches(|c| c == '1' || c == 'X'), "1foo");
RunParses this string slice into another type.
Because parse
is so general, it can cause problems with type
inference. As such, parse
is one of the few times you’ll see
the syntax affectionately known as the ‘turbofish’: ::<>
. This
helps the inference algorithm understand specifically which type
you’re trying to parse into.
parse
can parse into any type that implements the FromStr
trait.
Errors
Will return Err
if it’s not possible to parse this string slice into
the desired type.
Examples
Basic usage
let four: u32 = "4".parse().unwrap();
assert_eq!(4, four);
RunUsing the ‘turbofish’ instead of annotating four
:
let four = "4".parse::<u32>();
assert_eq!(Ok(4), four);
RunFailing to parse:
let nope = "j".parse::<u32>();
assert!(nope.is_err());
RunChecks that two strings are an ASCII case-insensitive match.
Same as to_ascii_lowercase(a) == to_ascii_lowercase(b)
,
but without allocating and copying temporaries.
Examples
assert!("Ferris".eq_ignore_ascii_case("FERRIS"));
assert!("Ferrös".eq_ignore_ascii_case("FERRöS"));
assert!(!"Ferrös".eq_ignore_ascii_case("FERRÖS"));
RunConverts this string to its ASCII upper case equivalent in-place.
ASCII letters ‘a’ to ‘z’ are mapped to ‘A’ to ‘Z’, but non-ASCII letters are unchanged.
To return a new uppercased value without modifying the existing one, use
to_ascii_uppercase()
.
Examples
let mut s = String::from("Grüße, Jürgen ❤");
s.make_ascii_uppercase();
assert_eq!("GRüßE, JüRGEN ❤", s);
RunConverts this string to its ASCII lower case equivalent in-place.
ASCII letters ‘A’ to ‘Z’ are mapped to ‘a’ to ‘z’, but non-ASCII letters are unchanged.
To return a new lowercased value without modifying the existing one, use
to_ascii_lowercase()
.
Examples
let mut s = String::from("GRÜßE, JÜRGEN ❤");
s.make_ascii_lowercase();
assert_eq!("grÜße, jÜrgen ❤", s);
Run1.34.0 · sourcepub fn escape_debug(&self) -> EscapeDebug<'_>ⓘNotable traits for EscapeDebug<'a>impl<'a> Iterator for EscapeDebug<'a> type Item = char;
pub fn escape_debug(&self) -> EscapeDebug<'_>ⓘNotable traits for EscapeDebug<'a>impl<'a> Iterator for EscapeDebug<'a> type Item = char;
impl<'a> Iterator for EscapeDebug<'a> type Item = char;
Return an iterator that escapes each char in self
with char::escape_debug
.
Note: only extended grapheme codepoints that begin the string will be escaped.
Examples
As an iterator:
for c in "❤\n!".escape_debug() {
print!("{}", c);
}
println!();
RunUsing println!
directly:
println!("{}", "❤\n!".escape_debug());
RunBoth are equivalent to:
println!("❤\\n!");
RunUsing to_string
:
assert_eq!("❤\n!".escape_debug().to_string(), "❤\\n!");
Run1.34.0 · sourcepub fn escape_default(&self) -> EscapeDefault<'_>ⓘNotable traits for EscapeDefault<'a>impl<'a> Iterator for EscapeDefault<'a> type Item = char;
pub fn escape_default(&self) -> EscapeDefault<'_>ⓘNotable traits for EscapeDefault<'a>impl<'a> Iterator for EscapeDefault<'a> type Item = char;
impl<'a> Iterator for EscapeDefault<'a> type Item = char;
Return an iterator that escapes each char in self
with char::escape_default
.
