Primitive Type char1.0.0[−]
Expand description
A character type.
The char
type represents a single character. More specifically, since
‘character’ isn’t a well-defined concept in Unicode, char
is a ‘Unicode
scalar value’, which is similar to, but not the same as, a ‘Unicode code
point’.
This documentation describes a number of methods and trait implementations on the
char
type. For technical reasons, there is additional, separate
documentation in the std::char
module as well.
Representation
char
is always four bytes in size. This is a different representation than
a given character would have as part of a String
. For example:
let v = vec!['h', 'e', 'l', 'l', 'o'];
// five elements times four bytes for each element
assert_eq!(20, v.len() * std::mem::size_of::<char>());
let s = String::from("hello");
// five elements times one byte per element
assert_eq!(5, s.len() * std::mem::size_of::<u8>());
RunAs always, remember that a human intuition for ‘character’ might not map to Unicode’s definitions. For example, despite looking similar, the ‘é’ character is one Unicode code point while ‘é’ is two Unicode code points:
let mut chars = "é".chars();
// U+00e9: 'latin small letter e with acute'
assert_eq!(Some('\u{00e9}'), chars.next());
assert_eq!(None, chars.next());
let mut chars = "é".chars();
// U+0065: 'latin small letter e'
assert_eq!(Some('\u{0065}'), chars.next());
// U+0301: 'combining acute accent'
assert_eq!(Some('\u{0301}'), chars.next());
assert_eq!(None, chars.next());
RunThis means that the contents of the first string above will fit into a
char
while the contents of the second string will not. Trying to create
a char
literal with the contents of the second string gives an error:
error: character literal may only contain one codepoint: 'é'
let c = 'é';
^^^
Another implication of the 4-byte fixed size of a char
is that
per-char
processing can end up using a lot more memory:
let s = String::from("love: ❤️");
let v: Vec<char> = s.chars().collect();
assert_eq!(12, std::mem::size_of_val(&s[..]));
assert_eq!(32, std::mem::size_of_val(&v[..]));
RunImplementations
The highest valid code point a char
can have.
A char
is a Unicode Scalar Value, which means that it is a Code
Point, but only ones within a certain range. MAX
is the highest valid
code point that’s a valid Unicode Scalar Value.
U+FFFD REPLACEMENT CHARACTER
(�) is used in Unicode to represent a
decoding error.
It can occur, for example, when giving ill-formed UTF-8 bytes to
String::from_utf8_lossy
.
The version of Unicode that the Unicode parts of
char
and str
methods are based on.
New versions of Unicode are released regularly and subsequently all methods
in the standard library depending on Unicode are updated. Therefore the
behavior of some char
and str
methods and the value of this constant
changes over time. This is not considered to be a breaking change.
The version numbering scheme is explained in Unicode 11.0 or later, Section 3.1 Versions of the Unicode Standard.
1.52.0[src]pub fn decode_utf16<I>(iter: I) -> DecodeUtf16<<I as IntoIterator>::IntoIter>ⓘNotable traits for DecodeUtf16<I>impl<I> Iterator for DecodeUtf16<I> where
I: Iterator<Item = u16>, type Item = Result<char, DecodeUtf16Error>;
where
I: IntoIterator<Item = u16>,
pub fn decode_utf16<I>(iter: I) -> DecodeUtf16<<I as IntoIterator>::IntoIter>ⓘNotable traits for DecodeUtf16<I>impl<I> Iterator for DecodeUtf16<I> where
I: Iterator<Item = u16>, type Item = Result<char, DecodeUtf16Error>;
where
I: IntoIterator<Item = u16>,
impl<I> Iterator for DecodeUtf16<I> where
I: Iterator<Item = u16>, type Item = Result<char, DecodeUtf16Error>;
Creates an iterator over the UTF-16 encoded code points in iter
,
returning unpaired surrogates as Err
s.
Examples
Basic usage:
use std::char::decode_utf16;
// 𝄞mus<invalid>ic<invalid>
let v = [
0xD834, 0xDD1E, 0x006d, 0x0075, 0x0073, 0xDD1E, 0x0069, 0x0063, 0xD834,
];
assert_eq!(
decode_utf16(v)
.map(|r| r.map_err(|e| e.unpaired_surrogate()))
.collect::<Vec<_>>(),
vec![
Ok('𝄞'),
Ok('m'), Ok('u'), Ok('s'),
Err(0xDD1E),
Ok('i'), Ok('c'),
Err(0xD834)
]
);
RunA lossy decoder can be obtained by replacing Err
results with the replacement character:
use std::char::{decode_utf16, REPLACEMENT_CHARACTER};
// 𝄞mus<invalid>ic<invalid>
let v = [
0xD834, 0xDD1E, 0x006d, 0x0075, 0x0073, 0xDD1E, 0x0069, 0x0063, 0xD834,
];
assert_eq!(
decode_utf16(v)
.map(|r| r.unwrap_or(REPLACEMENT_CHARACTER))
.collect::<String>(),
"𝄞mus�ic�"
);
RunConverts a u32
to a char
.
