1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740
use crate::cmp::Ordering;
use crate::convert::From;
use crate::fmt;
use crate::hash;
use crate::marker::Unsize;
use crate::mem::{self, MaybeUninit};
use crate::ops::{CoerceUnsized, DispatchFromDyn};
use crate::ptr::Unique;
use crate::slice::{self, SliceIndex};
/// `*mut T` but non-zero and covariant.
///
/// This is often the correct thing to use when building data structures using
/// raw pointers, but is ultimately more dangerous to use because of its additional
/// properties. If you're not sure if you should use `NonNull<T>`, just use `*mut T`!
///
/// Unlike `*mut T`, the pointer must always be non-null, even if the pointer
/// is never dereferenced. This is so that enums may use this forbidden value
/// as a discriminant -- `Option<NonNull<T>>` has the same size as `*mut T`.
/// However the pointer may still dangle if it isn't dereferenced.
///
/// Unlike `*mut T`, `NonNull<T>` was chosen to be covariant over `T`. This makes it
/// possible to use `NonNull<T>` when building covariant types, but introduces the
/// risk of unsoundness if used in a type that shouldn't actually be covariant.
/// (The opposite choice was made for `*mut T` even though technically the unsoundness
/// could only be caused by calling unsafe functions.)
///
/// Covariance is correct for most safe abstractions, such as `Box`, `Rc`, `Arc`, `Vec`,
/// and `LinkedList`. This is the case because they provide a public API that follows the
/// normal shared XOR mutable rules of Rust.
///
/// If your type cannot safely be covariant, you must ensure it contains some
/// additional field to provide invariance. Often this field will be a [`PhantomData`]
/// type like `PhantomData<Cell<T>>` or `PhantomData<&'a mut T>`.
///
/// Notice that `NonNull<T>` has a `From` instance for `&T`. However, this does
/// not change the fact that mutating through a (pointer derived from a) shared
/// reference is undefined behavior unless the mutation happens inside an
/// [`UnsafeCell<T>`]. The same goes for creating a mutable reference from a shared
/// reference. When using this `From` instance without an `UnsafeCell<T>`,
/// it is your responsibility to ensure that `as_mut` is never called, and `as_ptr`
/// is never used for mutation.
///
/// [`PhantomData`]: crate::marker::PhantomData
/// [`UnsafeCell<T>`]: crate::cell::UnsafeCell
#[stable(feature = "nonnull", since = "1.25.0")]
#[repr(transparent)]
#[rustc_layout_scalar_valid_range_start(1)]
#[rustc_nonnull_optimization_guaranteed]
pub struct NonNull<T: ?Sized> {
pointer: *const T,
}
/// `NonNull` pointers are not `Send` because the data they reference may be aliased.
// N.B., this impl is unnecessary, but should provide better error messages.
#[stable(feature = "nonnull", since = "1.25.0")]
impl<T: ?Sized> !Send for NonNull<T> {}
/// `NonNull` pointers are not `Sync` because the data they reference may be aliased.
// N.B., this impl is unnecessary, but should provide better error messages.
#[stable(feature = "nonnull", since = "1.25.0")]
impl<T: ?Sized> !Sync for NonNull<T> {}
impl<T: Sized> NonNull<T> {
/// Creates a new `NonNull` that is dangling, but well-aligned.
///
/// This is useful for initializing types which lazily allocate, like
/// `Vec::new` does.
///
/// Note that the pointer value may potentially represent a valid pointer to
/// a `T`, which means this must not be used as a "not yet initialized"
/// sentinel value. Types that lazily allocate must track initialization by
/// some other means.
///
/// # Examples
///
/// ```
/// use std::ptr::NonNull;
///
/// let ptr = NonNull::<u32>::dangling();
/// // Important: don't try to access the value of `ptr` without
/// // initializing it first! The pointer is not null but isn't valid either!
/// ```
#[stable(feature = "nonnull", since = "1.25.0")]
#[rustc_const_stable(feature = "const_nonnull_dangling", since = "1.36.0")]
#[must_use]
#[inline]
pub const fn dangling() -> Self {
// SAFETY: mem::align_of() returns a non-zero usize which is then casted
// to a *mut T. Therefore, `ptr` is not null and the conditions for
// calling new_unchecked() are respected.
unsafe {
let ptr = mem::align_of::<T>() as *mut T;
NonNull::new_unchecked(ptr)
}
}
/// Returns a shared references to the value. In contrast to [`as_ref`], this does not require
/// that the value has to be initialized.