Examples
As an iterator:
for c in "❤\n!".escape_default() {
print!("{}", c);
}
println!();
RunUsing println!
directly:
println!("{}", "❤\n!".escape_default());
RunBoth are equivalent to:
println!("\\u{{2764}}\\n!");
RunUsing to_string
:
assert_eq!("❤\n!".escape_default().to_string(), "\\u{2764}\\n!");
Run1.34.0 · sourcepub fn escape_unicode(&self) -> EscapeUnicode<'_>ⓘNotable traits for EscapeUnicode<'a>impl<'a> Iterator for EscapeUnicode<'a> type Item = char;
pub fn escape_unicode(&self) -> EscapeUnicode<'_>ⓘNotable traits for EscapeUnicode<'a>impl<'a> Iterator for EscapeUnicode<'a> type Item = char;
impl<'a> Iterator for EscapeUnicode<'a> type Item = char;
Return an iterator that escapes each char in self
with char::escape_unicode
.
Examples
As an iterator:
for c in "❤\n!".escape_unicode() {
print!("{}", c);
}
println!();
RunUsing println!
directly:
println!("{}", "❤\n!".escape_unicode());
RunBoth are equivalent to:
println!("\\u{{2764}}\\u{{a}}\\u{{21}}");
RunUsing to_string
:
assert_eq!("❤\n!".escape_unicode().to_string(), "\\u{2764}\\u{a}\\u{21}");
RunMethods for string slices.
1.20.0 · sourcepub fn into_boxed_bytes(self: Box<str, Global>) -> Box<[u8], Global>ⓘNotable traits for Box<F, A>impl<F, A> Future for Box<F, A> where
F: Future + Unpin + ?Sized,
A: Allocator + 'static, type Output = <F as Future>::Output;impl<I, A> Iterator for Box<I, A> where
I: Iterator + ?Sized,
A: Allocator, type Item = <I as Iterator>::Item;impl<R: Read + ?Sized> Read for Box<R>impl<W: Write + ?Sized> Write for Box<W>
pub fn into_boxed_bytes(self: Box<str, Global>) -> Box<[u8], Global>ⓘNotable traits for Box<F, A>impl<F, A> Future for Box<F, A> where
F: Future + Unpin + ?Sized,
A: Allocator + 'static, type Output = <F as Future>::Output;impl<I, A> Iterator for Box<I, A> where
I: Iterator + ?Sized,
A: Allocator, type Item = <I as Iterator>::Item;impl<R: Read + ?Sized> Read for Box<R>impl<W: Write + ?Sized> Write for Box<W>
impl<F, A> Future for Box<F, A> where
F: Future + Unpin + ?Sized,
A: Allocator + 'static, type Output = <F as Future>::Output;impl<I, A> Iterator for Box<I, A> where
I: Iterator + ?Sized,
A: Allocator, type Item = <I as Iterator>::Item;impl<R: Read + ?Sized> Read for Box<R>impl<W: Write + ?Sized> Write for Box<W>
Replaces all matches of a pattern with another string.
replace
creates a new String
, and copies the data from this string slice into it.
While doing so, it attempts to find matches of a pattern. If it finds any, it
replaces them with the replacement string slice.
Examples
Basic usage:
let s = "this is old";
assert_eq!("this is new", s.replace("old", "new"));
RunWhen the pattern doesn’t match:
let s = "this is old";
assert_eq!(s, s.replace("cookie monster", "little lamb"));
RunReplaces first N matches of a pattern with another string.
replacen
creates a new String
, and copies the data from this string slice into it.
While doing so, it attempts to find matches of a pattern. If it finds any, it
replaces them with the replacement string slice at most count
times.
Examples
Basic usage:
let s = "foo foo 123 foo";
assert_eq!("new new 123 foo", s.replacen("foo", "new", 2));
assert_eq!("faa fao 123 foo", s.replacen('o', "a", 3));
assert_eq!("foo foo new23 foo", s.replacen(char::is_numeric, "new", 1));
RunWhen the pattern doesn’t match:
let s = "this is old";
assert_eq!(s, s.replacen("cookie monster", "little lamb", 10));
RunReturns the lowercase equivalent of this string slice, as a new String
.
‘Lowercase’ is defined according to the terms of the Unicode Derived Core Property
Lowercase
.
Since some characters can expand into multiple characters when changing
the case, this function returns a String
instead of modifying the
parameter in-place.