Note that all char
s are valid u32
s, and can be cast to one with
as
:
let c = '💯';
let i = c as u32;
assert_eq!(128175, i);
RunHowever, the reverse is not true: not all valid u32
s are valid
char
s. from_u32()
will return None
if the input is not a valid value
for a char
.
For an unsafe version of this function which ignores these checks, see
from_u32_unchecked
.
Examples
Basic usage:
use std::char;
let c = char::from_u32(0x2764);
assert_eq!(Some('❤'), c);
RunReturning None
when the input is not a valid char
:
use std::char;
let c = char::from_u32(0x110000);
assert_eq!(None, c);
RunConverts a u32
to a char
, ignoring validity.
Note that all char
s are valid u32
s, and can be cast to one with
as
:
let c = '💯';
let i = c as u32;
assert_eq!(128175, i);
RunHowever, the reverse is not true: not all valid u32
s are valid
char
s. from_u32_unchecked()
will ignore this, and blindly cast to
char
, possibly creating an invalid one.
Safety
This function is unsafe, as it may construct invalid char
values.
For a safe version of this function, see the from_u32
function.
Examples
Basic usage:
use std::char;
let c = unsafe { char::from_u32_unchecked(0x2764) };
assert_eq!('❤', c);
RunConverts a digit in the given radix to a char
.
A ‘radix’ here is sometimes also called a ‘base’. A radix of two indicates a binary number, a radix of ten, decimal, and a radix of sixteen, hexadecimal, to give some common values. Arbitrary radices are supported.
from_digit()
will return None
if the input is not a digit in
the given radix.
Panics
Panics if given a radix larger than 36.
Examples
Basic usage:
use std::char;
let c = char::from_digit(4, 10);
assert_eq!(Some('4'), c);
// Decimal 11 is a single digit in base 16
let c = char::from_digit(11, 16);
assert_eq!(Some('b'), c);
RunReturning None
when the input is not a digit:
use std::char;
let c = char::from_digit(20, 10);
assert_eq!(None, c);
RunPassing a large radix, causing a panic:
use std::char;
// this panics
let _c = char::from_digit(1, 37);
RunChecks if a char
is a digit in the given radix.
A ‘radix’ here is sometimes also called a ‘base’. A radix of two indicates a binary number, a radix of ten, decimal, and a radix of sixteen, hexadecimal, to give some common values. Arbitrary radices are supported.
Compared to is_numeric()
, this function only recognizes the characters
0-9
, a-z
and A-Z
.
‘Digit’ is defined to be only the following characters:
0-9
a-z
A-Z
For a more comprehensive understanding of ‘digit’, see is_numeric()
.
Panics
Panics if given a radix larger than 36.
Examples
Basic usage:
assert!('1'.is_digit(10));
assert!('f'.is_digit(16));
assert!(!'f'.is_digit(10));
RunPassing a large radix, causing a panic:
// this panics
'1'.is_digit(37);
RunConverts a char
to a digit in the given radix.
A ‘radix’ here is sometimes also called a ‘base’. A radix of two indicates a binary number, a radix of ten, decimal, and a radix of sixteen, hexadecimal, to give some common values. Arbitrary radices are supported.
‘Digit’ is defined to be only the following characters:
0-9
a-z
A-Z
Errors
Returns None
if the char
does not refer to a digit in the given radix.
Panics
Panics if given a radix larger than 36.
Examples
Basic usage:
assert_eq!('1'.to_digit(10), Some(1));
assert_eq!('f'.to_digit(16), Some(15));
RunPassing a non-digit results in failure:
assert_eq!('f'.to_digit(10), None);
assert_eq!('z'.to_digit(16), None);
RunPassing a large radix, causing a panic:
// this panics
let _ = '1'.to_digit(37);
Runpub fn escape_unicode(self) -> EscapeUnicodeⓘNotable traits for EscapeUnicodeimpl Iterator for EscapeUnicode type Item = char;
pub fn escape_unicode(self) -> EscapeUnicodeⓘNotable traits for EscapeUnicodeimpl Iterator for EscapeUnicode type Item = char;
impl Iterator for EscapeUnicode type Item = char;
Returns an iterator that yields the hexadecimal Unicode escape of a
character as char
s.
