Struct std::collections::HashMap
1.0.0 · source · [−]pub struct HashMap<K, V, S = RandomState> { /* private fields */ }Expand description
A hash map implemented with quadratic probing and SIMD lookup.
By default, HashMap uses a hashing algorithm selected to provide
resistance against HashDoS attacks. The algorithm is randomly seeded, and a
reasonable best-effort is made to generate this seed from a high quality,
secure source of randomness provided by the host without blocking the
program. Because of this, the randomness of the seed depends on the output
quality of the system’s random number generator when the seed is created.
In particular, seeds generated when the system’s entropy pool is abnormally
low such as during system boot may be of a lower quality.
The default hashing algorithm is currently SipHash 1-3, though this is subject to change at any point in the future. While its performance is very competitive for medium sized keys, other hashing algorithms will outperform it for small keys such as integers as well as large keys such as long strings, though those algorithms will typically not protect against attacks such as HashDoS.
The hashing algorithm can be replaced on a per-HashMap basis using the
default, with_hasher, and with_capacity_and_hasher methods.
There are many alternative hashing algorithms available on crates.io.
It is required that the keys implement the Eq and Hash traits, although
this can frequently be achieved by using #[derive(PartialEq, Eq, Hash)].
If you implement these yourself, it is important that the following
property holds:
k1 == k2 -> hash(k1) == hash(k2)In other words, if two keys are equal, their hashes must be equal.
It is a logic error for a key to be modified in such a way that the key’s
hash, as determined by the Hash trait, or its equality, as determined by
the Eq trait, changes while it is in the map. This is normally only
possible through Cell, RefCell, global state, I/O, or unsafe code.
The behavior resulting from such a logic error is not specified, but will
not result in undefined behavior. This could include panics, incorrect results,
aborts, memory leaks, and non-termination.
The hash table implementation is a Rust port of Google’s SwissTable. The original C++ version of SwissTable can be found here, and this CppCon talk gives an overview of how the algorithm works.
Examples
use std::collections::HashMap;
// Type inference lets us omit an explicit type signature (which
// would be `HashMap<String, String>` in this example).
let mut book_reviews = HashMap::new();
// Review some books.
book_reviews.insert(
"Adventures of Huckleberry Finn".to_string(),
"My favorite book.".to_string(),
);
book_reviews.insert(
"Grimms' Fairy Tales".to_string(),
"Masterpiece.".to_string(),
);
book_reviews.insert(
"Pride and Prejudice".to_string(),
"Very enjoyable.".to_string(),
);
book_reviews.insert(
"The Adventures of Sherlock Holmes".to_string(),
"Eye lyked it alot.".to_string(),
);
// Check for a specific one.
// When collections store owned values (String), they can still be
// queried using references (&str).
if !book_reviews.contains_key("Les Misérables") {
println!("We've got {} reviews, but Les Misérables ain't one.",
book_reviews.len());
}
// oops, this review has a lot of spelling mistakes, let's delete it.
book_reviews.remove("The Adventures of Sherlock Holmes");
// Look up the values associated with some keys.
let to_find = ["Pride and Prejudice", "Alice's Adventure in Wonderland"];
for &book in &to_find {
match book_reviews.get(book) {
Some(review) => println!("{book}: {review}"),
None => println!("{book} is unreviewed.")
}
}
// Look up the value for a key (will panic if the key is not found).
println!("Review for Jane: {}", book_reviews["Pride and Prejudice"]);
// Iterate over everything.
for (book, review) in &book_reviews {
println!("{book}: \"{review}\"");
}RunA HashMap with a known list of items can be initialized from an array:
use std::collections::HashMap;
let solar_distance = HashMap::from([
("Mercury", 0.4),
("Venus", 0.7),
("Earth", 1.0),
("Mars", 1.5),
]);RunHashMap implements an Entry API, which allows
for complex methods of getting, setting, updating and removing keys and
their values:
use std::collections::HashMap;
// type inference lets us omit an explicit type signature (which
// would be `HashMap<&str, u8>` in this example).
let mut player_stats = HashMap::new();
fn random_stat_buff() -> u8 {
// could actually return some random value here - let's just return
// some fixed value for now
42
}
// insert a key only if it doesn't already exist
player_stats.entry("health").or_insert(100);
// insert a key using a function that provides a new value only if it
// doesn't already exist
player_stats.entry("defence").or_insert_with(random_stat_buff);
// update a key, guarding against the key possibly not being set
let stat = player_stats.entry("attack").or_insert(100);
*stat += random_stat_buff();RunThe easiest way to use HashMap with a custom key type is to derive Eq and Hash.
