Struct std::collections::HashSet
1.0.0·
source ·
[−]pub struct HashSet<T, S = RandomState> { /* fields omitted */ }
Expand description
A hash set implemented as a HashMap
where the value is ()
.
As with the HashMap
type, a HashSet
requires that the elements
implement the Eq
and Hash
traits. This can frequently be achieved by
using #[derive(PartialEq, Eq, Hash)]
. If you implement these yourself,
it is important that the following property holds:
k1 == k2 -> hash(k1) == hash(k2)
In other words, if two keys are equal, their hashes must be equal.
It is a logic error for an item to be modified in such a way that the
item’s hash, as determined by the Hash
trait, or its equality, as
determined by the Eq
trait, changes while it is in the set. This is
normally only possible through Cell
, RefCell
, global state, I/O, or
unsafe code. The behavior resulting from such a logic error is not
specified (it could include panics, incorrect results, aborts, memory
leaks, or non-termination) but will not be undefined behavior.
Examples
use std::collections::HashSet;
// Type inference lets us omit an explicit type signature (which
// would be `HashSet<String>` in this example).
let mut books = HashSet::new();
// Add some books.
books.insert("A Dance With Dragons".to_string());
books.insert("To Kill a Mockingbird".to_string());
books.insert("The Odyssey".to_string());
books.insert("The Great Gatsby".to_string());
// Check for a specific one.
if !books.contains("The Winds of Winter") {
println!("We have {} books, but The Winds of Winter ain't one.",
books.len());
}
// Remove a book.
books.remove("The Odyssey");
// Iterate over everything.
for book in &books {
println!("{}", book);
}
RunThe easiest way to use HashSet
with a custom type is to derive
Eq
and Hash
. We must also derive PartialEq
, this will in the
future be implied by Eq
.
use std::collections::HashSet;
#[derive(Hash, Eq, PartialEq, Debug)]
struct Viking {
name: String,
power: usize,
}
let mut vikings = HashSet::new();
vikings.insert(Viking { name: "Einar".to_string(), power: 9 });
vikings.insert(Viking { name: "Einar".to_string(), power: 9 });
vikings.insert(Viking { name: "Olaf".to_string(), power: 4 });
vikings.insert(Viking { name: "Harald".to_string(), power: 8 });
// Use derived implementation to print the vikings.
for x in &vikings {
println!("{:?}", x);
}
RunA HashSet
with a known list of items can be initialized from an array:
use std::collections::HashSet;
let viking_names = HashSet::from(["Einar", "Olaf", "Harald"]);
RunImplementations
Creates an empty HashSet
with the specified capacity.
The hash set will be able to hold at least capacity
elements without
reallocating. If capacity
is 0, the hash set will not allocate.
Examples
use std::collections::HashSet;
let set: HashSet<i32> = HashSet::with_capacity(10);
assert!(set.capacity() >= 10);
Runpub fn drain_filter<F>(&mut self, pred: F) -> DrainFilter<'_, T, F>ⓘNotable traits for DrainFilter<'_, K, F>impl<K, F> Iterator for DrainFilter<'_, K, F> where
F: FnMut(&K) -> bool, type Item = K;
where
F: FnMut(&T) -> bool,
pub fn drain_filter<F>(&mut self, pred: F) -> DrainFilter<'_, T, F>ⓘNotable traits for DrainFilter<'_, K, F>impl<K, F> Iterator for DrainFilter<'_, K, F> where
F: FnMut(&K) -> bool, type Item = K;
where
F: FnMut(&T) -> bool,
impl<K, F> Iterator for DrainFilter<'_, K, F> where
F: FnMut(&K) -> bool, type Item = K;
Creates an iterator which uses a closure to determine if a value should be removed.
If the closure returns true, then the value is removed and yielded. If the closure returns false, the value will remain in the list and will not be yielded by the iterator.
If the iterator is only partially consumed or not consumed at all, each of the remaining values will still be subjected to the closure and removed and dropped if it returns true.
It is unspecified how many more values will be subjected to the closure
if a panic occurs in the closure, or if a panic occurs while dropping a value, or if the
DrainFilter
itself is leaked.