Examples
Basic usage:
let s = "HELLO";
assert_eq!("hello", s.to_lowercase());
RunA tricky example, with sigma:
let sigma = "Σ";
assert_eq!("σ", sigma.to_lowercase());
// but at the end of a word, it's ς, not σ:
let odysseus = "ὈΔΥΣΣΕΎΣ";
assert_eq!("ὀδυσσεύς", odysseus.to_lowercase());
RunLanguages without case are not changed:
let new_year = "农历新年";
assert_eq!(new_year, new_year.to_lowercase());
RunReturns the uppercase equivalent of this string slice, as a new String
.
‘Uppercase’ is defined according to the terms of the Unicode Derived Core Property
Uppercase
.
Since some characters can expand into multiple characters when changing
the case, this function returns a String
instead of modifying the
parameter in-place.
Examples
Basic usage:
let s = "hello";
assert_eq!("HELLO", s.to_uppercase());
RunScripts without case are not changed:
let new_year = "农历新年";
assert_eq!(new_year, new_year.to_uppercase());
RunOne character can become multiple:
let s = "tschüß";
assert_eq!("TSCHÜSS", s.to_uppercase());
RunCreates a new String
by repeating a string n
times.
Panics
This function will panic if the capacity would overflow.
Examples
Basic usage:
assert_eq!("abc".repeat(4), String::from("abcabcabcabc"));
RunA panic upon overflow:
// this will panic at runtime
let huge = "0123456789abcdef".repeat(usize::MAX);
RunReturns a copy of this string where each character is mapped to its ASCII upper case equivalent.
ASCII letters ‘a’ to ‘z’ are mapped to ‘A’ to ‘Z’, but non-ASCII letters are unchanged.
To uppercase the value in-place, use make_ascii_uppercase
.
To uppercase ASCII characters in addition to non-ASCII characters, use
to_uppercase
.
Examples
let s = "Grüße, Jürgen ❤";
assert_eq!("GRüßE, JüRGEN ❤", s.to_ascii_uppercase());
RunReturns a copy of this string where each character is mapped to its ASCII lower case equivalent.
ASCII letters ‘A’ to ‘Z’ are mapped to ‘a’ to ‘z’, but non-ASCII letters are unchanged.
To lowercase the value in-place, use make_ascii_lowercase
.
To lowercase ASCII characters in addition to non-ASCII characters, use
to_lowercase
.
Examples
let s = "Grüße, Jürgen ❤";
assert_eq!("grüße, jürgen ❤", s.to_ascii_lowercase());
RunTrait Implementations
Implements the +
operator for concatenating two strings.
This consumes the String
on the left-hand side and re-uses its buffer (growing it if
necessary). This is done to avoid allocating a new String
and copying the entire contents on
every operation, which would lead to O(n^2) running time when building an n-byte string by
repeated concatenation.
The string on the right-hand side is only borrowed; its contents are copied into the returned
String
.
Examples
Concatenating two String
s takes the first by value and borrows the second:
let a = String::from("hello");
let b = String::from(" world");
let c = a + &b;
// `a` is moved and can no longer be used here.
RunIf you want to keep using the first String
, you can clone it and append to the clone instead:
let a = String::from("hello");
let b = String::from(" world");
let c = a.clone() + &b;
// `a` is still valid here.
RunConcatenating &str
slices can be done by converting the first to a String
:
let a = "hello";
let b = " world";
let c = a.to_string() + b;
RunImplements the +=
operator for appending to a String
.
This has the same behavior as the push_str
method.
Performs the +=
operation. Read more
Performs the +=
operation. Read more
use inherent methods instead
Container type for copied ASCII characters.
use inherent methods instead
Checks if the value is within the ASCII range. Read more
use inherent methods instead
Makes a copy of the value in its ASCII upper case equivalent. Read more
use inherent methods instead
Makes a copy of the value in its ASCII lower case equivalent. Read more
use inherent methods instead
Checks that two values are an ASCII case-insensitive match. Read more
use inherent methods instead
Converts this type to its ASCII upper case equivalent in-place. Read more
use inherent methods instead
Converts this type to its ASCII lower case equivalent in-place. Read more
Mutably borrows from an owned value. Read more
Note: str
in Concat<str>
is not meaningful here.
