Expand description
A 64-bit floating point type (specifically, the “binary64” type defined in IEEE 754-2008).
This type is very similar to f32
, but has increased
precision by using twice as many bits. Please see the documentation for
f32
or Wikipedia on double precision
values for more information.
Implementations
sourceimpl f64
impl f64
sourcepub fn abs(self) -> f64
pub fn abs(self) -> f64
Computes the absolute value of self
. Returns NAN
if the
number is NAN
.
Examples
let x = 3.5_f64;
let y = -3.5_f64;
let abs_difference_x = (x.abs() - x).abs();
let abs_difference_y = (y.abs() - (-y)).abs();
assert!(abs_difference_x < 1e-10);
assert!(abs_difference_y < 1e-10);
assert!(f64::NAN.abs().is_nan());
Runsourcepub fn signum(self) -> f64
pub fn signum(self) -> f64
Returns a number that represents the sign of self
.
1.0
if the number is positive,+0.0
orINFINITY
-1.0
if the number is negative,-0.0
orNEG_INFINITY
NAN
if the number isNAN
Examples
let f = 3.5_f64;
assert_eq!(f.signum(), 1.0);
assert_eq!(f64::NEG_INFINITY.signum(), -1.0);
assert!(f64::NAN.signum().is_nan());
Run1.35.0 · sourcepub fn copysign(self, sign: f64) -> f64
pub fn copysign(self, sign: f64) -> f64
Returns a number composed of the magnitude of self
and the sign of
sign
.
Equal to self
if the sign of self
and sign
are the same, otherwise
equal to -self
. If self
is a NAN
, then a NAN
with the sign of
sign
is returned.
Examples
let f = 3.5_f64;
assert_eq!(f.copysign(0.42), 3.5_f64);
assert_eq!(f.copysign(-0.42), -3.5_f64);
assert_eq!((-f).copysign(0.42), 3.5_f64);
assert_eq!((-f).copysign(-0.42), -3.5_f64);
assert!(f64::NAN.copysign(1.0).is_nan());
Runsourcepub fn mul_add(self, a: f64, b: f64) -> f64
pub fn mul_add(self, a: f64, b: f64) -> f64
Fused multiply-add. Computes (self * a) + b
with only one rounding
error, yielding a more accurate result than an unfused multiply-add.
Using mul_add
may be more performant than an unfused multiply-add if
the target architecture has a dedicated fma
CPU instruction. However,
this is not always true, and will be heavily dependant on designing
algorithms with specific target hardware in mind.
Examples
let m = 10.0_f64;
let x = 4.0_f64;
let b = 60.0_f64;
// 100.0
let abs_difference = (m.mul_add(x, b) - ((m * x) + b)).abs();
assert!(abs_difference < 1e-10);
Run1.38.0 · sourcepub fn div_euclid(self, rhs: f64) -> f64
pub fn div_euclid(self, rhs: f64) -> f64
Calculates Euclidean division, the matching method for rem_euclid
.
This computes the integer n
such that
self = n * rhs + self.rem_euclid(rhs)
.
In other words, the result is self / rhs
rounded to the integer n
such that self >= n * rhs
.
Examples
let a: f64 = 7.0;
let b = 4.0;
assert_eq!(a.div_euclid(b), 1.0); // 7.0 > 4.0 * 1.0
assert_eq!((-a).div_euclid(b), -2.0); // -7.0 >= 4.0 * -2.0
assert_eq!(a.div_euclid(-b), -1.0); // 7.0 >= -4.0 * -1.0
assert_eq!((-a).div_euclid(-b), 2.0); // -7.0 >= -4.0 * 2.0
Run1.38.0 · sourcepub fn rem_euclid(self, rhs: f64) -> f64
pub fn rem_euclid(self, rhs: f64) -> f64
Calculates the least nonnegative remainder of self (mod rhs)
.
In particular, the return value r
satisfies 0.0 <= r < rhs.abs()
in
most cases. However, due to a floating point round-off error it can
result in r == rhs.abs()
, violating the mathematical definition, if
self
is much smaller than rhs.abs()
in magnitude and self < 0.0
.
This result is not an element of the function’s codomain, but it is the
closest floating point number in the real numbers and thus fulfills the
property self == self.div_euclid(rhs) * rhs + self.rem_euclid(rhs)
approximatively.
