Struct std::ffi::CStr1.0.0[][src]

pub struct CStr { /* fields omitted */ }
Expand description

Representation of a borrowed C string.

This type represents a borrowed reference to a nul-terminated array of bytes. It can be constructed safely from a &[u8] slice, or unsafely from a raw *const c_char. It can then be converted to a Rust &str by performing UTF-8 validation, or into an owned CString.

&CStr is to CString as &str is to String: the former in each pair are borrowed references; the latter are owned strings.

Note that this structure is not repr(C) and is not recommended to be placed in the signatures of FFI functions. Instead, safe wrappers of FFI functions may leverage the unsafe CStr::from_ptr constructor to provide a safe interface to other consumers.

Examples

Inspecting a foreign C string:

use std::ffi::CStr;
use std::os::raw::c_char;

extern "C" { fn my_string() -> *const c_char; }

unsafe {
    let slice = CStr::from_ptr(my_string());
    println!("string buffer size without nul terminator: {}", slice.to_bytes().len());
}
Run

Passing a Rust-originating C string:

use std::ffi::{CString, CStr};
use std::os::raw::c_char;

fn work(data: &CStr) {
    extern "C" { fn work_with(data: *const c_char); }

    unsafe { work_with(data.as_ptr()) }
}

let s = CString::new("data data data data").expect("CString::new failed");
work(&s);
Run

Converting a foreign C string into a Rust String:

use std::ffi::CStr;
use std::os::raw::c_char;

extern "C" { fn my_string() -> *const c_char; }

fn my_string_safe() -> String {
    unsafe {
        CStr::from_ptr(my_string()).to_string_lossy().into_owned()
    }
}

println!("string: {}", my_string_safe());
Run

Implementations

Wraps a raw C string with a safe C string wrapper.

This function will wrap the provided ptr with a CStr wrapper, which allows inspection and interoperation of non-owned C strings. The total size of the raw C string must be smaller than isize::MAX bytes in memory due to calling the slice::from_raw_parts function. This method is unsafe for a number of reasons:

  • There is no guarantee to the validity of ptr.
  • The returned lifetime is not guaranteed to be the actual lifetime of ptr.
  • There is no guarantee that the memory pointed to by ptr contains a valid nul terminator byte at the end of the string.
  • It is not guaranteed that the memory pointed by ptr won’t change before the CStr has been destroyed.

Note: This operation is intended to be a 0-cost cast but it is currently implemented with an up-front calculation of the length of the string. This is not guaranteed to always be the case.

Examples
use std::ffi::CStr;
use std::os::raw::c_char;

extern "C" {
    fn my_string() -> *const c_char;
}

unsafe {
    let slice = CStr::from_ptr(my_string());
    println!("string returned: {}", slice.to_str().unwrap());
}
Run

Creates a C string wrapper from a byte slice.

This function will cast the provided bytes to a CStr wrapper after ensuring that the byte slice is nul-terminated and does not contain any interior nul bytes.

Examples
use std::ffi::CStr;

let cstr = CStr::from_bytes_with_nul(b"hello\0");
assert!(cstr.is_ok());
Run

Creating a CStr without a trailing nul terminator is an error:

use std::ffi::CStr;

let cstr = CStr::from_bytes_with_nul(b"hello");
assert!(cstr.is_err());
Run

Creating a CStr with an interior nul byte is an error:

use std::ffi::CStr;

let cstr = CStr::from_bytes_with_nul(b"he\0llo\0");
assert!(cstr.is_err());
Run

Unsafely creates a C string wrapper from a byte slice.

This function will cast the provided bytes to a CStr wrapper without performing any sanity checks. The provided slice must be nul-terminated and not contain any interior nul bytes.

Examples
use std::ffi::{CStr, CString};

unsafe {
    let cstring = CString::new("hello").expect("CString::new failed");
    let cstr = CStr::from_bytes_with_nul_unchecked(cstring.to_bytes_with_nul());
    assert_eq!(cstr, &*cstring);
}
Run

Returns the inner pointer to this C string.

The returned pointer will be valid for as long as self is, and points to a contiguous region of memory terminated with a 0 byte to represent the end of the string.

WARNING

The returned pointer is read-only; writing to it (including passing it to C code that writes to it) causes undefined behavior.

It is your responsibility to make sure that the underlying memory is not freed too early. For example, the following code will cause undefined behavior when ptr is used inside the unsafe block:

use std::ffi::CString;

let ptr = CString::new("Hello").expect("CString::new failed").as_ptr();
unsafe {
    // `ptr` is dangling
    *ptr;
}
Run

This happens because the pointer returned by as_ptr does not carry any lifetime information and the CString is deallocated immediately after the CString::new("Hello").expect("CString::new failed").as_ptr() expression is evaluated. To fix the problem, bind the CString to a local variable:

use std::ffi::CString;

let hello = CString::new("Hello").expect("CString::new failed");
let ptr = hello.as_ptr();
unsafe {
    // `ptr` is valid because `hello` is in scope
    *ptr;
}
Run

This way, the lifetime of the CString in hello encompasses the lifetime of ptr and the unsafe block.