Examples
Splitting a set into even and odd values, reusing the original set:
#![feature(hash_drain_filter)]
use std::collections::HashSet;
let mut set: HashSet<i32> = (0..8).collect();
let drained: HashSet<i32> = set.drain_filter(|v| v % 2 == 0).collect();
let mut evens = drained.into_iter().collect::<Vec<_>>();
let mut odds = set.into_iter().collect::<Vec<_>>();
evens.sort();
odds.sort();
assert_eq!(evens, vec![0, 2, 4, 6]);
assert_eq!(odds, vec![1, 3, 5, 7]);
RunRetains only the elements specified by the predicate.
In other words, remove all elements e
such that f(&e)
returns false
.
The elements are visited in unsorted (and unspecified) order.
Examples
use std::collections::HashSet;
let mut set = HashSet::from([1, 2, 3, 4, 5, 6]);
set.retain(|&k| k % 2 == 0);
assert_eq!(set.len(), 3);
RunCreates a new empty hash set which will use the given hasher to hash keys.
The hash set is also created with the default initial capacity.
Warning: hasher
is normally randomly generated, and
is designed to allow HashSet
s to be resistant to attacks that
cause many collisions and very poor performance. Setting it
manually using this function can expose a DoS attack vector.
The hash_builder
passed should implement the BuildHasher
trait for
the HashMap to be useful, see its documentation for details.
Examples
use std::collections::HashSet;
use std::collections::hash_map::RandomState;
let s = RandomState::new();
let mut set = HashSet::with_hasher(s);
set.insert(2);
RunCreates an empty HashSet
with the specified capacity, using
hasher
to hash the keys.
The hash set will be able to hold at least capacity
elements without
reallocating. If capacity
is 0, the hash set will not allocate.
Warning: hasher
is normally randomly generated, and
is designed to allow HashSet
s to be resistant to attacks that
cause many collisions and very poor performance. Setting it
manually using this function can expose a DoS attack vector.
The hash_builder
passed should implement the BuildHasher
trait for
the HashMap to be useful, see its documentation for details.
Examples
use std::collections::HashSet;
use std::collections::hash_map::RandomState;
let s = RandomState::new();
let mut set = HashSet::with_capacity_and_hasher(10, s);
set.insert(1);
RunReturns a reference to the set’s BuildHasher
.
Examples
use std::collections::HashSet;
use std::collections::hash_map::RandomState;
let hasher = RandomState::new();
let set: HashSet<i32> = HashSet::with_hasher(hasher);
let hasher: &RandomState = set.hasher();
RunReserves capacity for at least additional
more elements to be inserted
in the HashSet
. The collection may reserve more space to avoid
frequent reallocations.
Panics
Panics if the new allocation size overflows usize
.
Examples
use std::collections::HashSet;
let mut set: HashSet<i32> = HashSet::new();
set.reserve(10);
assert!(set.capacity() >= 10);
RunTries to reserve capacity for at least additional
more elements to be inserted
in the given HashSet<K, V>
. The collection may reserve more space to avoid
frequent reallocations.
Errors
If the capacity overflows, or the allocator reports a failure, then an error is returned.
Examples
use std::collections::HashSet;
let mut set: HashSet<i32> = HashSet::new();
set.try_reserve(10).expect("why is the test harness OOMing on 10 bytes?");
RunShrinks the capacity of the set as much as possible. It will drop down as much as possible while maintaining the internal rules and possibly leaving some space in accordance with the resize policy.
Examples
use std::collections::HashSet;
let mut set = HashSet::with_capacity(100);
set.insert(1);
set.insert(2);
assert!(set.capacity() >= 100);
set.shrink_to_fit();
assert!(set.capacity() >= 2);
RunShrinks the capacity of the set with a lower limit. It will drop down no lower than the supplied limit while maintaining the internal rules and possibly leaving some space in accordance with the resize policy.
If the current capacity is less than the lower limit, this is a no-op.