Examples
let a: f64 = 7.0;
let b = 4.0;
assert_eq!(a.rem_euclid(b), 3.0);
assert_eq!((-a).rem_euclid(b), 1.0);
assert_eq!(a.rem_euclid(-b), 3.0);
assert_eq!((-a).rem_euclid(-b), 1.0);
// limitation due to round-off error
assert!((-f64::EPSILON).rem_euclid(3.0) != 0.0);
Runsourcepub fn sqrt(self) -> f64
pub fn sqrt(self) -> f64
Returns the square root of a number.
Returns NaN if self
is a negative number other than -0.0
.
Examples
let positive = 4.0_f64;
let negative = -4.0_f64;
let negative_zero = -0.0_f64;
let abs_difference = (positive.sqrt() - 2.0).abs();
assert!(abs_difference < 1e-10);
assert!(negative.sqrt().is_nan());
assert!(negative_zero.sqrt() == negative_zero);
Runsourcepub fn log(self, base: f64) -> f64
pub fn log(self, base: f64) -> f64
Returns the logarithm of the number with respect to an arbitrary base.
The result might not be correctly rounded owing to implementation details;
self.log2()
can produce more accurate results for base 2, and
self.log10()
can produce more accurate results for base 10.
Examples
let twenty_five = 25.0_f64;
// log5(25) - 2 == 0
let abs_difference = (twenty_five.log(5.0) - 2.0).abs();
assert!(abs_difference < 1e-10);
Runsourcepub fn abs_sub(self, other: f64) -> f64
👎 Deprecated since 1.10.0: you probably meant (self - other).abs()
: this operation is (self - other).max(0.0)
except that abs_sub
also propagates NaNs (also known as fdim
in C). If you truly need the positive difference, consider using that expression or the C function fdim
, depending on how you wish to handle NaN (please consider filing an issue describing your use-case too).
pub fn abs_sub(self, other: f64) -> f64
you probably meant (self - other).abs()
: this operation is (self - other).max(0.0)
except that abs_sub
also propagates NaNs (also known as fdim
in C). If you truly need the positive difference, consider using that expression or the C function fdim
, depending on how you wish to handle NaN (please consider filing an issue describing your use-case too).
The positive difference of two numbers.
- If
self <= other
:0:0
- Else:
self - other
Examples
let x = 3.0_f64;
let y = -3.0_f64;
let abs_difference_x = (x.abs_sub(1.0) - 2.0).abs();
let abs_difference_y = (y.abs_sub(1.0) - 0.0).abs();
assert!(abs_difference_x < 1e-10);
assert!(abs_difference_y < 1e-10);
Runsourcepub fn asin(self) -> f64
pub fn asin(self) -> f64
Computes the arcsine of a number. Return value is in radians in the range [-pi/2, pi/2] or NaN if the number is outside the range [-1, 1].
Examples
let f = std::f64::consts::FRAC_PI_2;
// asin(sin(pi/2))
let abs_difference = (f.sin().asin() - std::f64::consts::FRAC_PI_2).abs();
assert!(abs_difference < 1e-10);
Runsourcepub fn acos(self) -> f64
pub fn acos(self) -> f64
Computes the arccosine of a number. Return value is in radians in the range [0, pi] or NaN if the number is outside the range [-1, 1].
Examples
let f = std::f64::consts::FRAC_PI_4;
// acos(cos(pi/4))
let abs_difference = (f.cos().acos() - std::f64::consts::FRAC_PI_4).abs();
assert!(abs_difference < 1e-10);
Runsourcepub fn atan2(self, other: f64) -> f64
pub fn atan2(self, other: f64) -> f64
Computes the four quadrant arctangent of self
(y
) and other
(x
) in radians.
x = 0
,y = 0
:0
x >= 0
:arctan(y/x)
->[-pi/2, pi/2]
y >= 0
:arctan(y/x) + pi
->(pi/2, pi]
y < 0
:arctan(y/x) - pi
->(-pi, -pi/2)
Examples
// Positive angles measured counter-clockwise
// from positive x axis
// -pi/4 radians (45 deg clockwise)
let x1 = 3.0_f64;
let y1 = -3.0_f64;
// 3pi/4 radians (135 deg counter-clockwise)
let x2 = -3.0_f64;
let y2 = 3.0_f64;
let abs_difference_1 = (y1.atan2(x1) - (-std::f64::consts::FRAC_PI_4)).abs();
let abs_difference_2 = (y2.atan2(x2) - (3.0 * std::f64::consts::FRAC_PI_4)).abs();
assert!(abs_difference_1 < 1e-10);
assert!(abs_difference_2 < 1e-10);
Runsourcepub fn sin_cos(self) -> (f64, f64)
pub fn sin_cos(self) -> (f64, f64)
Simultaneously computes the sine and cosine of the number, x
. Returns
(sin(x), cos(x))
.
