pub trait Ord: Eq + PartialOrd<Self> {
fn cmp(&self, other: &Self) -> Ordering;
fn max(self, other: Self) -> Self { ... }
fn min(self, other: Self) -> Self { ... }
fn clamp(self, min: Self, max: Self) -> Self { ... }
}
Expand description
Trait for types that form a total order.
Implementations must be consistent with the PartialOrd
implementation, and ensure
max
, min
, and clamp
are consistent with cmp
:
partial_cmp(a, b) == Some(cmp(a, b))
.max(a, b) == max_by(a, b, cmp)
(ensured by the default implementation).min(a, b) == min_by(a, b, cmp)
(ensured by the default implementation).- For
a.clamp(min, max)
, see the method docs (ensured by the default implementation).
It’s easy to accidentally make cmp
and partial_cmp
disagree by
deriving some of the traits and manually implementing others.
Corollaries
From the above and the requirements of PartialOrd
, it follows that <
defines a strict total order.
This means that for all a
, b
and c
:
- exactly one of
a < b
,a == b
ora > b
is true; and <
is transitive:a < b
andb < c
impliesa < c
. The same must hold for both==
and>
.
Derivable
This trait can be used with #[derive]
.
When derive
d on structs, it will produce a
lexicographic ordering
based on the top-to-bottom declaration order of the struct’s members.
When derive
d on enums, variants are ordered by their discriminants.
By default, the discriminant is smallest for variants at the top, and
largest for variants at the bottom. Here’s an example:
#[derive(PartialEq, Eq, PartialOrd, Ord)]
enum E {
Top,
Bottom,
}
assert!(E::Top < E::Bottom);
RunHowever, manually setting the discriminants can override this default behavior:
#[derive(PartialEq, Eq, PartialOrd, Ord)]
enum E {
Top = 2,
Bottom = 1,
}
assert!(E::Bottom < E::Top);
RunLexicographical comparison
Lexicographical comparison is an operation with the following properties:
- Two sequences are compared element by element.
- The first mismatching element defines which sequence is lexicographically less or greater than the other.
- If one sequence is a prefix of another, the shorter sequence is lexicographically less than the other.
- If two sequence have equivalent elements and are of the same length, then the sequences are lexicographically equal.
- An empty sequence is lexicographically less than any non-empty sequence.
- Two empty sequences are lexicographically equal.
How can I implement Ord
?
Ord
requires that the type also be PartialOrd
and Eq
(which requires PartialEq
).
Then you must define an implementation for cmp
. You may find it useful to use
cmp
on your type’s fields.
Here’s an example where you want to sort people by height only, disregarding id
and name
:
use std::cmp::Ordering;
#[derive(Eq)]
struct Person {
id: u32,
name: String,
height: u32,
}
impl Ord for Person {
fn cmp(&self, other: &Self) -> Ordering {
self.height.cmp(&other.height)
}
}
impl PartialOrd for Person {
fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
Some(self.cmp(other))
}
}
impl PartialEq for Person {
fn eq(&self, other: &Self) -> bool {
self.height == other.height
}
}
RunRequired Methods
This method returns an Ordering
between self
and other
.
By convention, self.cmp(&other)
returns the ordering matching the expression
self <operator> other
if true.
Examples
use std::cmp::Ordering;
assert_eq!(5.cmp(&10), Ordering::Less);
assert_eq!(10.cmp(&5), Ordering::Greater);
assert_eq!(5.cmp(&5), Ordering::Equal);
RunProvided Methods
Implementors
impl Ord for Infallible
impl Ord for ErrorKind
impl Ord for IpAddr
impl Ord for SocketAddr
impl Ord for Which
impl Ord for Ordering
impl Ord for bool
impl Ord for char
impl Ord for i8
impl Ord for i16
impl Ord for i32
impl Ord for i64
impl Ord for i128
impl Ord for isize
impl Ord for !
impl Ord for str
Implements ordering of strings.