Examples
use std::collections::HashSet;
let mut set = HashSet::with_capacity(100);
set.insert(1);
set.insert(2);
assert!(set.capacity() >= 100);
set.shrink_to(10);
assert!(set.capacity() >= 10);
set.shrink_to(0);
assert!(set.capacity() >= 2);
Runpub fn difference<'a>(
&'a self,
other: &'a HashSet<T, S>
) -> Difference<'a, T, S>ⓘNotable traits for Difference<'a, T, S>impl<'a, T, S> Iterator for Difference<'a, T, S> where
T: Eq + Hash,
S: BuildHasher, type Item = &'a T;
pub fn difference<'a>(
&'a self,
other: &'a HashSet<T, S>
) -> Difference<'a, T, S>ⓘNotable traits for Difference<'a, T, S>impl<'a, T, S> Iterator for Difference<'a, T, S> where
T: Eq + Hash,
S: BuildHasher, type Item = &'a T;
impl<'a, T, S> Iterator for Difference<'a, T, S> where
T: Eq + Hash,
S: BuildHasher, type Item = &'a T;
Visits the values representing the difference,
i.e., the values that are in self
but not in other
.
Examples
use std::collections::HashSet;
let a = HashSet::from([1, 2, 3]);
let b = HashSet::from([4, 2, 3, 4]);
// Can be seen as `a - b`.
for x in a.difference(&b) {
println!("{}", x); // Print 1
}
let diff: HashSet<_> = a.difference(&b).collect();
assert_eq!(diff, [1].iter().collect());
// Note that difference is not symmetric,
// and `b - a` means something else:
let diff: HashSet<_> = b.difference(&a).collect();
assert_eq!(diff, [4].iter().collect());
Runpub fn symmetric_difference<'a>(
&'a self,
other: &'a HashSet<T, S>
) -> SymmetricDifference<'a, T, S>ⓘNotable traits for SymmetricDifference<'a, T, S>impl<'a, T, S> Iterator for SymmetricDifference<'a, T, S> where
T: Eq + Hash,
S: BuildHasher, type Item = &'a T;
pub fn symmetric_difference<'a>(
&'a self,
other: &'a HashSet<T, S>
) -> SymmetricDifference<'a, T, S>ⓘNotable traits for SymmetricDifference<'a, T, S>impl<'a, T, S> Iterator for SymmetricDifference<'a, T, S> where
T: Eq + Hash,
S: BuildHasher, type Item = &'a T;
impl<'a, T, S> Iterator for SymmetricDifference<'a, T, S> where
T: Eq + Hash,
S: BuildHasher, type Item = &'a T;
Visits the values representing the symmetric difference,
i.e., the values that are in self
or in other
but not in both.
Examples
use std::collections::HashSet;
let a = HashSet::from([1, 2, 3]);
let b = HashSet::from([4, 2, 3, 4]);
// Print 1, 4 in arbitrary order.
for x in a.symmetric_difference(&b) {
println!("{}", x);
}
let diff1: HashSet<_> = a.symmetric_difference(&b).collect();
let diff2: HashSet<_> = b.symmetric_difference(&a).collect();
assert_eq!(diff1, diff2);
assert_eq!(diff1, [1, 4].iter().collect());
Runpub fn intersection<'a>(
&'a self,
other: &'a HashSet<T, S>
) -> Intersection<'a, T, S>ⓘNotable traits for Intersection<'a, T, S>impl<'a, T, S> Iterator for Intersection<'a, T, S> where
T: Eq + Hash,
S: BuildHasher, type Item = &'a T;
pub fn intersection<'a>(
&'a self,
other: &'a HashSet<T, S>
) -> Intersection<'a, T, S>ⓘNotable traits for Intersection<'a, T, S>impl<'a, T, S> Iterator for Intersection<'a, T, S> where
T: Eq + Hash,
S: BuildHasher, type Item = &'a T;
impl<'a, T, S> Iterator for Intersection<'a, T, S> where
T: Eq + Hash,
S: BuildHasher, type Item = &'a T;
Visits the values representing the intersection,
i.e., the values that are both in self
and other
.
Examples
use std::collections::HashSet;
let a = HashSet::from([1, 2, 3]);
let b = HashSet::from([4, 2, 3, 4]);
// Print 2, 3 in arbitrary order.
for x in a.intersection(&b) {
println!("{}", x);
}
let intersection: HashSet<_> = a.intersection(&b).collect();
assert_eq!(intersection, [2, 3].iter().collect());
RunVisits the values representing the union,
i.e., all the values in self
or other
, without duplicates.