///
/// For the mutable counterpart see [`as_uninit_mut`].
///
/// [`as_ref`]: NonNull::as_ref
/// [`as_uninit_mut`]: NonNull::as_uninit_mut
///
/// # Safety
///
/// When calling this method, you have to ensure that all of the following is true:
///
/// * The pointer must be properly aligned.
///
/// * It must be "dereferenceable" in the sense defined in [the module documentation].
///
/// * You must enforce Rust's aliasing rules, since the returned lifetime `'a` is
/// arbitrarily chosen and does not necessarily reflect the actual lifetime of the data.
/// In particular, for the duration of this lifetime, the memory the pointer points to must
/// not get mutated (except inside `UnsafeCell`).
///
/// This applies even if the result of this method is unused!
///
/// [the module documentation]: crate::ptr#safety
#[inline]
#[must_use]
#[unstable(feature = "ptr_as_uninit", issue = "75402")]
#[rustc_const_unstable(feature = "const_ptr_as_ref", issue = "91822")]
pub const unsafe fn as_uninit_ref<'a>(&self) -> &'a MaybeUninit<T> {
// SAFETY: the caller must guarantee that `self` meets all the
// requirements for a reference.
unsafe { &*self.cast().as_ptr() }
}
/// Returns a unique references to the value. In contrast to [`as_mut`], this does not require
/// that the value has to be initialized.
///
/// For the shared counterpart see [`as_uninit_ref`].
///
/// [`as_mut`]: NonNull::as_mut
/// [`as_uninit_ref`]: NonNull::as_uninit_ref
///
/// # Safety
///
/// When calling this method, you have to ensure that all of the following is true:
///
/// * The pointer must be properly aligned.
///
/// * It must be "dereferenceable" in the sense defined in [the module documentation].
///
/// * You must enforce Rust's aliasing rules, since the returned lifetime `'a` is
/// arbitrarily chosen and does not necessarily reflect the actual lifetime of the data.
/// In particular, for the duration of this lifetime, the memory the pointer points to must
/// not get accessed (read or written) through any other pointer.
///
/// This applies even if the result of this method is unused!
///
/// [the module documentation]: crate::ptr#safety
#[inline]
#[must_use]
#[unstable(feature = "ptr_as_uninit", issue = "75402")]
#[rustc_const_unstable(feature = "const_ptr_as_ref", issue = "91822")]
pub const unsafe fn as_uninit_mut<'a>(&mut self) -> &'a mut MaybeUninit<T> {
// SAFETY: the caller must guarantee that `self` meets all the
// requirements for a reference.
unsafe { &mut *self.cast().as_ptr() }
}
}
impl<T: ?Sized> NonNull<T> {
/// Creates a new `NonNull`.
///
/// # Safety
///
/// `ptr` must be non-null.
///
/// # Examples
///
/// ```
/// use std::ptr::NonNull;
///
/// let mut x = 0u32;
/// let ptr = unsafe { NonNull::new_unchecked(&mut x as *mut _) };
/// ```
///
/// *Incorrect* usage of this function:
///
/// ```rust,no_run
/// use std::ptr::NonNull;
///
/// // NEVER DO THAT!!! This is undefined behavior. ⚠️
/// let ptr = unsafe { NonNull::<u32>::new_unchecked(std::ptr::null_mut()) };
/// ```
#[stable(feature = "nonnull", since = "1.25.0")]
#[rustc_const_stable(feature = "const_nonnull_new_unchecked", since = "1.25.0")]
#[inline]
pub const unsafe fn new_unchecked(ptr: *mut T) -> Self {
// SAFETY: the caller must guarantee that `ptr` is non-null.
unsafe { NonNull { pointer: ptr as _ } }
}
/// Creates a new `NonNull` if `ptr` is non-null.