Examples
let x = std::f64::consts::FRAC_PI_4;
let f = x.sin_cos();
let abs_difference_0 = (f.0 - x.sin()).abs();
let abs_difference_1 = (f.1 - x.cos()).abs();
assert!(abs_difference_0 < 1e-10);
assert!(abs_difference_1 < 1e-10);
Runsourcepub fn ln_1p(self) -> f64
pub fn ln_1p(self) -> f64
Returns ln(1+n)
(natural logarithm) more accurately than if
the operations were performed separately.
Examples
let x = 1e-16_f64;
// for very small x, ln(1 + x) is approximately x - x^2 / 2
let approx = x - x * x / 2.0;
let abs_difference = (x.ln_1p() - approx).abs();
assert!(abs_difference < 1e-20);
Runsourceimpl f64
impl f64
1.43.0 · sourcepub const MANTISSA_DIGITS: u32
pub const MANTISSA_DIGITS: u32
Number of significant digits in base 2.
1.43.0 · sourcepub const EPSILON: f64
pub const EPSILON: f64
Machine epsilon value for f64
.
This is the difference between 1.0
and the next larger representable number.
1.43.0 · sourcepub const MIN_POSITIVE: f64
pub const MIN_POSITIVE: f64
Smallest positive normal f64
value.
1.43.0 · sourcepub const MIN_EXP: i32
pub const MIN_EXP: i32
One greater than the minimum possible normal power of 2 exponent.
1.43.0 · sourcepub const MIN_10_EXP: i32
pub const MIN_10_EXP: i32
Minimum possible normal power of 10 exponent.
1.43.0 · sourcepub const MAX_10_EXP: i32
pub const MAX_10_EXP: i32
Maximum possible power of 10 exponent.
1.43.0 · sourcepub const NEG_INFINITY: f64
pub const NEG_INFINITY: f64
Negative infinity (−∞).
const: unstable · sourcepub fn is_nan(self) -> bool
pub fn is_nan(self) -> bool
Returns true
if this value is NaN
.
let nan = f64::NAN;
let f = 7.0_f64;
assert!(nan.is_nan());
assert!(!f.is_nan());
Runconst: unstable · sourcepub fn is_infinite(self) -> bool
pub fn is_infinite(self) -> bool
Returns true
if this value is positive infinity or negative infinity, and
false
otherwise.
let f = 7.0f64;
let inf = f64::INFINITY;
let neg_inf = f64::NEG_INFINITY;
let nan = f64::NAN;
assert!(!f.is_infinite());
assert!(!nan.is_infinite());
assert!(inf.is_infinite());
assert!(neg_inf.is_infinite());
Runconst: unstable · sourcepub fn is_finite(self) -> bool
pub fn is_finite(self) -> bool
Returns true
if this number is neither infinite nor NaN
.
let f = 7.0f64;
let inf: f64 = f64::INFINITY;
let neg_inf: f64 = f64::NEG_INFINITY;
let nan: f64 = f64::NAN;
assert!(f.is_finite());
assert!(!nan.is_finite());
assert!(!inf.is_finite());
assert!(!neg_inf.is_finite());
Run1.53.0 (const: unstable) · sourcepub fn is_subnormal(self) -> bool
pub fn is_subnormal(self) -> bool
Returns true
if the number is subnormal.
let min = f64::MIN_POSITIVE; // 2.2250738585072014e-308_f64
let max = f64::MAX;
let lower_than_min = 1.0e-308_f64;
let zero = 0.0_f64;
assert!(!min.is_subnormal());
assert!(!max.is_subnormal());
assert!(!zero.is_subnormal());
assert!(!f64::NAN.is_subnormal());
assert!(!f64::INFINITY.is_subnormal());
// Values between `0` and `min` are Subnormal.
assert!(lower_than_min.is_subnormal());
Runconst: unstable · sourcepub fn is_normal(self) -> bool
pub fn is_normal(self) -> bool
Returns true
if the number is neither zero, infinite,
subnormal, or NaN
.