This will escape characters with the Rust syntax of the form
\u{NNNNNN}
where NNNNNN
is a hexadecimal representation.
Examples
As an iterator:
for c in '❤'.escape_unicode() {
print!("{}", c);
}
println!();
RunUsing println!
directly:
println!("{}", '❤'.escape_unicode());
RunBoth are equivalent to:
println!("\\u{{2764}}");
RunUsing to_string
:
assert_eq!('❤'.escape_unicode().to_string(), "\\u{2764}");
Run1.20.0[src]pub fn escape_debug(self) -> EscapeDebugⓘNotable traits for EscapeDebugimpl Iterator for EscapeDebug type Item = char;
pub fn escape_debug(self) -> EscapeDebugⓘNotable traits for EscapeDebugimpl Iterator for EscapeDebug type Item = char;
impl Iterator for EscapeDebug type Item = char;
Returns an iterator that yields the literal escape code of a character
as char
s.
This will escape the characters similar to the Debug
implementations
of str
or char
.
Examples
As an iterator:
for c in '\n'.escape_debug() {
print!("{}", c);
}
println!();
RunUsing println!
directly:
println!("{}", '\n'.escape_debug());
RunBoth are equivalent to:
println!("\\n");
RunUsing to_string
:
assert_eq!('\n'.escape_debug().to_string(), "\\n");
Runpub fn escape_default(self) -> EscapeDefaultⓘNotable traits for EscapeDefaultimpl Iterator for EscapeDefault type Item = char;
pub fn escape_default(self) -> EscapeDefaultⓘNotable traits for EscapeDefaultimpl Iterator for EscapeDefault type Item = char;
impl Iterator for EscapeDefault type Item = char;
Returns an iterator that yields the literal escape code of a character
as char
s.
The default is chosen with a bias toward producing literals that are legal in a variety of languages, including C++11 and similar C-family languages. The exact rules are:
- Tab is escaped as
\t
. - Carriage return is escaped as
\r
. - Line feed is escaped as
\n
. - Single quote is escaped as
\'
. - Double quote is escaped as
\"
. - Backslash is escaped as
\\
. - Any character in the ‘printable ASCII’ range
0x20
..0x7e
inclusive is not escaped. - All other characters are given hexadecimal Unicode escapes; see
escape_unicode
.
Examples
As an iterator:
for c in '"'.escape_default() {
print!("{}", c);
}
println!();
RunUsing println!
directly:
println!("{}", '"'.escape_default());
RunBoth are equivalent to:
println!("\\\"");
RunUsing to_string
:
assert_eq!('"'.escape_default().to_string(), "\\\"");
RunReturns the number of bytes this char
would need if encoded in UTF-8.
That number of bytes is always between 1 and 4, inclusive.
Examples
Basic usage:
let len = 'A'.len_utf8();
assert_eq!(len, 1);
let len = 'ß'.len_utf8();
assert_eq!(len, 2);
let len = 'ℝ'.len_utf8();
assert_eq!(len, 3);
let len = '💣'.len_utf8();
assert_eq!(len, 4);
RunThe &str
type guarantees that its contents are UTF-8, and so we can compare the length it
would take if each code point was represented as a char
vs in the &str
itself:
// as chars
let eastern = '東';
let capital = '京';
// both can be represented as three bytes
assert_eq!(3, eastern.len_utf8());
assert_eq!(3, capital.len_utf8());
// as a &str, these two are encoded in UTF-8
let tokyo = "東京";
let len = eastern.len_utf8() + capital.len_utf8();
// we can see that they take six bytes total...
assert_eq!(6, tokyo.len());
// ... just like the &str
assert_eq!(len, tokyo.len());
RunReturns the number of 16-bit code units this char
would need if
encoded in UTF-16.
See the documentation for len_utf8()
for more explanation of this
concept. This function is a mirror, but for UTF-16 instead of UTF-8.
Examples
Basic usage:
let n = 'ß'.len_utf16();
assert_eq!(n, 1);
let len = '💣'.len_utf16();
assert_eq!(len, 2);
RunEncodes this character as UTF-8 into the provided byte buffer, and then returns the subslice of the buffer that contains the encoded character.