Strings are ordered lexicographically by their byte values. This orders Unicode code
points based on their positions in the code charts. This is not necessarily the same as
“alphabetical” order, which varies by language and locale. Sorting strings according to
culturally-accepted standards requires locale-specific data that is outside the scope of
the str
type.
impl Ord for u8
impl Ord for u16
impl Ord for u32
impl Ord for u64
impl Ord for u128
impl Ord for ()
impl Ord for usize
impl Ord for CString
impl Ord for CpuidResult
impl Ord for CStr
impl Ord for TypeId
impl Ord for OsStr
impl Ord for OsString
impl Ord for Error
impl Ord for PhantomPinned
impl Ord for Ipv4Addr
impl Ord for Ipv6Addr
impl Ord for SocketAddrV4
impl Ord for SocketAddrV6
impl Ord for NonZeroI8
impl Ord for NonZeroI16
impl Ord for NonZeroI32
impl Ord for NonZeroI64
impl Ord for NonZeroI128
impl Ord for NonZeroIsize
impl Ord for NonZeroU8
impl Ord for NonZeroU16
impl Ord for NonZeroU32
impl Ord for NonZeroU64
impl Ord for NonZeroU128
impl Ord for NonZeroUsize
impl Ord for Components<'_>
impl Ord for Path
impl Ord for PathBuf
impl Ord for PrefixComponent<'_>
impl Ord for String
impl Ord for Duration
impl Ord for Instant
impl Ord for SystemTime
impl<'_, A> Ord for &A where
A: Ord + ?Sized,
impl<'_, A> Ord for &mut A where
A: Ord + ?Sized,
impl<'_, B> Ord for Cow<'_, B> where
B: Ord + ToOwned + ?Sized,
impl<'a> Ord for Component<'a>
impl<'a> Ord for Prefix<'a>
impl<'a> Ord for Location<'a>
impl<Dyn> Ord for DynMetadata<Dyn> where
Dyn: ?Sized,
impl<K, V, A> Ord for BTreeMap<K, V, A> where
K: Ord,
V: Ord,
A: Allocator + Clone,
impl<P> Ord for Pin<P> where
P: Deref,
<P as Deref>::Target: Ord,
impl<Ret> Ord for fn() -> Ret
impl<Ret> Ord for extern "C" fn() -> Ret
impl<Ret> Ord for unsafe fn() -> Ret
impl<Ret> Ord for unsafe extern "C" fn() -> Ret
impl<Ret, A> Ord for fn(A) -> Ret
impl<Ret, A> Ord for extern "C" fn(A) -> Ret
impl<Ret, A> Ord for extern "C" fn(A, ...) -> Ret
impl<Ret, A> Ord for unsafe fn(A) -> Ret
impl<Ret, A> Ord for unsafe extern "C" fn(A) -> Ret
impl<Ret, A> Ord for unsafe extern "C" fn(A, ...) -> Ret
impl<Ret, A, B> Ord for fn(A, B) -> Ret
impl<Ret, A, B> Ord for extern "C" fn(A, B) -> Ret
impl<Ret, A, B> Ord for extern "C" fn(A, B, ...) -> Ret
impl<Ret, A, B> Ord for unsafe fn(A, B) -> Ret
impl<Ret, A, B> Ord for unsafe extern "C" fn(A, B) -> Ret
impl<Ret, A, B> Ord for unsafe extern "C" fn(A, B, ...) -> Ret
impl<Ret, A, B, C> Ord for fn(A, B, C) -> Ret
impl<Ret, A, B, C> Ord for extern "C" fn(A, B, C) -> Ret
impl<Ret, A, B, C> Ord for extern "C" fn(A, B, C, ...) -> Ret
impl<Ret, A, B, C> Ord for unsafe fn(A, B, C) -> Ret
impl<Ret, A, B, C> Ord for unsafe extern "C" fn(A, B, C) -> Ret
impl<Ret, A, B, C> Ord for unsafe extern "C" fn(A, B, C, ...) -> Ret
impl<Ret, A, B, C, D> Ord for fn(A, B, C, D) -> Ret
impl<Ret, A, B, C, D> Ord for extern "C" fn(A, B, C, D) -> Ret
impl<Ret, A, B, C, D> Ord for extern "C" fn(A, B, C, D, ...) -> Ret
impl<Ret, A, B, C, D> Ord for unsafe fn(A, B, C, D) -> Ret