We must also derive PartialEq.
use std::collections::HashMap;
#[derive(Hash, Eq, PartialEq, Debug)]
struct Viking {
name: String,
country: String,
}
impl Viking {
/// Creates a new Viking.
fn new(name: &str, country: &str) -> Viking {
Viking { name: name.to_string(), country: country.to_string() }
}
}
// Use a HashMap to store the vikings' health points.
let vikings = HashMap::from([
(Viking::new("Einar", "Norway"), 25),
(Viking::new("Olaf", "Denmark"), 24),
(Viking::new("Harald", "Iceland"), 12),
]);
// Use derived implementation to print the status of the vikings.
for (viking, health) in &vikings {
println!("{viking:?} has {health} hp");
}RunImplementations
impl<K, V> HashMap<K, V, RandomState>
source
impl<K, V> HashMap<K, V, RandomState>
sourcepub fn new() -> HashMap<K, V, RandomState>
source
pub fn new() -> HashMap<K, V, RandomState>
sourcepub fn with_capacity(capacity: usize) -> HashMap<K, V, RandomState>
source
pub fn with_capacity(capacity: usize) -> HashMap<K, V, RandomState>
sourceimpl<K, V, S> HashMap<K, V, S>
source
impl<K, V, S> HashMap<K, V, S>
sourcepub fn with_hasher(hash_builder: S) -> HashMap<K, V, S>
1.7.0 · source
pub fn with_hasher(hash_builder: S) -> HashMap<K, V, S>
1.7.0 · sourceCreates an empty HashMap which will use the given hash builder to hash
keys.
The created map has the default initial capacity.
Warning: hash_builder is normally randomly generated, and
is designed to allow HashMaps to be resistant to attacks that
cause many collisions and very poor performance. Setting it
manually using this function can expose a DoS attack vector.
The hash_builder passed should implement the BuildHasher trait for
the HashMap to be useful, see its documentation for details.
Examples
use std::collections::HashMap;
use std::collections::hash_map::RandomState;
let s = RandomState::new();
let mut map = HashMap::with_hasher(s);
map.insert(1, 2);Runpub fn with_capacity_and_hasher(
capacity: usize,
hash_builder: S
) -> HashMap<K, V, S>
1.7.0 · source
pub fn with_capacity_and_hasher(
capacity: usize,
hash_builder: S
) -> HashMap<K, V, S>
1.7.0 · sourceCreates an empty HashMap with the specified capacity, using hash_builder
to hash the keys.
The hash map will be able to hold at least capacity elements without
reallocating. If capacity is 0, the hash map will not allocate.
Warning: hash_builder is normally randomly generated, and
is designed to allow HashMaps to be resistant to attacks that
cause many collisions and very poor performance. Setting it
manually using this function can expose a DoS attack vector.
The hash_builder passed should implement the BuildHasher trait for
the HashMap to be useful, see its documentation for details.
Examples
use std::collections::HashMap;
use std::collections::hash_map::RandomState;
let s = RandomState::new();
let mut map = HashMap::with_capacity_and_hasher(10, s);
map.insert(1, 2);Runpub fn capacity(&self) -> usize
source
pub fn capacity(&self) -> usize
sourceReturns the number of elements the map can hold without reallocating.
This number is a lower bound; the HashMap<K, V> might be able to hold
more, but is guaranteed to be able to hold at least this many.
Examples
use std::collections::HashMap;
let map: HashMap<i32, i32> = HashMap::with_capacity(100);
assert!(map.capacity() >= 100);Runpub fn keys(&self) -> Keys<'_, K, V>ⓘNotable traits for Keys<'a, K, V>impl<'a, K, V> Iterator for Keys<'a, K, V> type Item = &'a K;
source
pub fn keys(&self) -> Keys<'_, K, V>ⓘNotable traits for Keys<'a, K, V>impl<'a, K, V> Iterator for Keys<'a, K, V> type Item = &'a K;
sourcepub fn into_keys(self) -> IntoKeys<K, V>ⓘNotable traits for IntoKeys<K, V>impl<K, V> Iterator for IntoKeys<K, V> type Item = K;
1.54.0 · source
pub fn into_keys(self) -> IntoKeys<K, V>ⓘNotable traits for IntoKeys<K, V>impl<K, V> Iterator for IntoKeys<K, V> type Item = K;
1.54.0 · sourceCreates a consuming iterator visiting all the keys in arbitrary order.