Panics
Panics if the buffer is not large enough.
A buffer of length four is large enough to encode any char
.
Examples
In both of these examples, ‘ß’ takes two bytes to encode.
let mut b = [0; 2];
let result = 'ß'.encode_utf8(&mut b);
assert_eq!(result, "ß");
assert_eq!(result.len(), 2);
RunA buffer that’s too small:
let mut b = [0; 1];
// this panics
'ß'.encode_utf8(&mut b);
RunEncodes this character as UTF-16 into the provided u16
buffer,
and then returns the subslice of the buffer that contains the encoded character.
Panics
Panics if the buffer is not large enough.
A buffer of length 2 is large enough to encode any char
.
Examples
In both of these examples, ‘𝕊’ takes two u16
s to encode.
let mut b = [0; 2];
let result = '𝕊'.encode_utf16(&mut b);
assert_eq!(result.len(), 2);
RunA buffer that’s too small:
let mut b = [0; 1];
// this panics
'𝕊'.encode_utf16(&mut b);
RunReturns true
if this char
has the Alphabetic
property.
Alphabetic
is described in Chapter 4 (Character Properties) of the Unicode Standard and
specified in the Unicode Character Database DerivedCoreProperties.txt
.
Examples
Basic usage:
assert!('a'.is_alphabetic());
assert!('京'.is_alphabetic());
let c = '💝';
// love is many things, but it is not alphabetic
assert!(!c.is_alphabetic());
RunReturns true
if this char
has the Lowercase
property.
Lowercase
is described in Chapter 4 (Character Properties) of the Unicode Standard and
specified in the Unicode Character Database DerivedCoreProperties.txt
.
Examples
Basic usage:
assert!('a'.is_lowercase());
assert!('δ'.is_lowercase());
assert!(!'A'.is_lowercase());
assert!(!'Δ'.is_lowercase());
// The various Chinese scripts and punctuation do not have case, and so:
assert!(!'中'.is_lowercase());
assert!(!' '.is_lowercase());
RunReturns true
if this char
has the Uppercase
property.
Uppercase
is described in Chapter 4 (Character Properties) of the Unicode Standard and
specified in the Unicode Character Database DerivedCoreProperties.txt
.
Examples
Basic usage:
assert!(!'a'.is_uppercase());
assert!(!'δ'.is_uppercase());
assert!('A'.is_uppercase());
assert!('Δ'.is_uppercase());
// The various Chinese scripts and punctuation do not have case, and so:
assert!(!'中'.is_uppercase());
assert!(!' '.is_uppercase());
RunReturns true
if this char
has the White_Space
property.
White_Space
is specified in the Unicode Character Database PropList.txt
.
Examples
Basic usage:
assert!(' '.is_whitespace());
// a non-breaking space
assert!('\u{A0}'.is_whitespace());
assert!(!'越'.is_whitespace());
RunReturns true
if this char
satisfies either is_alphabetic()
or is_numeric()
.
Examples
Basic usage:
assert!('٣'.is_alphanumeric());
assert!('7'.is_alphanumeric());
assert!('৬'.is_alphanumeric());
assert!('¾'.is_alphanumeric());
assert!('①'.is_alphanumeric());
assert!('K'.is_alphanumeric());
assert!('و'.is_alphanumeric());
assert!('藏'.is_alphanumeric());
RunReturns true
if this char
has the general category for control codes.
Control codes (code points with the general category of Cc
) are described in Chapter 4
(Character Properties) of the Unicode Standard and specified in the Unicode Character
Database UnicodeData.txt
.
Examples
Basic usage:
// U+009C, STRING TERMINATOR
assert!(''.is_control());
assert!(!'q'.is_control());
RunReturns true
if this char
has one of the general categories for numbers.
The general categories for numbers (Nd
for decimal digits, Nl
for letter-like numeric
characters, and No
for other numeric characters) are specified in the Unicode Character
Database UnicodeData.txt
.
Examples
Basic usage:
assert!('٣'.is_numeric());
assert!('7'.is_numeric());
assert!('৬'.is_numeric());
assert!('¾'.is_numeric());
assert!('①'.is_numeric());
assert!(!'K'.is_numeric());
assert!(!'و'.is_numeric());
assert!(!'藏'.is_numeric());
Runpub fn to_lowercase(self) -> ToLowercaseⓘNotable traits for ToLowercaseimpl Iterator for ToLowercase type Item = char;
pub fn to_lowercase(self) -> ToLowercaseⓘNotable traits for ToLowercaseimpl Iterator for ToLowercase type Item = char;
impl Iterator for ToLowercase type Item = char;
Returns an iterator that yields the lowercase mapping of this char
as one or more
char
s.