impl<Ret, A, B, C, D> Ord for unsafe extern "C" fn(A, B, C, D) -> Ret
impl<Ret, A, B, C, D> Ord for unsafe extern "C" fn(A, B, C, D, ...) -> Ret
impl<Ret, A, B, C, D, E> Ord for fn(A, B, C, D, E) -> Ret
impl<Ret, A, B, C, D, E> Ord for extern "C" fn(A, B, C, D, E) -> Ret
impl<Ret, A, B, C, D, E> Ord for extern "C" fn(A, B, C, D, E, ...) -> Ret
impl<Ret, A, B, C, D, E> Ord for unsafe fn(A, B, C, D, E) -> Ret
impl<Ret, A, B, C, D, E> Ord for unsafe extern "C" fn(A, B, C, D, E) -> Ret
impl<Ret, A, B, C, D, E> Ord for unsafe extern "C" fn(A, B, C, D, E, ...) -> Ret
impl<Ret, A, B, C, D, E, F> Ord for fn(A, B, C, D, E, F) -> Ret
impl<Ret, A, B, C, D, E, F> Ord for extern "C" fn(A, B, C, D, E, F) -> Ret
impl<Ret, A, B, C, D, E, F> Ord for extern "C" fn(A, B, C, D, E, F, ...) -> Ret
impl<Ret, A, B, C, D, E, F> Ord for unsafe fn(A, B, C, D, E, F) -> Ret
impl<Ret, A, B, C, D, E, F> Ord for unsafe extern "C" fn(A, B, C, D, E, F) -> Ret
impl<Ret, A, B, C, D, E, F> Ord for unsafe extern "C" fn(A, B, C, D, E, F, ...) -> Ret
impl<Ret, A, B, C, D, E, F, G> Ord for fn(A, B, C, D, E, F, G) -> Ret
impl<Ret, A, B, C, D, E, F, G> Ord for extern "C" fn(A, B, C, D, E, F, G) -> Ret
impl<Ret, A, B, C, D, E, F, G> Ord for extern "C" fn(A, B, C, D, E, F, G, ...) -> Ret
impl<Ret, A, B, C, D, E, F, G> Ord for unsafe fn(A, B, C, D, E, F, G) -> Ret
impl<Ret, A, B, C, D, E, F, G> Ord for unsafe extern "C" fn(A, B, C, D, E, F, G) -> Ret
impl<Ret, A, B, C, D, E, F, G> Ord for unsafe extern "C" fn(A, B, C, D, E, F, G, ...) -> Ret
impl<Ret, A, B, C, D, E, F, G, H> Ord for fn(A, B, C, D, E, F, G, H) -> Ret
impl<Ret, A, B, C, D, E, F, G, H> Ord for extern "C" fn(A, B, C, D, E, F, G, H) -> Ret
impl<Ret, A, B, C, D, E, F, G, H> Ord for extern "C" fn(A, B, C, D, E, F, G, H, ...) -> Ret
impl<Ret, A, B, C, D, E, F, G, H> Ord for unsafe fn(A, B, C, D, E, F, G, H) -> Ret
impl<Ret, A, B, C, D, E, F, G, H> Ord for unsafe extern "C" fn(A, B, C, D, E, F, G, H) -> Ret
impl<Ret, A, B, C, D, E, F, G, H> Ord for unsafe extern "C" fn(A, B, C, D, E, F, G, H, ...) -> Ret
impl<Ret, A, B, C, D, E, F, G, H, I> Ord for fn(A, B, C, D, E, F, G, H, I) -> Ret
impl<Ret, A, B, C, D, E, F, G, H, I> Ord for extern "C" fn(A, B, C, D, E, F, G, H, I) -> Ret
impl<Ret, A, B, C, D, E, F, G, H, I> Ord for extern "C" fn(A, B, C, D, E, F, G, H, I, ...) -> Ret
impl<Ret, A, B, C, D, E, F, G, H, I> Ord for unsafe fn(A, B, C, D, E, F, G, H, I) -> Ret
impl<Ret, A, B, C, D, E, F, G, H, I> Ord for unsafe extern "C" fn(A, B, C, D, E, F, G, H, I) -> Ret
impl<Ret, A, B, C, D, E, F, G, H, I> Ord for unsafe extern "C" fn(A, B, C, D, E, F, G, H, I, ...) -> Ret
impl<Ret, A, B, C, D, E, F, G, H, I, J> Ord for fn(A, B, C, D, E, F, G, H, I, J) -> Ret
impl<Ret, A, B, C, D, E, F, G, H, I, J> Ord for extern "C" fn(A, B, C, D, E, F, G, H, I, J) -> Ret
impl<Ret, A, B, C, D, E, F, G, H, I, J> Ord for extern "C" fn(A, B, C, D, E, F, G, H, I, J, ...) -> Ret
impl<Ret, A, B, C, D, E, F, G, H, I, J> Ord for unsafe fn(A, B, C, D, E, F, G, H, I, J) -> Ret