This type parameter of the trait only exists to enable another impl.
pub fn from(s: &str) -> Box<str, Global>ⓘNotable traits for Box<F, A>impl<F, A> Future for Box<F, A> where
F: Future + Unpin + ?Sized,
A: Allocator + 'static, type Output = <F as Future>::Output;impl<I, A> Iterator for Box<I, A> where
I: Iterator + ?Sized,
A: Allocator, type Item = <I as Iterator>::Item;impl<R: Read + ?Sized> Read for Box<R>impl<W: Write + ?Sized> Write for Box<W>
pub fn from(s: &str) -> Box<str, Global>ⓘNotable traits for Box<F, A>impl<F, A> Future for Box<F, A> where
F: Future + Unpin + ?Sized,
A: Allocator + 'static, type Output = <F as Future>::Output;impl<I, A> Iterator for Box<I, A> where
I: Iterator + ?Sized,
A: Allocator, type Item = <I as Iterator>::Item;impl<R: Read + ?Sized> Read for Box<R>impl<W: Write + ?Sized> Write for Box<W>
impl<F, A> Future for Box<F, A> where
F: Future + Unpin + ?Sized,
A: Allocator + 'static, type Output = <F as Future>::Output;impl<I, A> Iterator for Box<I, A> where
I: Iterator + ?Sized,
A: Allocator, type Item = <I as Iterator>::Item;impl<R: Read + ?Sized> Read for Box<R>impl<W: Write + ?Sized> Write for Box<W>
fn from(err: &str) -> Box<dyn Error + Send + Sync + 'a>ⓘNotable traits for Box<F, A>impl<F, A> Future for Box<F, A> where
F: Future + Unpin + ?Sized,
A: Allocator + 'static, type Output = <F as Future>::Output;impl<I, A> Iterator for Box<I, A> where
I: Iterator + ?Sized,
A: Allocator, type Item = <I as Iterator>::Item;impl<R: Read + ?Sized> Read for Box<R>impl<W: Write + ?Sized> Write for Box<W>
fn from(err: &str) -> Box<dyn Error + Send + Sync + 'a>ⓘNotable traits for Box<F, A>impl<F, A> Future for Box<F, A> where
F: Future + Unpin + ?Sized,
A: Allocator + 'static, type Output = <F as Future>::Output;impl<I, A> Iterator for Box<I, A> where
I: Iterator + ?Sized,
A: Allocator, type Item = <I as Iterator>::Item;impl<R: Read + ?Sized> Read for Box<R>impl<W: Write + ?Sized> Write for Box<W>
impl<F, A> Future for Box<F, A> where
F: Future + Unpin + ?Sized,
A: Allocator + 'static, type Output = <F as Future>::Output;impl<I, A> Iterator for Box<I, A> where
I: Iterator + ?Sized,
A: Allocator, type Item = <I as Iterator>::Item;impl<R: Read + ?Sized> Read for Box<R>impl<W: Write + ?Sized> Write for Box<W>
fn from(err: &str) -> Box<dyn Error>ⓘNotable traits for Box<F, A>impl<F, A> Future for Box<F, A> where
F: Future + Unpin + ?Sized,
A: Allocator + 'static, type Output = <F as Future>::Output;impl<I, A> Iterator for Box<I, A> where
I: Iterator + ?Sized,
A: Allocator, type Item = <I as Iterator>::Item;impl<R: Read + ?Sized> Read for Box<R>impl<W: Write + ?Sized> Write for Box<W>
fn from(err: &str) -> Box<dyn Error>ⓘNotable traits for Box<F, A>impl<F, A> Future for Box<F, A> where
F: Future + Unpin + ?Sized,
A: Allocator + 'static, type Output = <F as Future>::Output;impl<I, A> Iterator for Box<I, A> where
I: Iterator + ?Sized,
A: Allocator, type Item = <I as Iterator>::Item;impl<R: Read + ?Sized> Read for Box<R>impl<W: Write + ?Sized> Write for Box<W>
impl<F, A> Future for Box<F, A> where
F: Future + Unpin + ?Sized,
A: Allocator + 'static, type Output = <F as Future>::Output;impl<I, A> Iterator for Box<I, A> where
I: Iterator + ?Sized,
A: Allocator, type Item = <I as Iterator>::Item;impl<R: Read + ?Sized> Read for Box<R>impl<W: Write + ?Sized> Write for Box<W>
type Output = <I as SliceIndex<str>>::Output
type Output = <I as SliceIndex<str>>::Output
The returned type after indexing.