///
/// # Examples
///
/// ```
/// use std::ptr::NonNull;
///
/// let mut x = 0u32;
/// let ptr = NonNull::<u32>::new(&mut x as *mut _).expect("ptr is null!");
///
/// if let Some(ptr) = NonNull::<u32>::new(std::ptr::null_mut()) {
/// unreachable!();
/// }
/// ```
#[stable(feature = "nonnull", since = "1.25.0")]
#[rustc_const_unstable(feature = "const_nonnull_new", issue = "93235")]
#[inline]
pub const fn new(ptr: *mut T) -> Option<Self> {
if !ptr.is_null() {
// SAFETY: The pointer is already checked and is not null
Some(unsafe { Self::new_unchecked(ptr) })
} else {
None
}
}
/// Performs the same functionality as [`std::ptr::from_raw_parts`], except that a
/// `NonNull` pointer is returned, as opposed to a raw `*const` pointer.
///
/// See the documentation of [`std::ptr::from_raw_parts`] for more details.
///
/// [`std::ptr::from_raw_parts`]: crate::ptr::from_raw_parts
#[unstable(feature = "ptr_metadata", issue = "81513")]
#[rustc_const_unstable(feature = "ptr_metadata", issue = "81513")]
#[inline]
pub const fn from_raw_parts(
data_address: NonNull<()>,
metadata: <T as super::Pointee>::Metadata,
) -> NonNull<T> {
// SAFETY: The result of `ptr::from::raw_parts_mut` is non-null because `data_address` is.
unsafe {
NonNull::new_unchecked(super::from_raw_parts_mut(data_address.as_ptr(), metadata))
}
}
/// Decompose a (possibly wide) pointer into its address and metadata components.
///
/// The pointer can be later reconstructed with [`NonNull::from_raw_parts`].
#[unstable(feature = "ptr_metadata", issue = "81513")]
#[rustc_const_unstable(feature = "ptr_metadata", issue = "81513")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline]
pub const fn to_raw_parts(self) -> (NonNull<()>, <T as super::Pointee>::Metadata) {
(self.cast(), super::metadata(self.as_ptr()))
}
/// Acquires the underlying `*mut` pointer.
///
/// # Examples
///
/// ```
/// use std::ptr::NonNull;
///
/// let mut x = 0u32;
/// let ptr = NonNull::new(&mut x).expect("ptr is null!");
///
/// let x_value = unsafe { *ptr.as_ptr() };
/// assert_eq!(x_value, 0);
///
/// unsafe { *ptr.as_ptr() += 2; }
/// let x_value = unsafe { *ptr.as_ptr() };
/// assert_eq!(x_value, 2);
/// ```
#[stable(feature = "nonnull", since = "1.25.0")]
#[rustc_const_stable(feature = "const_nonnull_as_ptr", since = "1.32.0")]
#[must_use]
#[inline]
pub const fn as_ptr(self) -> *mut T {
self.pointer as *mut T
}
/// Returns a shared reference to the value. If the value may be uninitialized, [`as_uninit_ref`]
/// must be used instead.
///
/// For the mutable counterpart see [`as_mut`].
///
/// [`as_uninit_ref`]: NonNull::as_uninit_ref
/// [`as_mut`]: NonNull::as_mut
///
/// # Safety
///
/// When calling this method, you have to ensure that all of the following is true:
///
/// * The pointer must be properly aligned.
///
/// * It must be "dereferenceable" in the sense defined in [the module documentation].
///
/// * The pointer must point to an initialized instance of `T`.
///
/// * You must enforce Rust's aliasing rules, since the returned lifetime `'a` is
/// arbitrarily chosen and does not necessarily reflect the actual lifetime of the data.
/// In particular, for the duration of this lifetime, the memory the pointer points to must
/// not get mutated (except inside `UnsafeCell`).
///
/// This applies even if the result of this method is unused!
/// (The part about being initialized is not yet fully decided, but until
/// it is, the only safe approach is to ensure that they are indeed initialized.)