If this char
does not have a lowercase mapping, the iterator yields the same char
.
If this char
has a one-to-one lowercase mapping given by the Unicode Character
Database UnicodeData.txt
, the iterator yields that char
.
If this char
requires special considerations (e.g. multiple char
s) the iterator yields
the char
(s) given by SpecialCasing.txt
.
This operation performs an unconditional mapping without tailoring. That is, the conversion is independent of context and language.
In the Unicode Standard, Chapter 4 (Character Properties) discusses case mapping in general and Chapter 3 (Conformance) discusses the default algorithm for case conversion.
Examples
As an iterator:
for c in 'İ'.to_lowercase() {
print!("{}", c);
}
println!();
RunUsing println!
directly:
println!("{}", 'İ'.to_lowercase());
RunBoth are equivalent to:
println!("i\u{307}");
RunUsing to_string
:
assert_eq!('C'.to_lowercase().to_string(), "c");
// Sometimes the result is more than one character:
assert_eq!('İ'.to_lowercase().to_string(), "i\u{307}");
// Characters that do not have both uppercase and lowercase
// convert into themselves.
assert_eq!('山'.to_lowercase().to_string(), "山");
Runpub fn to_uppercase(self) -> ToUppercaseⓘNotable traits for ToUppercaseimpl Iterator for ToUppercase type Item = char;
pub fn to_uppercase(self) -> ToUppercaseⓘNotable traits for ToUppercaseimpl Iterator for ToUppercase type Item = char;
impl Iterator for ToUppercase type Item = char;
Returns an iterator that yields the uppercase mapping of this char
as one or more
char
s.
If this char
does not have an uppercase mapping, the iterator yields the same char
.
If this char
has a one-to-one uppercase mapping given by the Unicode Character
Database UnicodeData.txt
, the iterator yields that char
.
If this char
requires special considerations (e.g. multiple char
s) the iterator yields
the char
(s) given by SpecialCasing.txt
.
This operation performs an unconditional mapping without tailoring. That is, the conversion is independent of context and language.
In the Unicode Standard, Chapter 4 (Character Properties) discusses case mapping in general and Chapter 3 (Conformance) discusses the default algorithm for case conversion.
Examples
As an iterator:
for c in 'ß'.to_uppercase() {
print!("{}", c);
}
println!();
RunUsing println!
directly:
println!("{}", 'ß'.to_uppercase());
RunBoth are equivalent to:
println!("SS");
RunUsing to_string
:
assert_eq!('c'.to_uppercase().to_string(), "C");
// Sometimes the result is more than one character:
assert_eq!('ß'.to_uppercase().to_string(), "SS");
// Characters that do not have both uppercase and lowercase
// convert into themselves.
assert_eq!('山'.to_uppercase().to_string(), "山");
RunNote on locale
In Turkish, the equivalent of ‘i’ in Latin has five forms instead of two:
- ‘Dotless’: I / ı, sometimes written ï
- ‘Dotted’: İ / i
Note that the lowercase dotted ‘i’ is the same as the Latin. Therefore:
let upper_i = 'i'.to_uppercase().to_string();
RunThe value of upper_i
here relies on the language of the text: if we’re
in en-US
, it should be "I"
, but if we’re in tr_TR
, it should
be "İ"
. to_uppercase()
does not take this into account, and so:
let upper_i = 'i'.to_uppercase().to_string();
assert_eq!(upper_i, "I");
Runholds across languages.
Makes a copy of the value in its ASCII upper case equivalent.
ASCII letters ‘a’ to ‘z’ are mapped to ‘A’ to ‘Z’, but non-ASCII letters are unchanged.
To uppercase the value in-place, use make_ascii_uppercase()
.
To uppercase ASCII characters in addition to non-ASCII characters, use
to_uppercase()
.
Examples
let ascii = 'a';
let non_ascii = '❤';
assert_eq!('A', ascii.to_ascii_uppercase());
assert_eq!('❤', non_ascii.to_ascii_uppercase());
RunMakes a copy of the value in its ASCII lower case equivalent.
ASCII letters ‘A’ to ‘Z’ are mapped to ‘a’ to ‘z’, but non-ASCII letters are unchanged.
To lowercase the value in-place, use make_ascii_lowercase()
.
To lowercase ASCII characters in addition to non-ASCII characters, use
to_lowercase()
.