Implements ordering of strings.
Strings are ordered lexicographically by their byte values. This orders Unicode code
points based on their positions in the code charts. This is not necessarily the same as
“alphabetical” order, which varies by language and locale. Sorting strings according to
culturally-accepted standards requires locale-specific data that is outside the scope of
the str
type.
Implements comparison operations on strings.
Strings are compared lexicographically by their byte values. This compares Unicode code
points based on their positions in the code charts. This is not necessarily the same as
“alphabetical” order, which varies by language and locale. Comparing strings according to
culturally-accepted standards requires locale-specific data that is outside the scope of
the str
type.
This method returns an ordering between self
and other
values if one exists. Read more
This method tests less than (for self
and other
) and is used by the <
operator. Read more
This method tests less than or equal to (for self
and other
) and is used by the <=
operator. Read more
This method tests greater than (for self
and other
) and is used by the >
operator. Read more
This method returns an ordering between self
and other
values if one exists. Read more
This method tests less than (for self
and other
) and is used by the <
operator. Read more
This method tests less than or equal to (for self
and other
) and is used by the <=
operator. Read more
This method tests greater than (for self
and other
) and is used by the >
operator. Read more
This method returns an ordering between self
and other
values if one exists. Read more
This method tests less than (for self
and other
) and is used by the <
operator. Read more
This method tests less than or equal to (for self
and other
) and is used by the <=
operator. Read more
This method tests greater than (for self
and other
) and is used by the >
operator. Read more
Non-allocating substring search.
Will handle the pattern ""
as returning empty matches at each character
boundary.
Examples
assert_eq!("Hello world".find("world"), Some(6));
RunChecks whether the pattern matches at the front of the haystack.
Removes the pattern from the front of haystack, if it matches.
Checks whether the pattern matches at the back of the haystack.
Removes the pattern from the back of haystack, if it matches.
Checks whether the pattern matches anywhere in the haystack
Implements substring slicing with syntax &self[begin .. end]
or &mut self[begin .. end]
.
Returns a slice of the given string from the byte range
[begin
, end
).
This operation is O(1).
Prior to 1.20.0, these indexing operations were still supported by
direct implementation of Index
and IndexMut
.
Panics
Panics if begin
or end
does not point to the starting byte offset of
a character (as defined by is_char_boundary
), if begin > end
, or if
end > len
.
Examples
let s = "Löwe 老虎 Léopard";
assert_eq!(&s[0 .. 1], "L");
assert_eq!(&s[1 .. 9], "öwe 老");
// these will panic:
// byte 2 lies within `ö`:
// &s[2 ..3];
// byte 8 lies within `老`
// &s[1 .. 8];
// byte 100 is outside the string
// &s[3 .. 100];
Runslice_index_methods
)Returns a shared reference to the output at this location, if in bounds. Read more
slice_index_methods
)Returns a mutable reference to the output at this location, if in bounds. Read more
pub unsafe fn get_unchecked(
self,
slice: *const str
) -> *const <Range<usize> as SliceIndex<str>>::Output
pub unsafe fn get_unchecked(
self,
slice: *const str
) -> *const <Range<usize> as SliceIndex<str>>::Output
slice_index_methods
)Returns a shared reference to the output at this location, without
performing any bounds checking.
Calling this method with an out-of-bounds index or a dangling slice
pointer
is undefined behavior even if the resulting reference is not used. Read more
pub unsafe fn get_unchecked_mut(
self,
slice: *mut str
) -> *mut <Range<usize> as SliceIndex<str>>::Output
pub unsafe fn get_unchecked_mut(
self,
slice: *mut str
) -> *mut <Range<usize> as SliceIndex<str>>::Output
slice_index_methods
)Returns a mutable reference to the output at this location, without
performing any bounds checking.