Examples
use std::collections::HashSet;
let a = HashSet::from([1, 2, 3]);
let b = HashSet::from([4, 2, 3, 4]);
// Print 1, 2, 3, 4 in arbitrary order.
for x in a.union(&b) {
println!("{}", x);
}
let union: HashSet<_> = a.union(&b).collect();
assert_eq!(union, [1, 2, 3, 4].iter().collect());
RunReturns true
if the set contains a value.
The value may be any borrowed form of the set’s value type, but
Hash
and Eq
on the borrowed form must match those for
the value type.
Examples
use std::collections::HashSet;
let set = HashSet::from([1, 2, 3]);
assert_eq!(set.contains(&1), true);
assert_eq!(set.contains(&4), false);
RunReturns a reference to the value in the set, if any, that is equal to the given value.
The value may be any borrowed form of the set’s value type, but
Hash
and Eq
on the borrowed form must match those for
the value type.
Examples
use std::collections::HashSet;
let set = HashSet::from([1, 2, 3]);
assert_eq!(set.get(&2), Some(&2));
assert_eq!(set.get(&4), None);
RunInserts the given value
into the set if it is not present, then
returns a reference to the value in the set.
Examples
#![feature(hash_set_entry)]
use std::collections::HashSet;
let mut set = HashSet::from([1, 2, 3]);
assert_eq!(set.len(), 3);
assert_eq!(set.get_or_insert(2), &2);
assert_eq!(set.get_or_insert(100), &100);
assert_eq!(set.len(), 4); // 100 was inserted
Runpub fn get_or_insert_owned<Q: ?Sized>(&mut self, value: &Q) -> &T where
T: Borrow<Q>,
Q: Hash + Eq + ToOwned<Owned = T>,
pub fn get_or_insert_owned<Q: ?Sized>(&mut self, value: &Q) -> &T where
T: Borrow<Q>,
Q: Hash + Eq + ToOwned<Owned = T>,
Inserts an owned copy of the given value
into the set if it is not
present, then returns a reference to the value in the set.
Examples
#![feature(hash_set_entry)]
use std::collections::HashSet;
let mut set: HashSet<String> = ["cat", "dog", "horse"]
.iter().map(|&pet| pet.to_owned()).collect();
assert_eq!(set.len(), 3);
for &pet in &["cat", "dog", "fish"] {
let value = set.get_or_insert_owned(pet);
assert_eq!(value, pet);
}
assert_eq!(set.len(), 4); // a new "fish" was inserted
Runpub fn get_or_insert_with<Q: ?Sized, F>(&mut self, value: &Q, f: F) -> &T where
T: Borrow<Q>,
Q: Hash + Eq,
F: FnOnce(&Q) -> T,
pub fn get_or_insert_with<Q: ?Sized, F>(&mut self, value: &Q, f: F) -> &T where
T: Borrow<Q>,
Q: Hash + Eq,
F: FnOnce(&Q) -> T,
Inserts a value computed from f
into the set if the given value
is
not present, then returns a reference to the value in the set.
Examples
#![feature(hash_set_entry)]
use std::collections::HashSet;
let mut set: HashSet<String> = ["cat", "dog", "horse"]
.iter().map(|&pet| pet.to_owned()).collect();
assert_eq!(set.len(), 3);
for &pet in &["cat", "dog", "fish"] {
let value = set.get_or_insert_with(pet, str::to_owned);
assert_eq!(value, pet);
}
assert_eq!(set.len(), 4); // a new "fish" was inserted
RunReturns true
if self
has no elements in common with other
.
This is equivalent to checking for an empty intersection.
Examples
use std::collections::HashSet;
let a = HashSet::from([1, 2, 3]);
let mut b = HashSet::new();
assert_eq!(a.is_disjoint(&b), true);
b.insert(4);
assert_eq!(a.is_disjoint(&b), true);
b.insert(1);
assert_eq!(a.is_disjoint(&b), false);
RunReturns true
if the set is a subset of another,
i.e., other
contains at least all the values in self
.
Examples
use std::collections::HashSet;
let sup = HashSet::from([1, 2, 3]);
let mut set = HashSet::new();
assert_eq!(set.is_subset(&sup), true);
set.insert(2);
assert_eq!(set.is_subset(&sup), true);
set.insert(4);
assert_eq!(set.is_subset(&sup), false);
RunReturns true
if the set is a superset of another,
i.e., self
contains at least all the values in other
.