The map cannot be used after calling this.
The iterator element type is K.
Examples
use std::collections::HashMap;
let map = HashMap::from([
("a", 1),
("b", 2),
("c", 3),
]);
let mut vec: Vec<&str> = map.into_keys().collect();
// The `IntoKeys` iterator produces keys in arbitrary order, so the
// keys must be sorted to test them against a sorted array.
vec.sort_unstable();
assert_eq!(vec, ["a", "b", "c"]);Runpub fn values(&self) -> Values<'_, K, V>ⓘNotable traits for Values<'a, K, V>impl<'a, K, V> Iterator for Values<'a, K, V> type Item = &'a V;
source
pub fn values(&self) -> Values<'_, K, V>ⓘNotable traits for Values<'a, K, V>impl<'a, K, V> Iterator for Values<'a, K, V> type Item = &'a V;
sourcepub fn values_mut(&mut self) -> ValuesMut<'_, K, V>ⓘNotable traits for ValuesMut<'a, K, V>impl<'a, K, V> Iterator for ValuesMut<'a, K, V> type Item = &'a mut V;
1.10.0 · source
pub fn values_mut(&mut self) -> ValuesMut<'_, K, V>ⓘNotable traits for ValuesMut<'a, K, V>impl<'a, K, V> Iterator for ValuesMut<'a, K, V> type Item = &'a mut V;
1.10.0 · sourceAn iterator visiting all values mutably in arbitrary order.
The iterator element type is &'a mut V.
Examples
use std::collections::HashMap;
let mut map = HashMap::from([
("a", 1),
("b", 2),
("c", 3),
]);
for val in map.values_mut() {
*val = *val + 10;
}
for val in map.values() {
println!("{val}");
}Runpub fn into_values(self) -> IntoValues<K, V>ⓘNotable traits for IntoValues<K, V>impl<K, V> Iterator for IntoValues<K, V> type Item = V;
1.54.0 · source
pub fn into_values(self) -> IntoValues<K, V>ⓘNotable traits for IntoValues<K, V>impl<K, V> Iterator for IntoValues<K, V> type Item = V;
1.54.0 · sourceCreates a consuming iterator visiting all the values in arbitrary order.
The map cannot be used after calling this.
The iterator element type is V.
Examples
use std::collections::HashMap;
let map = HashMap::from([
("a", 1),
("b", 2),
("c", 3),
]);
let mut vec: Vec<i32> = map.into_values().collect();
// The `IntoValues` iterator produces values in arbitrary order, so
// the values must be sorted to test them against a sorted array.
vec.sort_unstable();
assert_eq!(vec, [1, 2, 3]);Runpub fn iter(&self) -> Iter<'_, K, V>ⓘNotable traits for Iter<'a, K, V>impl<'a, K, V> Iterator for Iter<'a, K, V> type Item = (&'a K, &'a V);
source
pub fn iter(&self) -> Iter<'_, K, V>ⓘNotable traits for Iter<'a, K, V>impl<'a, K, V> Iterator for Iter<'a, K, V> type Item = (&'a K, &'a V);
sourcepub fn iter_mut(&mut self) -> IterMut<'_, K, V>ⓘNotable traits for IterMut<'a, K, V>impl<'a, K, V> Iterator for IterMut<'a, K, V> type Item = (&'a K, &'a mut V);
source
pub fn iter_mut(&mut self) -> IterMut<'_, K, V>ⓘNotable traits for IterMut<'a, K, V>impl<'a, K, V> Iterator for IterMut<'a, K, V> type Item = (&'a K, &'a mut V);
sourceAn iterator visiting all key-value pairs in arbitrary order,
with mutable references to the values.
The iterator element type is (&'a K, &'a mut V).