impl<Ret, A, B, C, D, E, F, G, H, I, J> Ord for unsafe extern "C" fn(A, B, C, D, E, F, G, H, I, J) -> Ret
impl<Ret, A, B, C, D, E, F, G, H, I, J> Ord for unsafe extern "C" fn(A, B, C, D, E, F, G, H, I, J, ...) -> Ret
impl<Ret, A, B, C, D, E, F, G, H, I, J, K> Ord for fn(A, B, C, D, E, F, G, H, I, J, K) -> Ret
impl<Ret, A, B, C, D, E, F, G, H, I, J, K> Ord for extern "C" fn(A, B, C, D, E, F, G, H, I, J, K) -> Ret
impl<Ret, A, B, C, D, E, F, G, H, I, J, K> Ord for extern "C" fn(A, B, C, D, E, F, G, H, I, J, K, ...) -> Ret
impl<Ret, A, B, C, D, E, F, G, H, I, J, K> Ord for unsafe fn(A, B, C, D, E, F, G, H, I, J, K) -> Ret
impl<Ret, A, B, C, D, E, F, G, H, I, J, K> Ord for unsafe extern "C" fn(A, B, C, D, E, F, G, H, I, J, K) -> Ret
impl<Ret, A, B, C, D, E, F, G, H, I, J, K> Ord for unsafe extern "C" fn(A, B, C, D, E, F, G, H, I, J, K, ...) -> Ret
impl<Ret, A, B, C, D, E, F, G, H, I, J, K, L> Ord for fn(A, B, C, D, E, F, G, H, I, J, K, L) -> Ret
impl<Ret, A, B, C, D, E, F, G, H, I, J, K, L> Ord for extern "C" fn(A, B, C, D, E, F, G, H, I, J, K, L) -> Ret
impl<Ret, A, B, C, D, E, F, G, H, I, J, K, L> Ord for extern "C" fn(A, B, C, D, E, F, G, H, I, J, K, L, ...) -> Ret
impl<Ret, A, B, C, D, E, F, G, H, I, J, K, L> Ord for unsafe fn(A, B, C, D, E, F, G, H, I, J, K, L) -> Ret
impl<Ret, A, B, C, D, E, F, G, H, I, J, K, L> Ord for unsafe extern "C" fn(A, B, C, D, E, F, G, H, I, J, K, L) -> Ret
impl<Ret, A, B, C, D, E, F, G, H, I, J, K, L> Ord for unsafe extern "C" fn(A, B, C, D, E, F, G, H, I, J, K, L, ...) -> Ret
impl<T> Ord for Option<T> where
T: Ord,
impl<T> Ord for Poll<T> where
T: Ord,
impl<T> Ord for *const T where
T: ?Sized,
impl<T> Ord for *mut T where
T: ?Sized,
impl<T> Ord for [T] where
T: Ord,
Implements comparison of vectors lexicographically.
impl<T> Ord for (T₁, T₂, …, Tₙ) where
T: Ord + ?Sized,
This trait is implemented for tuples up to twelve items long.
impl<T> Ord for Cell<T> where
T: Ord + Copy,
impl<T> Ord for RefCell<T> where
T: Ord + ?Sized,
impl<T> Ord for LinkedList<T> where
T: Ord,
impl<T> Ord for PhantomData<T> where
T: ?Sized,
impl<T> Ord for ManuallyDrop<T> where
T: Ord + ?Sized,
impl<T> Ord for Saturating<T> where
T: Ord,
impl<T> Ord for Wrapping<T> where
T: Ord,
impl<T> Ord for NonNull<T> where
T: ?Sized,
impl<T> Ord for Rc<T> where
T: Ord + ?Sized,
impl<T> Ord for Arc<T> where
T: Ord + ?Sized,
impl<T> Ord for Reverse<T> where
T: Ord,
impl<T, A> Ord for Box<T, A> where
T: Ord + ?Sized,
A: Allocator,
impl<T, A> Ord for BTreeSet<T, A> where
T: Ord,
A: Allocator + Clone,
impl<T, A> Ord for VecDeque<T, A> where
T: Ord,
A: Allocator,
impl<T, A> Ord for Vec<T, A> where
T: Ord,
A: Allocator,
Implements ordering of vectors, lexicographically.
impl<T, E> Ord for Result<T, E> where
T: Ord,
E: Ord,
impl<T, const LANES: usize> Ord for Simd<T, LANES> where
T: SimdElement + Ord,
LaneCount<LANES>: SupportedLaneCount,
impl<T, const N: usize> Ord for [T; N] where
T: Ord,
Implements comparison of arrays lexicographically.