Examples
use std::collections::HashSet;
let sub = HashSet::from([1, 2]);
let mut set = HashSet::new();
assert_eq!(set.is_superset(&sub), false);
set.insert(0);
set.insert(1);
assert_eq!(set.is_superset(&sub), false);
set.insert(2);
assert_eq!(set.is_superset(&sub), true);
RunAdds a value to the set.
If the set did not have this value present, true
is returned.
If the set did have this value present, false
is returned.
Examples
use std::collections::HashSet;
let mut set = HashSet::new();
assert_eq!(set.insert(2), true);
assert_eq!(set.insert(2), false);
assert_eq!(set.len(), 1);
RunAdds a value to the set, replacing the existing value, if any, that is equal to the given one. Returns the replaced value.
Examples
use std::collections::HashSet;
let mut set = HashSet::new();
set.insert(Vec::<i32>::new());
assert_eq!(set.get(&[][..]).unwrap().capacity(), 0);
set.replace(Vec::with_capacity(10));
assert_eq!(set.get(&[][..]).unwrap().capacity(), 10);
RunRemoves a value from the set. Returns whether the value was present in the set.
The value may be any borrowed form of the set’s value type, but
Hash
and Eq
on the borrowed form must match those for
the value type.
Examples
use std::collections::HashSet;
let mut set = HashSet::new();
set.insert(2);
assert_eq!(set.remove(&2), true);
assert_eq!(set.remove(&2), false);
RunRemoves and returns the value in the set, if any, that is equal to the given one.
The value may be any borrowed form of the set’s value type, but
Hash
and Eq
on the borrowed form must match those for
the value type.
Examples
use std::collections::HashSet;
let mut set = HashSet::from([1, 2, 3]);
assert_eq!(set.take(&2), Some(2));
assert_eq!(set.take(&2), None);
RunTrait Implementations
Returns the intersection of self
and rhs
as a new HashSet<T, S>
.
Examples
use std::collections::HashSet;
let a = HashSet::from([1, 2, 3]);
let b = HashSet::from([2, 3, 4]);
let set = &a & &b;
let mut i = 0;
let expected = [2, 3];
for x in &set {
assert!(expected.contains(x));
i += 1;
}
assert_eq!(i, expected.len());
RunReturns the union of self
and rhs
as a new HashSet<T, S>
.
Examples
use std::collections::HashSet;
let a = HashSet::from([1, 2, 3]);
let b = HashSet::from([3, 4, 5]);
let set = &a | &b;
let mut i = 0;
let expected = [1, 2, 3, 4, 5];
for x in &set {
assert!(expected.contains(x));
i += 1;
}
assert_eq!(i, expected.len());
RunReturns the symmetric difference of self
and rhs
as a new HashSet<T, S>
.
Examples
use std::collections::HashSet;
let a = HashSet::from([1, 2, 3]);
let b = HashSet::from([3, 4, 5]);
let set = &a ^ &b;
let mut i = 0;
let expected = [1, 2, 4, 5];
for x in &set {
assert!(expected.contains(x));
i += 1;
}
assert_eq!(i, expected.len());
RunCreates a value from an iterator. Read more
Creates a consuming iterator, that is, one that moves each value out of the set in arbitrary order. The set cannot be used after calling this.
Examples
use std::collections::HashSet;
let mut set = HashSet::new();
set.insert("a".to_string());
set.insert("b".to_string());
// Not possible to collect to a Vec<String> with a regular `.iter()`.
let v: Vec<String> = set.into_iter().collect();
// Will print in an arbitrary order.
for x in &v {
println!("{}", x);
}
Runtype Item = T
type Item = T
The type of the elements being iterated over.
Returns the difference of self
and rhs
as a new HashSet<T, S>
.
Examples
use std::collections::HashSet;
let a = HashSet::from([1, 2, 3]);
let b = HashSet::from([3, 4, 5]);
let set = &a - &b;
let mut i = 0;
let expected = [1, 2];
for x in &set {
assert!(expected.contains(x));
i += 1;
}
assert_eq!(i, expected.len());
Run