let min = f64::MIN_POSITIVE; // 2.2250738585072014e-308f64
let max = f64::MAX;
let lower_than_min = 1.0e-308_f64;
let zero = 0.0f64;
assert!(min.is_normal());
assert!(max.is_normal());
assert!(!zero.is_normal());
assert!(!f64::NAN.is_normal());
assert!(!f64::INFINITY.is_normal());
// Values between `0` and `min` are Subnormal.
assert!(!lower_than_min.is_normal());
Runconst: unstable · sourcepub fn classify(self) -> FpCategory
pub fn classify(self) -> FpCategory
Returns the floating point category of the number. If only one property is going to be tested, it is generally faster to use the specific predicate instead.
use std::num::FpCategory;
let num = 12.4_f64;
let inf = f64::INFINITY;
assert_eq!(num.classify(), FpCategory::Normal);
assert_eq!(inf.classify(), FpCategory::Infinite);
Runconst: unstable · sourcepub fn is_sign_positive(self) -> bool
pub fn is_sign_positive(self) -> bool
Returns true
if self
has a positive sign, including +0.0
, NaN
s with
positive sign bit and positive infinity.
let f = 7.0_f64;
let g = -7.0_f64;
assert!(f.is_sign_positive());
assert!(!g.is_sign_positive());
Runconst: unstable · sourcepub fn is_sign_negative(self) -> bool
pub fn is_sign_negative(self) -> bool
Returns true
if self
has a negative sign, including -0.0
, NaN
s with
negative sign bit and negative infinity.
let f = 7.0_f64;
let g = -7.0_f64;
assert!(!f.is_sign_negative());
assert!(g.is_sign_negative());
Runsourcepub fn recip(self) -> f64
pub fn recip(self) -> f64
Takes the reciprocal (inverse) of a number, 1/x
.
let x = 2.0_f64;
let abs_difference = (x.recip() - (1.0 / x)).abs();
assert!(abs_difference < 1e-10);
Runsourcepub fn to_degrees(self) -> f64
pub fn to_degrees(self) -> f64
Converts radians to degrees.
let angle = std::f64::consts::PI;
let abs_difference = (angle.to_degrees() - 180.0).abs();
assert!(abs_difference < 1e-10);
Runsourcepub fn to_radians(self) -> f64
pub fn to_radians(self) -> f64
Converts degrees to radians.
let angle = 180.0_f64;
let abs_difference = (angle.to_radians() - std::f64::consts::PI).abs();
assert!(abs_difference < 1e-10);
Runsourcepub fn max(self, other: f64) -> f64
pub fn max(self, other: f64) -> f64
Returns the maximum of the two numbers.
Follows the IEEE-754 2008 semantics for maxNum, except for handling of signaling NaNs. This matches the behavior of libm’s fmax.
let x = 1.0_f64;
let y = 2.0_f64;
assert_eq!(x.max(y), y);
RunIf one of the arguments is NaN, then the other argument is returned.
sourcepub fn min(self, other: f64) -> f64
pub fn min(self, other: f64) -> f64
Returns the minimum of the two numbers.
Follows the IEEE-754 2008 semantics for minNum, except for handling of signaling NaNs. This matches the behavior of libm’s fmin.
let x = 1.0_f64;
let y = 2.0_f64;
assert_eq!(x.min(y), x);
RunIf one of the arguments is NaN, then the other argument is returned.
sourcepub fn maximum(self, other: f64) -> f64
pub fn maximum(self, other: f64) -> f64
Returns the maximum of the two numbers, propagating NaNs.
This returns NaN when either argument is NaN, as opposed to
f64::max
which only returns NaN when both arguments are NaN.
#![feature(float_minimum_maximum)]
let x = 1.0_f64;
let y = 2.0_f64;
assert_eq!(x.maximum(y), y);
assert!(x.maximum(f64::NAN).is_nan());
RunIf one of the arguments is NaN, then NaN is returned. Otherwise this returns the greater of the two numbers. For this operation, -0.0 is considered to be less than +0.0. Note that this follows the semantics specified in IEEE 754-2019.
sourcepub fn minimum(self, other: f64) -> f64
pub fn minimum(self, other: f64) -> f64
Returns the minimum of the two numbers, propagating NaNs.
This returns NaN when either argument is NaN, as opposed to
f64::min
which only returns NaN when both arguments are NaN.