Examples
use std::collections::HashMap;
let mut map = HashMap::from([
("a", 1),
("b", 2),
("c", 3),
]);
// Update all values
for (_, val) in map.iter_mut() {
*val *= 2;
}
for (key, val) in &map {
println!("key: {key} val: {val}");
}Runpub fn drain(&mut self) -> Drain<'_, K, V>ⓘNotable traits for Drain<'a, K, V>impl<'a, K, V> Iterator for Drain<'a, K, V> type Item = (K, V);
1.6.0 · source
pub fn drain(&mut self) -> Drain<'_, K, V>ⓘNotable traits for Drain<'a, K, V>impl<'a, K, V> Iterator for Drain<'a, K, V> type Item = (K, V);
1.6.0 · sourceClears the map, returning all key-value pairs as an iterator. Keeps the allocated memory for reuse.
If the returned iterator is dropped before being fully consumed, it drops the remaining key-value pairs. The returned iterator keeps a mutable borrow on the vector to optimize its implementation.
Examples
use std::collections::HashMap;
let mut a = HashMap::new();
a.insert(1, "a");
a.insert(2, "b");
for (k, v) in a.drain().take(1) {
assert!(k == 1 || k == 2);
assert!(v == "a" || v == "b");
}
assert!(a.is_empty());Runpub fn drain_filter<F>(&mut self, pred: F) -> DrainFilter<'_, K, V, F>ⓘNotable traits for DrainFilter<'_, K, V, F>impl<K, V, F> Iterator for DrainFilter<'_, K, V, F> where
F: FnMut(&K, &mut V) -> bool, type Item = (K, V); where
F: FnMut(&K, &mut V) -> bool,
source
pub fn drain_filter<F>(&mut self, pred: F) -> DrainFilter<'_, K, V, F>ⓘNotable traits for DrainFilter<'_, K, V, F>impl<K, V, F> Iterator for DrainFilter<'_, K, V, F> where
F: FnMut(&K, &mut V) -> bool, type Item = (K, V); where
F: FnMut(&K, &mut V) -> bool,
sourceF: FnMut(&K, &mut V) -> bool, type Item = (K, V);
Creates an iterator which uses a closure to determine if an element should be removed.
If the closure returns true, the element is removed from the map and yielded. If the closure returns false, or panics, the element remains in the map and will not be yielded.
Note that drain_filter lets you mutate every value in the filter closure, regardless of
whether you choose to keep or remove it.
If the iterator is only partially consumed or not consumed at all, each of the remaining elements will still be subjected to the closure and removed and dropped if it returns true.
It is unspecified how many more elements will be subjected to the closure
if a panic occurs in the closure, or a panic occurs while dropping an element,
or if the DrainFilter value is leaked.
Examples
Splitting a map into even and odd keys, reusing the original map:
#![feature(hash_drain_filter)]
use std::collections::HashMap;
let mut map: HashMap<i32, i32> = (0..8).map(|x| (x, x)).collect();
let drained: HashMap<i32, i32> = map.drain_filter(|k, _v| k % 2 == 0).collect();
let mut evens = drained.keys().copied().collect::<Vec<_>>();
let mut odds = map.keys().copied().collect::<Vec<_>>();
evens.sort();
odds.sort();
assert_eq!(evens, vec![0, 2, 4, 6]);
assert_eq!(odds, vec![1, 3, 5, 7]);Runpub fn retain<F>(&mut self, f: F) where
F: FnMut(&K, &mut V) -> bool,
1.18.0 · source
pub fn retain<F>(&mut self, f: F) where
F: FnMut(&K, &mut V) -> bool,
1.18.0 · sourceRetains only the elements specified by the predicate.
In other words, remove all pairs (k, v) for which f(&k, &mut v) returns false.
The elements are visited in unsorted (and unspecified) order.
Examples
use std::collections::HashMap;
let mut map: HashMap<i32, i32> = (0..8).map(|x| (x, x*10)).collect();
map.retain(|&k, _| k % 2 == 0);
assert_eq!(map.len(), 4);Runpub fn hasher(&self) -> &S
1.9.0 · source
pub fn hasher(&self) -> &S
1.9.0 · sourceReturns a reference to the map’s BuildHasher.
Examples
use std::collections::HashMap;
use std::collections::hash_map::RandomState;
let hasher = RandomState::new();
let map: HashMap<i32, i32> = HashMap::with_hasher(hasher);
let hasher: &RandomState = map.hasher();Runimpl<K, V, S> HashMap<K, V, S> where
K: Eq + Hash,
S: BuildHasher,
source
impl<K, V, S> HashMap<K, V, S> where
K: Eq + Hash,
S: BuildHasher,
sourcepub fn reserve(&mut self, additional: usize)
source
pub fn reserve(&mut self, additional: usize)
sourceReserves capacity for at least additional more elements to be inserted
in the HashMap. The collection may reserve more space to avoid
frequent reallocations.
