Trait core::clone::Clone 1.0.0[−][src]
pub trait Clone: Sized {
fn clone(&self) -> Self;
fn clone_from(&mut self, source: &Self) { ... }
}
Expand description
A common trait for the ability to explicitly duplicate an object.
Differs from Copy
in that Copy
is implicit and an inexpensive bit-wise copy, while
Clone
is always explicit and may or may not be expensive. In order to enforce
these characteristics, Rust does not allow you to reimplement Copy
, but you
may reimplement Clone
and run arbitrary code.
Since Clone
is more general than Copy
, you can automatically make anything
Copy
be Clone
as well.
Derivable
This trait can be used with #[derive]
if all fields are Clone
. The derive
d
implementation of Clone
calls clone
on each field.
For a generic struct, #[derive]
implements Clone
conditionally by adding bound Clone
on
generic parameters.
// `derive` implements Clone for Reading<T> when T is Clone.
#[derive(Clone)]
struct Reading<T> {
frequency: T,
}
RunHow can I implement Clone
?
Types that are Copy
should have a trivial implementation of Clone
. More formally:
if T: Copy
, x: T
, and y: &T
, then let x = y.clone();
is equivalent to let x = *y;
.
Manual implementations should be careful to uphold this invariant; however, unsafe code
must not rely on it to ensure memory safety.
An example is a generic struct holding a function pointer. In this case, the
implementation of Clone
cannot be derive
d, but can be implemented as:
struct Generate<T>(fn() -> T);
impl<T> Copy for Generate<T> {}
impl<T> Clone for Generate<T> {
fn clone(&self) -> Self {
*self
}
}
RunAdditional implementors
In addition to the implementors listed below,
the following types also implement Clone
:
- Function item types (i.e., the distinct types defined for each function)
- Function pointer types (e.g.,
fn() -> i32
) - Tuple types, if each component also implements
Clone
(e.g.,()
,(i32, bool)
) - Closure types, if they capture no value from the environment
or if all such captured values implement
Clone
themselves. Note that variables captured by shared reference always implementClone
(even if the referent doesn’t), while variables captured by mutable reference never implementClone
.
Required methods
Provided methods
fn clone_from(&mut self, source: &Self)
fn clone_from(&mut self, source: &Self)
Performs copy-assignment from source
.
a.clone_from(&b)
is equivalent to a = b.clone()
in functionality,
but can be overridden to reuse the resources of a
to avoid unnecessary
allocations.
Implementors
impl<I, U> Clone for Flatten<I> where
I: Clone + Iterator<Item: IntoIterator<IntoIter = U, Item = U::Item>>,
U: Clone + Iterator,
impl<I: Clone, U, F: Clone> Clone for FlatMap<I, U, F> where
U: Clone + IntoIterator<IntoIter: Clone>,
impl<T, P> Clone for core::slice::SplitInclusive<'_, T, P> where
P: Clone + FnMut(&T) -> bool,
impl<T, const LANES: usize> Clone for Mask<T, LANES> where
T: MaskElement,
LaneCount<LANES>: SupportedLaneCount,
impl<T, const LANES: usize> Clone for Simd<T, LANES> where
T: SimdElement,
LaneCount<LANES>: SupportedLaneCount,
Shared references can be cloned, but mutable references cannot!
Shared references can be cloned, but mutable references cannot!