Calling this method with an out-of-bounds index or a dangling slice
pointer
is undefined behavior even if the resulting reference is not used. Read more
slice_index_methods
)Returns a shared reference to the output at this location, panicking if out of bounds. Read more
slice_index_methods
)Returns a mutable reference to the output at this location, panicking if out of bounds. Read more
Implements substring slicing with syntax &self[begin ..= end]
or &mut self[begin ..= end]
.
Returns a slice of the given string from the byte range
[begin
, end
]. Equivalent to &self [begin .. end + 1]
or &mut self[begin .. end + 1]
, except if end
has the maximum value for
usize
.
This operation is O(1).
Panics
Panics if begin
does not point to the starting byte offset of
a character (as defined by is_char_boundary
), if end
does not point
to the ending byte offset of a character (end + 1
is either a starting
byte offset or equal to len
), if begin > end
, or if end >= len
.
slice_index_methods
)Returns a shared reference to the output at this location, if in bounds. Read more
pub fn get_mut(
self,
slice: &mut str
) -> Option<&mut <RangeInclusive<usize> as SliceIndex<str>>::Output>
pub fn get_mut(
self,
slice: &mut str
) -> Option<&mut <RangeInclusive<usize> as SliceIndex<str>>::Output>
slice_index_methods
)Returns a mutable reference to the output at this location, if in bounds. Read more
pub unsafe fn get_unchecked(
self,
slice: *const str
) -> *const <RangeInclusive<usize> as SliceIndex<str>>::Output
pub unsafe fn get_unchecked(
self,
slice: *const str
) -> *const <RangeInclusive<usize> as SliceIndex<str>>::Output
slice_index_methods
)Returns a shared reference to the output at this location, without
performing any bounds checking.
Calling this method with an out-of-bounds index or a dangling slice
pointer
is undefined behavior even if the resulting reference is not used. Read more
pub unsafe fn get_unchecked_mut(
self,
slice: *mut str
) -> *mut <RangeInclusive<usize> as SliceIndex<str>>::Output
pub unsafe fn get_unchecked_mut(
self,
slice: *mut str
) -> *mut <RangeInclusive<usize> as SliceIndex<str>>::Output
slice_index_methods
)Returns a mutable reference to the output at this location, without
performing any bounds checking.
Calling this method with an out-of-bounds index or a dangling slice
pointer
is undefined behavior even if the resulting reference is not used. Read more
pub fn index(
self,
slice: &str
) -> &<RangeInclusive<usize> as SliceIndex<str>>::OutputⓘNotable traits for RangeInclusive<A>impl<A> Iterator for RangeInclusive<A> where
A: Step, type Item = A;
pub fn index(
self,
slice: &str
) -> &<RangeInclusive<usize> as SliceIndex<str>>::OutputⓘNotable traits for RangeInclusive<A>impl<A> Iterator for RangeInclusive<A> where
A: Step, type Item = A;
impl<A> Iterator for RangeInclusive<A> where
A: Step, type Item = A;
slice_index_methods
)Returns a shared reference to the output at this location, panicking if out of bounds. Read more
pub fn index_mut(
self,
slice: &mut str
) -> &mut <RangeInclusive<usize> as SliceIndex<str>>::OutputⓘNotable traits for RangeInclusive<A>impl<A> Iterator for RangeInclusive<A> where
A: Step, type Item = A;
pub fn index_mut(
self,
slice: &mut str
) -> &mut <RangeInclusive<usize> as SliceIndex<str>>::OutputⓘNotable traits for RangeInclusive<A>impl<A> Iterator for RangeInclusive<A> where
A: Step, type Item = A;
impl<A> Iterator for RangeInclusive<A> where
A: Step, type Item = A;
slice_index_methods
)Returns a mutable reference to the output at this location, panicking if out of bounds. Read more
Implements substring slicing with syntax &self[.. end]
or &mut self[.. end]
.