Panics
Panics if the new allocation size overflows usize.
Examples
use std::collections::HashMap;
let mut map: HashMap<&str, i32> = HashMap::new();
map.reserve(10);Runpub fn try_reserve(&mut self, additional: usize) -> Result<(), TryReserveError>
1.57.0 · source
pub fn try_reserve(&mut self, additional: usize) -> Result<(), TryReserveError>
1.57.0 · sourceTries to reserve capacity for at least additional more elements to be inserted
in the given HashMap<K, V>. The collection may reserve more space to avoid
frequent reallocations.
Errors
If the capacity overflows, or the allocator reports a failure, then an error is returned.
Examples
use std::collections::HashMap;
let mut map: HashMap<&str, isize> = HashMap::new();
map.try_reserve(10).expect("why is the test harness OOMing on 10 bytes?");Runpub fn shrink_to_fit(&mut self)
source
pub fn shrink_to_fit(&mut self)
sourceShrinks the capacity of the map as much as possible. It will drop down as much as possible while maintaining the internal rules and possibly leaving some space in accordance with the resize policy.
Examples
use std::collections::HashMap;
let mut map: HashMap<i32, i32> = HashMap::with_capacity(100);
map.insert(1, 2);
map.insert(3, 4);
assert!(map.capacity() >= 100);
map.shrink_to_fit();
assert!(map.capacity() >= 2);Runpub fn shrink_to(&mut self, min_capacity: usize)
1.56.0 · source
pub fn shrink_to(&mut self, min_capacity: usize)
1.56.0 · sourceShrinks the capacity of the map with a lower limit. It will drop down no lower than the supplied limit while maintaining the internal rules and possibly leaving some space in accordance with the resize policy.
If the current capacity is less than the lower limit, this is a no-op.
Examples
use std::collections::HashMap;
let mut map: HashMap<i32, i32> = HashMap::with_capacity(100);
map.insert(1, 2);
map.insert(3, 4);
assert!(map.capacity() >= 100);
map.shrink_to(10);
assert!(map.capacity() >= 10);
map.shrink_to(0);
assert!(map.capacity() >= 2);Runpub fn entry(&mut self, key: K) -> Entry<'_, K, V>
source
pub fn entry(&mut self, key: K) -> Entry<'_, K, V>
sourceGets the given key’s corresponding entry in the map for in-place manipulation.
Examples
use std::collections::HashMap;
let mut letters = HashMap::new();
for ch in "a short treatise on fungi".chars() {
let counter = letters.entry(ch).or_insert(0);
*counter += 1;
}
assert_eq!(letters[&'s'], 2);
assert_eq!(letters[&'t'], 3);
assert_eq!(letters[&'u'], 1);
assert_eq!(letters.get(&'y'), None);Runpub fn get<Q: ?Sized>(&self, k: &Q) -> Option<&V> where
K: Borrow<Q>,
Q: Hash + Eq,
source
pub fn get<Q: ?Sized>(&self, k: &Q) -> Option<&V> where
K: Borrow<Q>,
Q: Hash + Eq,
sourceReturns a reference to the value corresponding to the key.
The key may be any borrowed form of the map’s key type, but
Hash and Eq on the borrowed form must match those for
the key type.
Examples
use std::collections::HashMap;
let mut map = HashMap::new();
map.insert(1, "a");
assert_eq!(map.get(&1), Some(&"a"));
assert_eq!(map.get(&2), None);Runpub fn get_key_value<Q: ?Sized>(&self, k: &Q) -> Option<(&K, &V)> where
K: Borrow<Q>,
Q: Hash + Eq,
1.40.0 · source
pub fn get_key_value<Q: ?Sized>(&self, k: &Q) -> Option<(&K, &V)> where
K: Borrow<Q>,
Q: Hash + Eq,
1.40.0 · sourceReturns the key-value pair corresponding to the supplied key.
The supplied key may be any borrowed form of the map’s key type, but
Hash and Eq on the borrowed form must match those for
the key type.