Examples
let ascii = 'A';
let non_ascii = '❤';
assert_eq!('a', ascii.to_ascii_lowercase());
assert_eq!('❤', non_ascii.to_ascii_lowercase());
RunChecks that two values are an ASCII case-insensitive match.
Equivalent to to_ascii_lowercase(a) == to_ascii_lowercase(b)
.
Examples
let upper_a = 'A';
let lower_a = 'a';
let lower_z = 'z';
assert!(upper_a.eq_ignore_ascii_case(&lower_a));
assert!(upper_a.eq_ignore_ascii_case(&upper_a));
assert!(!upper_a.eq_ignore_ascii_case(&lower_z));
RunConverts this type to its ASCII upper case equivalent in-place.
ASCII letters ‘a’ to ‘z’ are mapped to ‘A’ to ‘Z’, but non-ASCII letters are unchanged.
To return a new uppercased value without modifying the existing one, use
to_ascii_uppercase()
.
Examples
let mut ascii = 'a';
ascii.make_ascii_uppercase();
assert_eq!('A', ascii);
RunConverts this type to its ASCII lower case equivalent in-place.
ASCII letters ‘A’ to ‘Z’ are mapped to ‘a’ to ‘z’, but non-ASCII letters are unchanged.
To return a new lowercased value without modifying the existing one, use
to_ascii_lowercase()
.
Examples
let mut ascii = 'A';
ascii.make_ascii_lowercase();
assert_eq!('a', ascii);
RunChecks if the value is an ASCII alphabetic character:
- U+0041 ‘A’ ..= U+005A ‘Z’, or
- U+0061 ‘a’ ..= U+007A ‘z’.
Examples
let uppercase_a = 'A';
let uppercase_g = 'G';
let a = 'a';
let g = 'g';
let zero = '0';
let percent = '%';
let space = ' ';
let lf = '\n';
let esc = '\x1b';
assert!(uppercase_a.is_ascii_alphabetic());
assert!(uppercase_g.is_ascii_alphabetic());
assert!(a.is_ascii_alphabetic());
assert!(g.is_ascii_alphabetic());
assert!(!zero.is_ascii_alphabetic());
assert!(!percent.is_ascii_alphabetic());
assert!(!space.is_ascii_alphabetic());
assert!(!lf.is_ascii_alphabetic());
assert!(!esc.is_ascii_alphabetic());
RunChecks if the value is an ASCII uppercase character: U+0041 ‘A’ ..= U+005A ‘Z’.
Examples
let uppercase_a = 'A';
let uppercase_g = 'G';
let a = 'a';
let g = 'g';
let zero = '0';
let percent = '%';
let space = ' ';
let lf = '\n';
let esc = '\x1b';
assert!(uppercase_a.is_ascii_uppercase());
assert!(uppercase_g.is_ascii_uppercase());
assert!(!a.is_ascii_uppercase());
assert!(!g.is_ascii_uppercase());
assert!(!zero.is_ascii_uppercase());
assert!(!percent.is_ascii_uppercase());
assert!(!space.is_ascii_uppercase());
assert!(!lf.is_ascii_uppercase());
assert!(!esc.is_ascii_uppercase());
RunChecks if the value is an ASCII lowercase character: U+0061 ‘a’ ..= U+007A ‘z’.
Examples
let uppercase_a = 'A';
let uppercase_g = 'G';
let a = 'a';
let g = 'g';
let zero = '0';
let percent = '%';
let space = ' ';
let lf = '\n';
let esc = '\x1b';
assert!(!uppercase_a.is_ascii_lowercase());
assert!(!uppercase_g.is_ascii_lowercase());
assert!(a.is_ascii_lowercase());
assert!(g.is_ascii_lowercase());
assert!(!zero.is_ascii_lowercase());
assert!(!percent.is_ascii_lowercase());
assert!(!space.is_ascii_lowercase());
assert!(!lf.is_ascii_lowercase());
assert!(!esc.is_ascii_lowercase());
RunChecks if the value is an ASCII alphanumeric character:
- U+0041 ‘A’ ..= U+005A ‘Z’, or
- U+0061 ‘a’ ..= U+007A ‘z’, or
- U+0030 ‘0’ ..= U+0039 ‘9’.