#![feature(float_minimum_maximum)]
let x = 1.0_f64;
let y = 2.0_f64;
assert_eq!(x.minimum(y), x);
assert!(x.minimum(f64::NAN).is_nan());
RunIf one of the arguments is NaN, then NaN is returned. Otherwise this returns the lesser of the two numbers. For this operation, -0.0 is considered to be less than +0.0. Note that this follows the semantics specified in IEEE 754-2019.
1.44.0 · sourcepub unsafe fn to_int_unchecked<Int>(self) -> Int where
f64: FloatToInt<Int>,
pub unsafe fn to_int_unchecked<Int>(self) -> Int where
f64: FloatToInt<Int>,
Rounds toward zero and converts to any primitive integer type, assuming that the value is finite and fits in that type.
let value = 4.6_f64;
let rounded = unsafe { value.to_int_unchecked::<u16>() };
assert_eq!(rounded, 4);
let value = -128.9_f64;
let rounded = unsafe { value.to_int_unchecked::<i8>() };
assert_eq!(rounded, i8::MIN);
RunSafety
The value must:
- Not be
NaN
- Not be infinite
- Be representable in the return type
Int
, after truncating off its fractional part
1.20.0 (const: unstable) · sourcepub fn to_bits(self) -> u64
pub fn to_bits(self) -> u64
Raw transmutation to u64
.
This is currently identical to transmute::<f64, u64>(self)
on all platforms.
See from_bits
for some discussion of the
portability of this operation (there are almost no issues).
Note that this function is distinct from as
casting, which attempts to
preserve the numeric value, and not the bitwise value.
Examples
assert!((1f64).to_bits() != 1f64 as u64); // to_bits() is not casting!
assert_eq!((12.5f64).to_bits(), 0x4029000000000000);
Run1.20.0 (const: unstable) · sourcepub fn from_bits(v: u64) -> f64
pub fn from_bits(v: u64) -> f64
Raw transmutation from u64
.
This is currently identical to transmute::<u64, f64>(v)
on all platforms.
It turns out this is incredibly portable, for two reasons:
- Floats and Ints have the same endianness on all supported platforms.
- IEEE-754 very precisely specifies the bit layout of floats.
However there is one caveat: prior to the 2008 version of IEEE-754, how to interpret the NaN signaling bit wasn’t actually specified. Most platforms (notably x86 and ARM) picked the interpretation that was ultimately standardized in 2008, but some didn’t (notably MIPS). As a result, all signaling NaNs on MIPS are quiet NaNs on x86, and vice-versa.
Rather than trying to preserve signaling-ness cross-platform, this implementation favors preserving the exact bits. This means that any payloads encoded in NaNs will be preserved even if the result of this method is sent over the network from an x86 machine to a MIPS one.
If the results of this method are only manipulated by the same architecture that produced them, then there is no portability concern.
If the input isn’t NaN, then there is no portability concern.
If you don’t care about signaling-ness (very likely), then there is no portability concern.
Note that this function is distinct from as
casting, which attempts to
preserve the numeric value, and not the bitwise value.
Examples
let v = f64::from_bits(0x4029000000000000);
assert_eq!(v, 12.5);
Run1.40.0 (const: unstable) · sourcepub fn to_ne_bytes(self) -> [u8; 8]
pub fn to_ne_bytes(self) -> [u8; 8]
Return the memory representation of this floating point number as a byte array in native byte order.
As the target platform’s native endianness is used, portable code
should use to_be_bytes
or to_le_bytes
, as appropriate, instead.
Examples
let bytes = 12.5f64.to_ne_bytes();
assert_eq!(
bytes,
if cfg!(target_endian = "big") {
[0x40, 0x29, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00]
} else {
[0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x29, 0x40]
}
);
Run1.40.0 (const: unstable) · sourcepub fn from_ne_bytes(bytes: [u8; 8]) -> f64
pub fn from_ne_bytes(bytes: [u8; 8]) -> f64
Create a floating point value from its representation as a byte array in native endian.
As the target platform’s native endianness is used, portable code
likely wants to use from_be_bytes
or from_le_bytes
, as
appropriate instead.
Examples
let value = f64::from_ne_bytes(if cfg!(target_endian = "big") {
[0x40, 0x29, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00]
} else {
[0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x29, 0x40]
});
assert_eq!(value, 12.5);
Runsourcepub fn total_cmp(&self, other: &f64) -> Ordering
pub fn total_cmp(&self, other: &f64) -> Ordering
Return the ordering between self
and other
.