Examples
use std::collections::HashMap;
let mut map = HashMap::new();
map.insert(1, "a");
assert_eq!(map.get_key_value(&1), Some((&1, &"a")));
assert_eq!(map.get_key_value(&2), None);Runpub fn contains_key<Q: ?Sized>(&self, k: &Q) -> bool where
K: Borrow<Q>,
Q: Hash + Eq,
source
pub fn contains_key<Q: ?Sized>(&self, k: &Q) -> bool where
K: Borrow<Q>,
Q: Hash + Eq,
sourceReturns true if the map contains a value for the specified key.
The key may be any borrowed form of the map’s key type, but
Hash and Eq on the borrowed form must match those for
the key type.
Examples
use std::collections::HashMap;
let mut map = HashMap::new();
map.insert(1, "a");
assert_eq!(map.contains_key(&1), true);
assert_eq!(map.contains_key(&2), false);Runpub fn get_mut<Q: ?Sized>(&mut self, k: &Q) -> Option<&mut V> where
K: Borrow<Q>,
Q: Hash + Eq,
source
pub fn get_mut<Q: ?Sized>(&mut self, k: &Q) -> Option<&mut V> where
K: Borrow<Q>,
Q: Hash + Eq,
sourceReturns a mutable reference to the value corresponding to the key.
The key may be any borrowed form of the map’s key type, but
Hash and Eq on the borrowed form must match those for
the key type.
Examples
use std::collections::HashMap;
let mut map = HashMap::new();
map.insert(1, "a");
if let Some(x) = map.get_mut(&1) {
*x = "b";
}
assert_eq!(map[&1], "b");Runpub fn insert(&mut self, k: K, v: V) -> Option<V>
source
pub fn insert(&mut self, k: K, v: V) -> Option<V>
sourceInserts a key-value pair into the map.
If the map did not have this key present, None is returned.
If the map did have this key present, the value is updated, and the old
value is returned. The key is not updated, though; this matters for
types that can be == without being identical. See the module-level
documentation for more.
Examples
use std::collections::HashMap;
let mut map = HashMap::new();
assert_eq!(map.insert(37, "a"), None);
assert_eq!(map.is_empty(), false);
map.insert(37, "b");
assert_eq!(map.insert(37, "c"), Some("b"));
assert_eq!(map[&37], "c");Runpub fn try_insert(
&mut self,
key: K,
value: V
) -> Result<&mut V, OccupiedError<'_, K, V>>
source
pub fn try_insert(
&mut self,
key: K,
value: V
) -> Result<&mut V, OccupiedError<'_, K, V>>
sourceTries to insert a key-value pair into the map, and returns a mutable reference to the value in the entry.
If the map already had this key present, nothing is updated, and an error containing the occupied entry and the value is returned.
Examples
Basic usage:
#![feature(map_try_insert)]
use std::collections::HashMap;
let mut map = HashMap::new();
assert_eq!(map.try_insert(37, "a").unwrap(), &"a");
let err = map.try_insert(37, "b").unwrap_err();
assert_eq!(err.entry.key(), &37);
assert_eq!(err.entry.get(), &"a");
assert_eq!(err.value, "b");Runpub fn remove<Q: ?Sized>(&mut self, k: &Q) -> Option<V> where
K: Borrow<Q>,
Q: Hash + Eq,
source
pub fn remove<Q: ?Sized>(&mut self, k: &Q) -> Option<V> where
K: Borrow<Q>,
Q: Hash + Eq,
sourceRemoves a key from the map, returning the value at the key if the key was previously in the map.
The key may be any borrowed form of the map’s key type, but
Hash and Eq on the borrowed form must match those for
the key type.
Examples
use std::collections::HashMap;
let mut map = HashMap::new();
map.insert(1, "a");
assert_eq!(map.remove(&1), Some("a"));
assert_eq!(map.remove(&1), None);Runpub fn remove_entry<Q: ?Sized>(&mut self, k: &Q) -> Option<(K, V)> where
K: Borrow<Q>,
Q: Hash + Eq,
1.27.0 · source
pub fn remove_entry<Q: ?Sized>(&mut self, k: &Q) -> Option<(K, V)> where
K: Borrow<Q>,
Q: Hash + Eq,
1.27.0 · sourceRemoves a key from the map, returning the stored key and value if the key was previously in the map.
The key may be any borrowed form of the map’s key type, but
Hash and Eq on the borrowed form must match those for
the key type.