Examples
let uppercase_a = 'A';
let uppercase_g = 'G';
let a = 'a';
let g = 'g';
let zero = '0';
let percent = '%';
let space = ' ';
let lf = '\n';
let esc = '\x1b';
assert!(uppercase_a.is_ascii_alphanumeric());
assert!(uppercase_g.is_ascii_alphanumeric());
assert!(a.is_ascii_alphanumeric());
assert!(g.is_ascii_alphanumeric());
assert!(zero.is_ascii_alphanumeric());
assert!(!percent.is_ascii_alphanumeric());
assert!(!space.is_ascii_alphanumeric());
assert!(!lf.is_ascii_alphanumeric());
assert!(!esc.is_ascii_alphanumeric());
RunChecks if the value is an ASCII decimal digit: U+0030 ‘0’ ..= U+0039 ‘9’.
Examples
let uppercase_a = 'A';
let uppercase_g = 'G';
let a = 'a';
let g = 'g';
let zero = '0';
let percent = '%';
let space = ' ';
let lf = '\n';
let esc = '\x1b';
assert!(!uppercase_a.is_ascii_digit());
assert!(!uppercase_g.is_ascii_digit());
assert!(!a.is_ascii_digit());
assert!(!g.is_ascii_digit());
assert!(zero.is_ascii_digit());
assert!(!percent.is_ascii_digit());
assert!(!space.is_ascii_digit());
assert!(!lf.is_ascii_digit());
assert!(!esc.is_ascii_digit());
RunChecks if the value is an ASCII hexadecimal digit:
- U+0030 ‘0’ ..= U+0039 ‘9’, or
- U+0041 ‘A’ ..= U+0046 ‘F’, or
- U+0061 ‘a’ ..= U+0066 ‘f’.
Examples
let uppercase_a = 'A';
let uppercase_g = 'G';
let a = 'a';
let g = 'g';
let zero = '0';
let percent = '%';
let space = ' ';
let lf = '\n';
let esc = '\x1b';
assert!(uppercase_a.is_ascii_hexdigit());
assert!(!uppercase_g.is_ascii_hexdigit());
assert!(a.is_ascii_hexdigit());
assert!(!g.is_ascii_hexdigit());
assert!(zero.is_ascii_hexdigit());
assert!(!percent.is_ascii_hexdigit());
assert!(!space.is_ascii_hexdigit());
assert!(!lf.is_ascii_hexdigit());
assert!(!esc.is_ascii_hexdigit());
RunChecks if the value is an ASCII punctuation character:
- U+0021 ..= U+002F
! " # $ % & ' ( ) * + , - . /
, or - U+003A ..= U+0040
: ; < = > ? @
, or - U+005B ..= U+0060
[ \ ] ^ _ `
, or - U+007B ..= U+007E
{ | } ~
Examples
let uppercase_a = 'A';
let uppercase_g = 'G';
let a = 'a';
let g = 'g';
let zero = '0';
let percent = '%';
let space = ' ';
let lf = '\n';
let esc = '\x1b';
assert!(!uppercase_a.is_ascii_punctuation());
assert!(!uppercase_g.is_ascii_punctuation());
assert!(!a.is_ascii_punctuation());
assert!(!g.is_ascii_punctuation());
assert!(!zero.is_ascii_punctuation());
assert!(percent.is_ascii_punctuation());
assert!(!space.is_ascii_punctuation());
assert!(!lf.is_ascii_punctuation());
assert!(!esc.is_ascii_punctuation());
RunChecks if the value is an ASCII graphic character: U+0021 ‘!’ ..= U+007E ‘~’.
Examples
let uppercase_a = 'A';
let uppercase_g = 'G';
let a = 'a';
let g = 'g';
let zero = '0';
let percent = '%';
let space = ' ';
let lf = '\n';
let esc = '\x1b';
assert!(uppercase_a.is_ascii_graphic());
assert!(uppercase_g.is_ascii_graphic());
assert!(a.is_ascii_graphic());
assert!(g.is_ascii_graphic());
assert!(zero.is_ascii_graphic());
assert!(percent.is_ascii_graphic());
assert!(!space.is_ascii_graphic());
assert!(!lf.is_ascii_graphic());
assert!(!esc.is_ascii_graphic());
RunChecks if the value is an ASCII whitespace character: U+0020 SPACE, U+0009 HORIZONTAL TAB, U+000A LINE FEED, U+000C FORM FEED, or U+000D CARRIAGE RETURN.
Rust uses the WhatWG Infra Standard’s definition of ASCII whitespace. There are several other definitions in wide use. For instance, the POSIX locale includes U+000B VERTICAL TAB as well as all the above characters, but—from the very same specification—the default rule for “field splitting” in the Bourne shell considers only SPACE, HORIZONTAL TAB, and LINE FEED as whitespace.