Unlike the standard partial comparison between floating point numbers,
this comparison always produces an ordering in accordance to
the totalOrder
predicate as defined in the IEEE 754 (2008 revision)
floating point standard. The values are ordered in the following sequence:
- negative quiet NaN
- negative signaling NaN
- negative infinity
- negative numbers
- negative subnormal numbers
- negative zero
- positive zero
- positive subnormal numbers
- positive numbers
- positive infinity
- positive signaling NaN
- positive quiet NaN.
The ordering established by this function does not always agree with the
PartialOrd
and PartialEq
implementations of f64
. For example,
they consider negative and positive zero equal, while total_cmp
doesn’t.
The interpretation of the signaling NaN bit follows the definition in the IEEE 754 standard, which may not match the interpretation by some of the older, non-conformant (e.g. MIPS) hardware implementations.
Example
#![feature(total_cmp)]
struct GoodBoy {
name: String,
weight: f64,
}
let mut bois = vec![
GoodBoy { name: "Pucci".to_owned(), weight: 0.1 },
GoodBoy { name: "Woofer".to_owned(), weight: 99.0 },
GoodBoy { name: "Yapper".to_owned(), weight: 10.0 },
GoodBoy { name: "Chonk".to_owned(), weight: f64::INFINITY },
GoodBoy { name: "Abs. Unit".to_owned(), weight: f64::NAN },
GoodBoy { name: "Floaty".to_owned(), weight: -5.0 },
];
bois.sort_by(|a, b| a.weight.total_cmp(&b.weight));
Run1.50.0 · sourcepub fn clamp(self, min: f64, max: f64) -> f64
pub fn clamp(self, min: f64, max: f64) -> f64
Restrict a value to a certain interval unless it is NaN.
Returns max
if self
is greater than max
, and min
if self
is
less than min
. Otherwise this returns self
.
Note that this function returns NaN if the initial value was NaN as well.
Panics
Panics if min > max
, min
is NaN, or max
is NaN.
Examples
assert!((-3.0f64).clamp(-2.0, 1.0) == -2.0);
assert!((0.0f64).clamp(-2.0, 1.0) == 0.0);
assert!((2.0f64).clamp(-2.0, 1.0) == 1.0);
assert!((f64::NAN).clamp(-2.0, 1.0).is_nan());
RunTrait Implementations
1.22.0 (const: unstable) · sourceimpl AddAssign<&'_ f64> for f64
impl AddAssign<&'_ f64> for f64
const: unstable · sourcepub fn add_assign(&mut self, other: &f64)
pub fn add_assign(&mut self, other: &f64)
Performs the +=
operation. Read more
1.8.0 (const: unstable) · sourceimpl AddAssign<f64> for f64
impl AddAssign<f64> for f64
const: unstable · sourcepub fn add_assign(&mut self, other: f64)
pub fn add_assign(&mut self, other: f64)
Performs the +=
operation. Read more
1.22.0 (const: unstable) · sourceimpl DivAssign<&'_ f64> for f64
impl DivAssign<&'_ f64> for f64
const: unstable · sourcepub fn div_assign(&mut self, other: &f64)
pub fn div_assign(&mut self, other: &f64)
Performs the /=
operation. Read more
1.8.0 (const: unstable) · sourceimpl DivAssign<f64> for f64
impl DivAssign<f64> for f64
const: unstable · sourcepub fn div_assign(&mut self, other: f64)
pub fn div_assign(&mut self, other: f64)
Performs the /=
operation. Read more
sourceimpl FromStr for f64
impl FromStr for f64
sourcepub fn from_str(src: &str) -> Result<f64, ParseFloatError>
pub fn from_str(src: &str) -> Result<f64, ParseFloatError>
Converts a string in base 10 to a float. Accepts an optional decimal exponent.
This function accepts strings such as
- ‘3.14’
- ‘-3.14’
- ‘2.5E10’, or equivalently, ‘2.5e10’
- ‘2.5E-10’
- ‘5.’
- ‘.5’, or, equivalently, ‘0.5’
- ‘inf’, ‘-inf’, ‘NaN’
Leading and trailing whitespace represent an error.
Grammar
All strings that adhere to the following EBNF grammar
will result in an Ok
being returned:
Float ::= Sign? ( 'inf' | 'NaN' | Number )
Number ::= ( Digit+ |
Digit+ '.' Digit* |
Digit* '.' Digit+ ) Exp?