Examples
use std::collections::HashMap;
let mut map = HashMap::new();
map.insert(1, "a");
assert_eq!(map.remove_entry(&1), Some((1, "a")));
assert_eq!(map.remove(&1), None);Runimpl<K, V, S> HashMap<K, V, S> where
S: BuildHasher,
source
impl<K, V, S> HashMap<K, V, S> where
S: BuildHasher,
sourcepub fn raw_entry_mut(&mut self) -> RawEntryBuilderMut<'_, K, V, S>
source
pub fn raw_entry_mut(&mut self) -> RawEntryBuilderMut<'_, K, V, S>
sourceCreates a raw entry builder for the HashMap.
Raw entries provide the lowest level of control for searching and manipulating a map. They must be manually initialized with a hash and then manually searched. After this, insertions into a vacant entry still require an owned key to be provided.
Raw entries are useful for such exotic situations as:
- Hash memoization
- Deferring the creation of an owned key until it is known to be required
- Using a search key that doesn’t work with the Borrow trait
- Using custom comparison logic without newtype wrappers
Because raw entries provide much more low-level control, it’s much easier
to put the HashMap into an inconsistent state which, while memory-safe,
will cause the map to produce seemingly random results. Higher-level and
more foolproof APIs like entry should be preferred when possible.
In particular, the hash used to initialized the raw entry must still be consistent with the hash of the key that is ultimately stored in the entry. This is because implementations of HashMap may need to recompute hashes when resizing, at which point only the keys are available.
Raw entries give mutable access to the keys. This must not be used to modify how the key would compare or hash, as the map will not re-evaluate where the key should go, meaning the keys may become “lost” if their location does not reflect their state. For instance, if you change a key so that the map now contains keys which compare equal, search may start acting erratically, with two keys randomly masking each other. Implementations are free to assume this doesn’t happen (within the limits of memory-safety).
pub fn raw_entry(&self) -> RawEntryBuilder<'_, K, V, S>
source
pub fn raw_entry(&self) -> RawEntryBuilder<'_, K, V, S>
sourceCreates a raw immutable entry builder for the HashMap.
Raw entries provide the lowest level of control for searching and manipulating a map. They must be manually initialized with a hash and then manually searched.
This is useful for
- Hash memoization
- Using a search key that doesn’t work with the Borrow trait
- Using custom comparison logic without newtype wrappers
Unless you are in such a situation, higher-level and more foolproof APIs like
get should be preferred.
Immutable raw entries have very limited use; you might instead want raw_entry_mut.
Trait Implementations
impl<'a, K, V, S> Extend<(&'a K, &'a V)> for HashMap<K, V, S> where
K: Eq + Hash + Copy,
V: Copy,
S: BuildHasher,
1.4.0 · source
impl<'a, K, V, S> Extend<(&'a K, &'a V)> for HashMap<K, V, S> where
K: Eq + Hash + Copy,
V: Copy,
S: BuildHasher,
1.4.0 · sourcefn extend<T: IntoIterator<Item = (&'a K, &'a V)>>(&mut self, iter: T)
source
fn extend<T: IntoIterator<Item = (&'a K, &'a V)>>(&mut self, iter: T)
sourceExtends a collection with the contents of an iterator. Read more
fn extend_one(&mut self, (k, v): (&'a K, &'a V))
source
fn extend_one(&mut self, (k, v): (&'a K, &'a V))
sourceExtends a collection with exactly one element.
fn extend_reserve(&mut self, additional: usize)
source
fn extend_reserve(&mut self, additional: usize)
sourceReserves capacity in a collection for the given number of additional elements. Read more
impl<K, V, S> Extend<(K, V)> for HashMap<K, V, S> where
K: Eq + Hash,
S: BuildHasher,
source
impl<K, V, S> Extend<(K, V)> for HashMap<K, V, S> where
K: Eq + Hash,
S: BuildHasher,
sourceInserts all new key-values from the iterator and replaces values with existing keys with new values returned from the iterator.