If you are writing a program that will process an existing file format, check what that format’s definition of whitespace is before using this function.
Examples
let uppercase_a = 'A';
let uppercase_g = 'G';
let a = 'a';
let g = 'g';
let zero = '0';
let percent = '%';
let space = ' ';
let lf = '\n';
let esc = '\x1b';
assert!(!uppercase_a.is_ascii_whitespace());
assert!(!uppercase_g.is_ascii_whitespace());
assert!(!a.is_ascii_whitespace());
assert!(!g.is_ascii_whitespace());
assert!(!zero.is_ascii_whitespace());
assert!(!percent.is_ascii_whitespace());
assert!(space.is_ascii_whitespace());
assert!(lf.is_ascii_whitespace());
assert!(!esc.is_ascii_whitespace());
RunChecks if the value is an ASCII control character: U+0000 NUL ..= U+001F UNIT SEPARATOR, or U+007F DELETE. Note that most ASCII whitespace characters are control characters, but SPACE is not.
Examples
let uppercase_a = 'A';
let uppercase_g = 'G';
let a = 'a';
let g = 'g';
let zero = '0';
let percent = '%';
let space = ' ';
let lf = '\n';
let esc = '\x1b';
assert!(!uppercase_a.is_ascii_control());
assert!(!uppercase_g.is_ascii_control());
assert!(!a.is_ascii_control());
assert!(!g.is_ascii_control());
assert!(!zero.is_ascii_control());
assert!(!percent.is_ascii_control());
assert!(!space.is_ascii_control());
assert!(lf.is_ascii_control());
assert!(esc.is_ascii_control());
RunTrait Implementations
use inherent methods instead
Container type for copied ASCII characters.
use inherent methods instead
Checks if the value is within the ASCII range. Read more
use inherent methods instead
Makes a copy of the value in its ASCII upper case equivalent. Read more
use inherent methods instead
Makes a copy of the value in its ASCII lower case equivalent. Read more
use inherent methods instead
Checks that two values are an ASCII case-insensitive match. Read more
use inherent methods instead
Converts this type to its ASCII upper case equivalent in-place. Read more
use inherent methods instead
Converts this type to its ASCII lower case equivalent in-place. Read more
Maps a byte in 0x00..=0xFF to a char
whose code point has the same value, in U+0000..=U+00FF.
Unicode is designed such that this effectively decodes bytes with the character encoding that IANA calls ISO-8859-1. This encoding is compatible with ASCII.
Note that this is different from ISO/IEC 8859-1 a.k.a. ISO 8859-1 (with one less hyphen), which leaves some “blanks”, byte values that are not assigned to any character. ISO-8859-1 (the IANA one) assigns them to the C0 and C1 control codes.
Note that this is also different from Windows-1252 a.k.a. code page 1252, which is a superset ISO/IEC 8859-1 that assigns some (not all!) blanks to punctuation and various Latin characters.
To confuse things further, on the Web
ascii
, iso-8859-1
, and windows-1252
are all aliases
for a superset of Windows-1252 that fills the remaining blanks with corresponding
C0 and C1 control codes.
This method returns an ordering between self
and other
values if one exists. Read more
This method tests less than (for self
and other
) and is used by the <
operator. Read more
This method tests less than or equal to (for self
and other
) and is used by the <=
operator. Read more
This method tests greater than or equal to (for self
and other
) and is used by the >=
operator. Read more
Searches for chars that are equal to a given char
.
Examples
assert_eq!("Hello world".find('o'), Some(4));
RunChecks whether the pattern matches anywhere in the haystack
Checks whether the pattern matches at the front of the haystack
Removes the pattern from the front of haystack, if it matches.
pub fn is_suffix_of(self, haystack: &'a str) -> bool where
<char as Pattern<'a>>::Searcher: ReverseSearcher<'a>,
pub fn is_suffix_of(self, haystack: &'a str) -> bool where
<char as Pattern<'a>>::Searcher: ReverseSearcher<'a>,
Checks whether the pattern matches at the back of the haystack
pub fn strip_suffix_of(self, haystack: &'a str) -> Option<&'a str> where
<char as Pattern<'a>>::Searcher: ReverseSearcher<'a>,
pub fn strip_suffix_of(self, haystack: &'a str) -> Option<&'a str> where
<char as Pattern<'a>>::Searcher: ReverseSearcher<'a>,
Removes the pattern from the back of haystack, if it matches.