///
/// # Examples
///
/// ```
/// use std::ptr::NonNull;
///
/// let mut x = 0u32;
/// let ptr = NonNull::new(&mut x as *mut _).expect("ptr is null!");
///
/// let ref_x = unsafe { ptr.as_ref() };
/// println!("{}", ref_x);
/// ```
///
/// [the module documentation]: crate::ptr#safety
#[stable(feature = "nonnull", since = "1.25.0")]
#[rustc_const_unstable(feature = "const_ptr_as_ref", issue = "91822")]
#[must_use]
#[inline]
pub const unsafe fn as_ref<'a>(&self) -> &'a T {
// SAFETY: the caller must guarantee that `self` meets all the
// requirements for a reference.
unsafe { &*self.as_ptr() }
}
/// Returns a unique reference to the value. If the value may be uninitialized, [`as_uninit_mut`]
/// must be used instead.
///
/// For the shared counterpart see [`as_ref`].
///
/// [`as_uninit_mut`]: NonNull::as_uninit_mut
/// [`as_ref`]: NonNull::as_ref
///
/// # Safety
///
/// When calling this method, you have to ensure that all of the following is true:
///
/// * The pointer must be properly aligned.
///
/// * It must be "dereferenceable" in the sense defined in [the module documentation].
///
/// * The pointer must point to an initialized instance of `T`.
///
/// * You must enforce Rust's aliasing rules, since the returned lifetime `'a` is
/// arbitrarily chosen and does not necessarily reflect the actual lifetime of the data.
/// In particular, for the duration of this lifetime, the memory the pointer points to must
/// not get accessed (read or written) through any other pointer.
///
/// This applies even if the result of this method is unused!
/// (The part about being initialized is not yet fully decided, but until
/// it is, the only safe approach is to ensure that they are indeed initialized.)
/// # Examples
///
/// ```
/// use std::ptr::NonNull;
///
/// let mut x = 0u32;
/// let mut ptr = NonNull::new(&mut x).expect("null pointer");
///
/// let x_ref = unsafe { ptr.as_mut() };
/// assert_eq!(*x_ref, 0);
/// *x_ref += 2;
/// assert_eq!(*x_ref, 2);
/// ```
///
/// [the module documentation]: crate::ptr#safety
#[stable(feature = "nonnull", since = "1.25.0")]
#[rustc_const_unstable(feature = "const_ptr_as_ref", issue = "91822")]
#[must_use]
#[inline]
pub const unsafe fn as_mut<'a>(&mut self) -> &'a mut T {
// SAFETY: the caller must guarantee that `self` meets all the
// requirements for a mutable reference.
unsafe { &mut *self.as_ptr() }
}
/// Casts to a pointer of another type.
///
/// # Examples
///
/// ```
/// use std::ptr::NonNull;
///
/// let mut x = 0u32;
/// let ptr = NonNull::new(&mut x as *mut _).expect("null pointer");
///
/// let casted_ptr = ptr.cast::<i8>();
/// let raw_ptr: *mut i8 = casted_ptr.as_ptr();
/// ```
#[stable(feature = "nonnull_cast", since = "1.27.0")]
#[rustc_const_stable(feature = "const_nonnull_cast", since = "1.36.0")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline]
pub const fn cast<U>(self) -> NonNull<U> {
// SAFETY: `self` is a `NonNull` pointer which is necessarily non-null
unsafe { NonNull::new_unchecked(self.as_ptr() as *mut U) }
}
}
impl<T> NonNull<[T]> {
/// Creates a non-null raw slice from a thin pointer and a length.
///
/// The `len` argument is the number of **elements**, not the number of bytes.
///
/// This function is safe, but dereferencing the return value is unsafe.
/// See the documentation of [`slice::from_raw_parts`] for slice safety requirements.
///
/// # Examples
///
/// ```rust
/// #![feature(nonnull_slice_from_raw_parts)]
///
/// use std::ptr::NonNull;
///
/// // create a slice pointer when starting out with a pointer to the first element
/// let mut x = [5, 6, 7];
/// let nonnull_pointer = NonNull::new(x.as_mut_ptr()).unwrap();
/// let slice = NonNull::slice_from_raw_parts(nonnull_pointer, 3);
/// assert_eq!(unsafe { slice.as_ref()[2] }, 7);
/// ```
///
/// (Note that this example artificially demonstrates a use of this method,
/// but `let slice = NonNull::from(&x[..]);` would be a better way to write code like this.)