fn extend<T: IntoIterator<Item = (K, V)>>(&mut self, iter: T)
source
fn extend<T: IntoIterator<Item = (K, V)>>(&mut self, iter: T)
sourceExtends a collection with the contents of an iterator. Read more
fn extend_reserve(&mut self, additional: usize)
source
fn extend_reserve(&mut self, additional: usize)
sourceReserves capacity in a collection for the given number of additional elements. Read more
impl<K, V, const N: usize> From<[(K, V); N]> for HashMap<K, V, RandomState> where
K: Eq + Hash,
1.56.0 · source
impl<K, V, const N: usize> From<[(K, V); N]> for HashMap<K, V, RandomState> where
K: Eq + Hash,
1.56.0 · sourceimpl<K, V, S> FromIterator<(K, V)> for HashMap<K, V, S> where
K: Eq + Hash,
S: BuildHasher + Default,
source
impl<K, V, S> FromIterator<(K, V)> for HashMap<K, V, S> where
K: Eq + Hash,
S: BuildHasher + Default,
sourceimpl<K, Q: ?Sized, V, S> Index<&'_ Q> for HashMap<K, V, S> where
K: Eq + Hash + Borrow<Q>,
Q: Eq + Hash,
S: BuildHasher,
source
impl<K, Q: ?Sized, V, S> Index<&'_ Q> for HashMap<K, V, S> where
K: Eq + Hash + Borrow<Q>,
Q: Eq + Hash,
S: BuildHasher,
sourceimpl<'a, K, V, S> IntoIterator for &'a HashMap<K, V, S>
source
impl<'a, K, V, S> IntoIterator for &'a HashMap<K, V, S>
sourceimpl<'a, K, V, S> IntoIterator for &'a mut HashMap<K, V, S>
source
impl<'a, K, V, S> IntoIterator for &'a mut HashMap<K, V, S>
sourceimpl<K, V, S> IntoIterator for HashMap<K, V, S>
source
impl<K, V, S> IntoIterator for HashMap<K, V, S>
sourcefn into_iter(self) -> IntoIter<K, V>ⓘNotable traits for IntoIter<K, V>impl<K, V> Iterator for IntoIter<K, V> type Item = (K, V);
source
fn into_iter(self) -> IntoIter<K, V>ⓘNotable traits for IntoIter<K, V>impl<K, V> Iterator for IntoIter<K, V> type Item = (K, V);
sourceCreates a consuming iterator, that is, one that moves each key-value pair out of the map in arbitrary order. The map cannot be used after calling this.
Examples
use std::collections::HashMap;
let map = HashMap::from([
("a", 1),
("b", 2),
("c", 3),
]);
// Not possible with .iter()
let vec: Vec<(&str, i32)> = map.into_iter().collect();Runimpl<K, V, S> PartialEq<HashMap<K, V, S>> for HashMap<K, V, S> where
K: Eq + Hash,
V: PartialEq,
S: BuildHasher,
source
impl<K, V, S> PartialEq<HashMap<K, V, S>> for HashMap<K, V, S> where
K: Eq + Hash,
V: PartialEq,
S: BuildHasher,
sourceimpl<K, V, S> Eq for HashMap<K, V, S> where
K: Eq + Hash,
V: Eq,
S: BuildHasher,
sourceimpl<K, V, S> UnwindSafe for HashMap<K, V, S> where
K: UnwindSafe,
V: UnwindSafe,
S: UnwindSafe,
1.36.0 · sourceAuto Trait Implementations
impl<K, V, S> RefUnwindSafe for HashMap<K, V, S> where
K: RefUnwindSafe,
S: RefUnwindSafe,
V: RefUnwindSafe,
impl<K, V, S> Send for HashMap<K, V, S> where
K: Send,
S: Send,
V: Send,
impl<K, V, S> Sync for HashMap<K, V, S> where
K: Sync,
S: Sync,
V: Sync,
impl<K, V, S> Unpin for HashMap<K, V, S> where
K: Unpin,
S: Unpin,
V: Unpin,
Blanket Implementations
impl<T> BorrowMut<T> for T where
T: ?Sized,
source
impl<T> BorrowMut<T> for T where
T: ?Sized,
sourcefn borrow_mut(&mut self) -> &mut T
const: unstable · source
fn borrow_mut(&mut self) -> &mut T
const: unstable · sourceMutably borrows from an owned value. Read more
impl<T> ToOwned for T where
T: Clone,
source
impl<T> ToOwned for T where
T: Clone,
sourcetype Owned = T
type Owned = T
The resulting type after obtaining ownership.
fn clone_into(&self, target: &mut T)
source
fn clone_into(&self, target: &mut T)
sourceUses borrowed data to replace owned data, usually by cloning. Read more