Exp ::= [eE] Sign? Digit+
Sign ::= [+-]
Digit ::= [0-9]
Arguments
- src - A string
Return value
Err(ParseFloatError)
if the string did not represent a valid
number. Otherwise, Ok(n)
where n
is the floating-point
number represented by src
.
type Err = ParseFloatError
type Err = ParseFloatError
The associated error which can be returned from parsing.
1.22.0 (const: unstable) · sourceimpl MulAssign<&'_ f64> for f64
impl MulAssign<&'_ f64> for f64
const: unstable · sourcepub fn mul_assign(&mut self, other: &f64)
pub fn mul_assign(&mut self, other: &f64)
Performs the *=
operation. Read more
1.8.0 (const: unstable) · sourceimpl MulAssign<f64> for f64
impl MulAssign<f64> for f64
const: unstable · sourcepub fn mul_assign(&mut self, other: f64)
pub fn mul_assign(&mut self, other: f64)
Performs the *=
operation. Read more
sourceimpl PartialOrd<f64> for f64
impl PartialOrd<f64> for f64
sourcepub fn partial_cmp(&self, other: &f64) -> Option<Ordering>
pub fn partial_cmp(&self, other: &f64) -> Option<Ordering>
This method returns an ordering between self
and other
values if one exists. Read more
sourcepub fn lt(&self, other: &f64) -> bool
pub fn lt(&self, other: &f64) -> bool
This method tests less than (for self
and other
) and is used by the <
operator. Read more
sourcepub fn le(&self, other: &f64) -> bool
pub fn le(&self, other: &f64) -> bool
This method tests less than or equal to (for self
and other
) and is used by the <=
operator. Read more
const: unstable · sourceimpl Rem<f64> for f64
impl Rem<f64> for f64
The remainder from the division of two floats.
The remainder has the same sign as the dividend and is computed as:
x - (x / y).trunc() * y
.
Examples
let x: f32 = 50.50;
let y: f32 = 8.125;
let remainder = x - (x / y).trunc() * y;
// The answer to both operations is 1.75
assert_eq!(x % y, remainder);
Run1.22.0 (const: unstable) · sourceimpl RemAssign<&'_ f64> for f64
impl RemAssign<&'_ f64> for f64
const: unstable · sourcepub fn rem_assign(&mut self, other: &f64)
pub fn rem_assign(&mut self, other: &f64)
Performs the %=
operation. Read more
1.8.0 (const: unstable) · sourceimpl RemAssign<f64> for f64
impl RemAssign<f64> for f64
const: unstable · sourcepub fn rem_assign(&mut self, other: f64)
pub fn rem_assign(&mut self, other: f64)
Performs the %=
operation. Read more
sourceimpl SimdElement for f64
impl SimdElement for f64
1.22.0 (const: unstable) · sourceimpl SubAssign<&'_ f64> for f64
impl SubAssign<&'_ f64> for f64
const: unstable · sourcepub fn sub_assign(&mut self, other: &f64)
pub fn sub_assign(&mut self, other: &f64)
Performs the -=
operation. Read more
1.8.0 (const: unstable) · sourceimpl SubAssign<f64> for f64
impl SubAssign<f64> for f64
const: unstable · sourcepub fn sub_assign(&mut self, other: f64)
pub fn sub_assign(&mut self, other: f64)
Performs the -=
operation. Read more
impl Copy for f64
impl FloatToInt<i128> for f64
impl FloatToInt<i16> for f64
impl FloatToInt<i32> for f64
impl FloatToInt<i64> for f64
impl FloatToInt<i8> for f64
impl FloatToInt<isize> for f64
impl FloatToInt<u128> for f64
impl FloatToInt<u16> for f64
impl FloatToInt<u32> for f64
impl FloatToInt<u64> for f64
impl FloatToInt<u8> for f64
impl FloatToInt<usize> for f64
Auto Trait Implementations
impl RefUnwindSafe for f64
impl Send for f64
impl Sync for f64
impl Unpin for f64
impl UnwindSafe for f64
Blanket Implementations
sourceimpl<T> BorrowMut<T> for T where
T: ?Sized,
impl<T> BorrowMut<T> for T where
T: ?Sized,
const: unstable · sourcepub fn borrow_mut(&mut self) -> &mut T
pub fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more