#[unstable(feature = "nonnull_slice_from_raw_parts", issue = "71941")]
#[rustc_const_unstable(feature = "const_nonnull_slice_from_raw_parts", issue = "71941")]
#[must_use]
#[inline]
pub const fn slice_from_raw_parts(data: NonNull<T>, len: usize) -> Self {
// SAFETY: `data` is a `NonNull` pointer which is necessarily non-null
unsafe { Self::new_unchecked(super::slice_from_raw_parts_mut(data.as_ptr(), len)) }
}
/// Returns the length of a non-null raw slice.
///
/// The returned value is the number of **elements**, not the number of bytes.
///
/// This function is safe, even when the non-null raw slice cannot be dereferenced to a slice
/// because the pointer does not have a valid address.
///
/// # Examples
///
/// ```rust
/// #![feature(slice_ptr_len, nonnull_slice_from_raw_parts)]
/// use std::ptr::NonNull;
///
/// let slice: NonNull<[i8]> = NonNull::slice_from_raw_parts(NonNull::dangling(), 3);
/// assert_eq!(slice.len(), 3);
/// ```
#[unstable(feature = "slice_ptr_len", issue = "71146")]
#[rustc_const_unstable(feature = "const_slice_ptr_len", issue = "71146")]
#[must_use]
#[inline]
pub const fn len(self) -> usize {
self.as_ptr().len()
}
/// Returns a non-null pointer to the slice's buffer.
///
/// # Examples
///
/// ```rust
/// #![feature(slice_ptr_get, nonnull_slice_from_raw_parts)]
/// use std::ptr::NonNull;
///
/// let slice: NonNull<[i8]> = NonNull::slice_from_raw_parts(NonNull::dangling(), 3);
/// assert_eq!(slice.as_non_null_ptr(), NonNull::new(1 as *mut i8).unwrap());
/// ```
#[inline]
#[must_use]
#[unstable(feature = "slice_ptr_get", issue = "74265")]
#[rustc_const_unstable(feature = "slice_ptr_get", issue = "74265")]
pub const fn as_non_null_ptr(self) -> NonNull<T> {
// SAFETY: We know `self` is non-null.
unsafe { NonNull::new_unchecked(self.as_ptr().as_mut_ptr()) }
}
/// Returns a raw pointer to the slice's buffer.
///
/// # Examples
///
/// ```rust
/// #![feature(slice_ptr_get, nonnull_slice_from_raw_parts)]
/// use std::ptr::NonNull;
///
/// let slice: NonNull<[i8]> = NonNull::slice_from_raw_parts(NonNull::dangling(), 3);
/// assert_eq!(slice.as_mut_ptr(), 1 as *mut i8);
/// ```
#[inline]
#[must_use]
#[unstable(feature = "slice_ptr_get", issue = "74265")]
#[rustc_const_unstable(feature = "slice_ptr_get", issue = "74265")]
pub const fn as_mut_ptr(self) -> *mut T {
self.as_non_null_ptr().as_ptr()
}
/// Returns a shared reference to a slice of possibly uninitialized values. In contrast to
/// [`as_ref`], this does not require that the value has to be initialized.
///
/// For the mutable counterpart see [`as_uninit_slice_mut`].
///
/// [`as_ref`]: NonNull::as_ref
/// [`as_uninit_slice_mut`]: NonNull::as_uninit_slice_mut
///
/// # Safety
///
/// When calling this method, you have to ensure that all of the following is true:
///
/// * The pointer must be [valid] for reads for `ptr.len() * mem::size_of::<T>()` many bytes,
/// and it must be properly aligned. This means in particular:
///
/// * The entire memory range of this slice must be contained within a single allocated object!
/// Slices can never span across multiple allocated objects.
///
/// * The pointer must be aligned even for zero-length slices. One
/// reason for this is that enum layout optimizations may rely on references
/// (including slices of any length) being aligned and non-null to distinguish
/// them from other data. You can obtain a pointer that is usable as `data`
/// for zero-length slices using [`NonNull::dangling()`].
///
/// * The total size `ptr.len() * mem::size_of::<T>()` of the slice must be no larger than `isize::MAX`.
/// See the safety documentation of [`pointer::offset`].