Returns a slice of the given string from the byte range [0, end
).
Equivalent to &self[0 .. end]
or &mut self[0 .. end]
.
This operation is O(1).
Prior to 1.20.0, these indexing operations were still supported by
direct implementation of Index
and IndexMut
.
Panics
Panics if end
does not point to the starting byte offset of a
character (as defined by is_char_boundary
), or if end > len
.
slice_index_methods
)Returns a shared reference to the output at this location, if in bounds. Read more
slice_index_methods
)Returns a mutable reference to the output at this location, if in bounds. Read more
pub unsafe fn get_unchecked(
self,
slice: *const str
) -> *const <RangeTo<usize> as SliceIndex<str>>::Output
pub unsafe fn get_unchecked(
self,
slice: *const str
) -> *const <RangeTo<usize> as SliceIndex<str>>::Output
slice_index_methods
)Returns a shared reference to the output at this location, without
performing any bounds checking.
Calling this method with an out-of-bounds index or a dangling slice
pointer
is undefined behavior even if the resulting reference is not used. Read more
pub unsafe fn get_unchecked_mut(
self,
slice: *mut str
) -> *mut <RangeTo<usize> as SliceIndex<str>>::Output
pub unsafe fn get_unchecked_mut(
self,
slice: *mut str
) -> *mut <RangeTo<usize> as SliceIndex<str>>::Output
slice_index_methods
)Returns a mutable reference to the output at this location, without
performing any bounds checking.
Calling this method with an out-of-bounds index or a dangling slice
pointer
is undefined behavior even if the resulting reference is not used. Read more
slice_index_methods
)Returns a shared reference to the output at this location, panicking if out of bounds. Read more
Implements substring slicing with syntax &self[..]
or &mut self[..]
.
Returns a slice of the whole string, i.e., returns &self
or &mut self
. Equivalent to &self[0 .. len]
or &mut self[0 .. len]
. Unlike
other indexing operations, this can never panic.
This operation is O(1).
Prior to 1.20.0, these indexing operations were still supported by
direct implementation of Index
and IndexMut
.
Equivalent to &self[0 .. len]
or &mut self[0 .. len]
.
slice_index_methods
)Returns a shared reference to the output at this location, if in bounds. Read more
slice_index_methods
)Returns a mutable reference to the output at this location, if in bounds. Read more
pub unsafe fn get_unchecked(
self,
slice: *const str
) -> *const <RangeFull as SliceIndex<str>>::Output
pub unsafe fn get_unchecked(
self,
slice: *const str
) -> *const <RangeFull as SliceIndex<str>>::Output
slice_index_methods
)Returns a shared reference to the output at this location, without
performing any bounds checking.
Calling this method with an out-of-bounds index or a dangling slice
pointer
is undefined behavior even if the resulting reference is not used. Read more
pub unsafe fn get_unchecked_mut(
self,
slice: *mut str
) -> *mut <RangeFull as SliceIndex<str>>::Output
pub unsafe fn get_unchecked_mut(
self,
slice: *mut str
) -> *mut <RangeFull as SliceIndex<str>>::Output
slice_index_methods
)Returns a mutable reference to the output at this location, without
performing any bounds checking.
Calling this method with an out-of-bounds index or a dangling slice
pointer
is undefined behavior even if the resulting reference is not used. Read more
slice_index_methods
)Returns a shared reference to the output at this location, panicking if out of bounds. Read more
Implements substring slicing with syntax &self[begin ..]
or &mut self[begin ..]
.
Returns a slice of the given string from the byte range [begin
, len
).
Equivalent to &self[begin .. len]
or &mut self[begin .. len]
.
This operation is O(1).
Prior to 1.20.0, these indexing operations were still supported by
direct implementation of Index
and IndexMut
.
Panics
Panics if begin
does not point to the starting byte offset of
a character (as defined by is_char_boundary
), or if begin > len
.
slice_index_methods
)Returns a shared reference to the output at this location, if in bounds. Read more
slice_index_methods
)Returns a mutable reference to the output at this location, if in bounds. Read more
pub unsafe fn get_unchecked(
self,
slice: *const str
) -> *const <RangeFrom<usize> as SliceIndex<str>>::Output
pub unsafe fn get_unchecked(
self,
slice: *const str
) -> *const <RangeFrom<usize> as SliceIndex<str>>::Output
slice_index_methods
)Returns a shared reference to the output at this location, without
performing any bounds checking.
