Struct std::time::SystemTime1.8.0[][src]

pub struct SystemTime(_);
Expand description

A measurement of the system clock, useful for talking to external entities like the file system or other processes.

Distinct from the Instant type, this time measurement is not monotonic. This means that you can save a file to the file system, then save another file to the file system, and the second file has a SystemTime measurement earlier than the first. In other words, an operation that happens after another operation in real time may have an earlier SystemTime!

Consequently, comparing two SystemTime instances to learn about the duration between them returns a Result instead of an infallible Duration to indicate that this sort of time drift may happen and needs to be handled.

Although a SystemTime cannot be directly inspected, the UNIX_EPOCH constant is provided in this module as an anchor in time to learn information about a SystemTime. By calculating the duration from this fixed point in time, a SystemTime can be converted to a human-readable time, or perhaps some other string representation.

The size of a SystemTime struct may vary depending on the target operating system.

Example:

use std::time::{Duration, SystemTime};
use std::thread::sleep;

fn main() {
   let now = SystemTime::now();

   // we sleep for 2 seconds
   sleep(Duration::new(2, 0));
   match now.elapsed() {
       Ok(elapsed) => {
           // it prints '2'
           println!("{}", elapsed.as_secs());
       }
       Err(e) => {
           // an error occurred!
           println!("Error: {:?}", e);
       }
   }
}
Run

Underlying System calls

Currently, the following system calls are being used to get the current time using now():

Disclaimer: These system calls might change over time.

Note: mathematical operations like add may panic if the underlying structure cannot represent the new point in time.

Implementations

An anchor in time which can be used to create new SystemTime instances or learn about where in time a SystemTime lies.

This constant is defined to be “1970-01-01 00:00:00 UTC” on all systems with respect to the system clock. Using duration_since on an existing SystemTime instance can tell how far away from this point in time a measurement lies, and using UNIX_EPOCH + duration can be used to create a SystemTime instance to represent another fixed point in time.

Examples
use std::time::SystemTime;

match SystemTime::now().duration_since(SystemTime::UNIX_EPOCH) {
    Ok(n) => println!("1970-01-01 00:00:00 UTC was {} seconds ago!", n.as_secs()),
    Err(_) => panic!("SystemTime before UNIX EPOCH!"),
}
Run

Returns the system time corresponding to “now”.

Examples
use std::time::SystemTime;

let sys_time = SystemTime::now();
Run

Returns the amount of time elapsed from an earlier point in time.

This function may fail because measurements taken earlier are not guaranteed to always be before later measurements (due to anomalies such as the system clock being adjusted either forwards or backwards). Instant can be used to measure elapsed time without this risk of failure.

If successful, Ok(Duration) is returned where the duration represents the amount of time elapsed from the specified measurement to this one.

Returns an Err if earlier is later than self, and the error contains how far from self the time is.

Examples
use std::time::SystemTime;

let sys_time = SystemTime::now();
let new_sys_time = SystemTime::now();
let difference = new_sys_time.duration_since(sys_time)
    .expect("Clock may have gone backwards");
println!("{:?}", difference);
Run

Returns the difference between the clock time when this system time was created, and the current clock time.

This function may fail as the underlying system clock is susceptible to drift and updates (e.g., the system clock could go backwards), so this function might not always succeed. If successful, Ok(Duration) is returned where the duration represents the amount of time elapsed from this time measurement to the current time.

To measure elapsed time reliably, use Instant instead.

Returns an Err if self is later than the current system time, and the error contains how far from the current system time self is.

Examples
use std::thread::sleep;
use std::time::{Duration, SystemTime};

let sys_time = SystemTime::now();
let one_sec = Duration::from_secs(1);
sleep(one_sec);
assert!(sys_time.elapsed().unwrap() >= one_sec);
Run

Returns Some(t) where t is the time self + duration if t can be represented as SystemTime (which means it’s inside the bounds of the underlying data structure), None otherwise.

Returns Some(t) where t is the time self - duration if t can be represented as SystemTime (which means it’s inside the bounds of the underlying data structure), None otherwise.

Trait Implementations

Panics

This function may panic if the resulting point in time cannot be represented by the underlying data structure. See SystemTime::checked_add for a version without panic.

The resulting type after applying the + operator.

Performs the += operation. Read more

Returns a copy of the value. Read more

Performs copy-assignment from source. Read more

Formats the value using the given formatter. Read more

Feeds this value into the given Hasher. Read more

Feeds a slice of this type into the given Hasher. Read more

This method returns an Ordering between self and other. Read more

Compares and returns the maximum of two values. Read more

Compares and returns the minimum of two values. Read more

Restrict a value to a certain interval. Read more

This method tests for self and other values to be equal, and is used by ==. Read more

This method tests for !=.

This method returns an ordering between self and other values if one exists. Read more

This method tests less than (for self and other) and is used by the < operator. Read more

This method tests less than or equal to (for self and other) and is used by the <= operator. Read more

This method tests greater than (for self and other) and is used by the > operator. Read more

This method tests greater than or equal to (for self and other) and is used by the >= operator. Read more

The resulting type after applying the - operator.

Performs the - operation. Read more

Performs the -= operation. Read more

Auto Trait Implementations

Blanket Implementations

Gets the TypeId of self. Read more

Immutably borrows from an owned value. Read more

Mutably borrows from an owned value. Read more

Performs the conversion.

Performs the conversion.

The resulting type after obtaining ownership.

Creates owned data from borrowed data, usually by cloning. Read more

🔬 This is a nightly-only experimental API. (toowned_clone_into #41263)

Uses borrowed data to replace owned data, usually by cloning. Read more

The type returned in the event of a conversion error.

Performs the conversion.

The type returned in the event of a conversion error.

Performs the conversion.