///
/// * You must enforce Rust's aliasing rules, since the returned lifetime `'a` is
/// arbitrarily chosen and does not necessarily reflect the actual lifetime of the data.
/// In particular, for the duration of this lifetime, the memory the pointer points to must
/// not get mutated (except inside `UnsafeCell`).
///
/// This applies even if the result of this method is unused!
///
/// See also [`slice::from_raw_parts`].
///
/// [valid]: crate::ptr#safety
#[inline]
#[must_use]
#[unstable(feature = "ptr_as_uninit", issue = "75402")]
#[rustc_const_unstable(feature = "const_ptr_as_ref", issue = "91822")]
pub const unsafe fn as_uninit_slice<'a>(&self) -> &'a [MaybeUninit<T>] {
// SAFETY: the caller must uphold the safety contract for `as_uninit_slice`.
unsafe { slice::from_raw_parts(self.cast().as_ptr(), self.len()) }
}
/// Returns a unique reference to a slice of possibly uninitialized values. In contrast to
/// [`as_mut`], this does not require that the value has to be initialized.
///
/// For the shared counterpart see [`as_uninit_slice`].
///
/// [`as_mut`]: NonNull::as_mut
/// [`as_uninit_slice`]: NonNull::as_uninit_slice
///
/// # Safety
///
/// When calling this method, you have to ensure that all of the following is true:
///
/// * The pointer must be [valid] for reads and writes for `ptr.len() * mem::size_of::<T>()`
/// many bytes, and it must be properly aligned. This means in particular:
///
/// * The entire memory range of this slice must be contained within a single allocated object!
/// Slices can never span across multiple allocated objects.
///
/// * The pointer must be aligned even for zero-length slices. One
/// reason for this is that enum layout optimizations may rely on references
/// (including slices of any length) being aligned and non-null to distinguish
/// them from other data. You can obtain a pointer that is usable as `data`
/// for zero-length slices using [`NonNull::dangling()`].
///
/// * The total size `ptr.len() * mem::size_of::<T>()` of the slice must be no larger than `isize::MAX`.
/// See the safety documentation of [`pointer::offset`].
///
/// * You must enforce Rust's aliasing rules, since the returned lifetime `'a` is
/// arbitrarily chosen and does not necessarily reflect the actual lifetime of the data.
/// In particular, for the duration of this lifetime, the memory the pointer points to must
/// not get accessed (read or written) through any other pointer.
///
/// This applies even if the result of this method is unused!
///
/// See also [`slice::from_raw_parts_mut`].
///
/// [valid]: crate::ptr#safety
///
/// # Examples
///
/// ```rust
/// #![feature(allocator_api, ptr_as_uninit)]
///
/// use std::alloc::{Allocator, Layout, Global};
/// use std::mem::MaybeUninit;
/// use std::ptr::NonNull;
///
/// let memory: NonNull<[u8]> = Global.allocate(Layout::new::<[u8; 32]>())?;
/// // This is safe as `memory` is valid for reads and writes for `memory.len()` many bytes.
/// // Note that calling `memory.as_mut()` is not allowed here as the content may be uninitialized.
/// # #[allow(unused_variables)]
/// let slice: &mut [MaybeUninit<u8>] = unsafe { memory.as_uninit_slice_mut() };
/// # Ok::<_, std::alloc::AllocError>(())
/// ```
#[inline]
#[must_use]
#[unstable(feature = "ptr_as_uninit", issue = "75402")]
#[rustc_const_unstable(feature = "const_ptr_as_ref", issue = "91822")]
pub const unsafe fn as_uninit_slice_mut<'a>(&self) -> &'a mut [MaybeUninit<T>] {
// SAFETY: the caller must uphold the safety contract for `as_uninit_slice_mut`.
unsafe { slice::from_raw_parts_mut(self.cast().as_ptr(), self.len()) }
}
/// Returns a raw pointer to an element or subslice, without doing bounds
/// checking.
///
/// Calling this method with an out-of-bounds index or when `self` is not dereferenceable
/// is *[undefined behavior]* even if the resulting pointer is not used.