Converts this C string to a byte slice.

The returned slice will not contain the trailing nul terminator that this C string has.

Note: This method is currently implemented as a constant-time cast, but it is planned to alter its definition in the future to perform the length calculation whenever this method is called.

Examples
use std::ffi::CStr;

let cstr = CStr::from_bytes_with_nul(b"foo\0").expect("CStr::from_bytes_with_nul failed");
assert_eq!(cstr.to_bytes(), b"foo");
Run

Converts this C string to a byte slice containing the trailing 0 byte.

This function is the equivalent of CStr::to_bytes except that it will retain the trailing nul terminator instead of chopping it off.

Note: This method is currently implemented as a 0-cost cast, but it is planned to alter its definition in the future to perform the length calculation whenever this method is called.

Examples
use std::ffi::CStr;

let cstr = CStr::from_bytes_with_nul(b"foo\0").expect("CStr::from_bytes_with_nul failed");
assert_eq!(cstr.to_bytes_with_nul(), b"foo\0");
Run

Yields a &str slice if the CStr contains valid UTF-8.

If the contents of the CStr are valid UTF-8 data, this function will return the corresponding &str slice. Otherwise, it will return an error with details of where UTF-8 validation failed.

Examples
use std::ffi::CStr;

let cstr = CStr::from_bytes_with_nul(b"foo\0").expect("CStr::from_bytes_with_nul failed");
assert_eq!(cstr.to_str(), Ok("foo"));
Run

Converts a CStr into a Cow<str>.

If the contents of the CStr are valid UTF-8 data, this function will return a Cow::Borrowed(&str) with the corresponding &str slice. Otherwise, it will replace any invalid UTF-8 sequences with U+FFFD REPLACEMENT CHARACTER and return a Cow::Owned(&str) with the result.

Examples

Calling to_string_lossy on a CStr containing valid UTF-8:

use std::borrow::Cow;
use std::ffi::CStr;

let cstr = CStr::from_bytes_with_nul(b"Hello World\0")
                 .expect("CStr::from_bytes_with_nul failed");
assert_eq!(cstr.to_string_lossy(), Cow::Borrowed("Hello World"));
Run

Calling to_string_lossy on a CStr containing invalid UTF-8:

use std::borrow::Cow;
use std::ffi::CStr;

let cstr = CStr::from_bytes_with_nul(b"Hello \xF0\x90\x80World\0")
                 .expect("CStr::from_bytes_with_nul failed");
assert_eq!(
    cstr.to_string_lossy(),
    Cow::Owned(String::from("Hello �World")) as Cow<'_, str>
);
Run

Converts a Box<CStr> into a CString without copying or allocating.

Examples
use std::ffi::CString;

let c_string = CString::new(b"foo".to_vec()).expect("CString::new failed");
let boxed = c_string.into_boxed_c_str();
assert_eq!(boxed.into_c_string(), CString::new("foo").expect("CString::new failed"));
Run

Trait Implementations

Performs the conversion.

Performs the conversion.

Immutably borrows from an owned value. Read more

Formats the value using the given formatter. Read more

Returns the “default value” for a type. Read more

Performs the conversion.

Performs the conversion.

Performs the conversion.

Performs the conversion.

Converts a CStr into a borrowed Cow without copying or allocating.

Feeds this value into the given Hasher. Read more

Feeds a slice of this type into the given Hasher. Read more

The returned type after indexing.

Performs the indexing (container[index]) operation. Read more

This method returns an Ordering between self and other. Read more

Compares and returns the maximum of two values. Read more

Compares and returns the minimum of two values. Read more

Restrict a value to a certain interval. Read more

This method tests for self and other values to be equal, and is used by ==. Read more

This method tests for !=.

This method returns an ordering between self and other values if one exists. Read more

This method tests less than (for self and other) and is used by the < operator. Read more

This method tests less than or equal to (for self and other) and is used by the <= operator. Read more

This method tests greater than (for self and other) and is used by the > operator. Read more

This method tests greater than or equal to (for self and other) and is used by the >= operator. Read more

The resulting type after obtaining ownership.

Creates owned data from borrowed data, usually by cloning. Read more

🔬 This is a nightly-only experimental API. (toowned_clone_into #41263)

Uses borrowed data to replace owned data, usually by cloning. Read more

Auto Trait Implementations

Blanket Implementations

Gets the TypeId of self. Read more

Immutably borrows from an owned value. Read more

Mutably borrows from an owned value. Read more