Calling this method with an out-of-bounds index or a dangling slice
pointer
is undefined behavior even if the resulting reference is not used. Read more
pub unsafe fn get_unchecked_mut(
self,
slice: *mut str
) -> *mut <RangeFrom<usize> as SliceIndex<str>>::Output
pub unsafe fn get_unchecked_mut(
self,
slice: *mut str
) -> *mut <RangeFrom<usize> as SliceIndex<str>>::Output
slice_index_methods
)Returns a mutable reference to the output at this location, without
performing any bounds checking.
Calling this method with an out-of-bounds index or a dangling slice
pointer
is undefined behavior even if the resulting reference is not used. Read more
slice_index_methods
)Returns a shared reference to the output at this location, panicking if out of bounds. Read more
slice_index_methods
)Returns a mutable reference to the output at this location, panicking if out of bounds. Read more
Implements substring slicing with syntax &self[..= end]
or &mut self[..= end]
.
Returns a slice of the given string from the byte range [0, end
].
Equivalent to &self [0 .. end + 1]
, except if end
has the maximum
value for usize
.
This operation is O(1).
Panics
Panics if end
does not point to the ending byte offset of a character
(end + 1
is either a starting byte offset as defined by
is_char_boundary
, or equal to len
), or if end >= len
.
pub fn get(
self,
slice: &str
) -> Option<&<RangeToInclusive<usize> as SliceIndex<str>>::Output>
pub fn get(
self,
slice: &str
) -> Option<&<RangeToInclusive<usize> as SliceIndex<str>>::Output>
slice_index_methods
)Returns a shared reference to the output at this location, if in bounds. Read more
pub fn get_mut(
self,
slice: &mut str
) -> Option<&mut <RangeToInclusive<usize> as SliceIndex<str>>::Output>
pub fn get_mut(
self,
slice: &mut str
) -> Option<&mut <RangeToInclusive<usize> as SliceIndex<str>>::Output>
slice_index_methods
)Returns a mutable reference to the output at this location, if in bounds. Read more
pub unsafe fn get_unchecked(
self,
slice: *const str
) -> *const <RangeToInclusive<usize> as SliceIndex<str>>::Output
pub unsafe fn get_unchecked(
self,
slice: *const str
) -> *const <RangeToInclusive<usize> as SliceIndex<str>>::Output
slice_index_methods
)Returns a shared reference to the output at this location, without
performing any bounds checking.
Calling this method with an out-of-bounds index or a dangling slice
pointer
is undefined behavior even if the resulting reference is not used. Read more
pub unsafe fn get_unchecked_mut(
self,
slice: *mut str
) -> *mut <RangeToInclusive<usize> as SliceIndex<str>>::Output
pub unsafe fn get_unchecked_mut(
self,
slice: *mut str
) -> *mut <RangeToInclusive<usize> as SliceIndex<str>>::Output
slice_index_methods
)Returns a mutable reference to the output at this location, without
performing any bounds checking.
Calling this method with an out-of-bounds index or a dangling slice
pointer
is undefined behavior even if the resulting reference is not used. Read more
slice_index_methods
)Returns a shared reference to the output at this location, panicking if out of bounds. Read more
pub fn index_mut(
self,
slice: &mut str
) -> &mut <RangeToInclusive<usize> as SliceIndex<str>>::Output
pub fn index_mut(
self,
slice: &mut str
) -> &mut <RangeToInclusive<usize> as SliceIndex<str>>::Output
slice_index_methods
)Returns a mutable reference to the output at this location, panicking if out of bounds. Read more
type Iter = IntoIter<SocketAddr>
type Iter = IntoIter<SocketAddr>
Returned iterator over socket addresses which this type may correspond to. Read more
Converts this object to an iterator of resolved SocketAddr
s. Read more