///
/// [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
///
/// # Examples
///
/// ```
/// #![feature(slice_ptr_get, nonnull_slice_from_raw_parts)]
/// use std::ptr::NonNull;
///
/// let x = &mut [1, 2, 4];
/// let x = NonNull::slice_from_raw_parts(NonNull::new(x.as_mut_ptr()).unwrap(), x.len());
///
/// unsafe {
/// assert_eq!(x.get_unchecked_mut(1).as_ptr(), x.as_non_null_ptr().as_ptr().add(1));
/// }
/// ```
#[unstable(feature = "slice_ptr_get", issue = "74265")]
#[inline]
pub unsafe fn get_unchecked_mut<I>(self, index: I) -> NonNull<I::Output>
where
I: SliceIndex<[T]>,
{
// SAFETY: the caller ensures that `self` is dereferenceable and `index` in-bounds.
// As a consequence, the resulting pointer cannot be null.
unsafe { NonNull::new_unchecked(self.as_ptr().get_unchecked_mut(index)) }
}
}
#[stable(feature = "nonnull", since = "1.25.0")]
impl<T: ?Sized> Clone for NonNull<T> {
#[inline]
fn clone(&self) -> Self {
*self
}
}
#[stable(feature = "nonnull", since = "1.25.0")]
impl<T: ?Sized> Copy for NonNull<T> {}
#[unstable(feature = "coerce_unsized", issue = "27732")]
impl<T: ?Sized, U: ?Sized> CoerceUnsized<NonNull<U>> for NonNull<T> where T: Unsize<U> {}
#[unstable(feature = "dispatch_from_dyn", issue = "none")]
impl<T: ?Sized, U: ?Sized> DispatchFromDyn<NonNull<U>> for NonNull<T> where T: Unsize<U> {}
#[stable(feature = "nonnull", since = "1.25.0")]
impl<T: ?Sized> fmt::Debug for NonNull<T> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
fmt::Pointer::fmt(&self.as_ptr(), f)
}
}
#[stable(feature = "nonnull", since = "1.25.0")]
impl<T: ?Sized> fmt::Pointer for NonNull<T> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
fmt::Pointer::fmt(&self.as_ptr(), f)
}
}
#[stable(feature = "nonnull", since = "1.25.0")]
impl<T: ?Sized> Eq for NonNull<T> {}
#[stable(feature = "nonnull", since = "1.25.0")]
impl<T: ?Sized> PartialEq for NonNull<T> {
#[inline]
fn eq(&self, other: &Self) -> bool {
self.as_ptr() == other.as_ptr()
}
}
#[stable(feature = "nonnull", since = "1.25.0")]
impl<T: ?Sized> Ord for NonNull<T> {
#[inline]
fn cmp(&self, other: &Self) -> Ordering {
self.as_ptr().cmp(&other.as_ptr())
}
}
#[stable(feature = "nonnull", since = "1.25.0")]
impl<T: ?Sized> PartialOrd for NonNull<T> {
#[inline]
fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
self.as_ptr().partial_cmp(&other.as_ptr())
}
}
#[stable(feature = "nonnull", since = "1.25.0")]
impl<T: ?Sized> hash::Hash for NonNull<T> {
#[inline]
fn hash<H: hash::Hasher>(&self, state: &mut H) {
self.as_ptr().hash(state)
}
}
#[unstable(feature = "ptr_internals", issue = "none")]
#[rustc_const_unstable(feature = "const_convert", issue = "88674")]
impl<T: ?Sized> const From<Unique<T>> for NonNull<T> {
#[inline]
fn from(unique: Unique<T>) -> Self {
// SAFETY: A Unique pointer cannot be null, so the conditions for
// new_unchecked() are respected.
unsafe { NonNull::new_unchecked(unique.as_ptr()) }
}
}
#[stable(feature = "nonnull", since = "1.25.0")]
#[rustc_const_unstable(feature = "const_convert", issue = "88674")]
impl<T: ?Sized> const From<&mut T> for NonNull<T> {
#[inline]
fn from(reference: &mut T) -> Self {
// SAFETY: A mutable reference cannot be null.
unsafe { NonNull { pointer: reference as *mut T } }
}
}
#[stable(feature = "nonnull", since = "1.25.0")]
#[rustc_const_unstable(feature = "const_convert", issue = "88674")]
impl<T: ?Sized> const From<&T> for NonNull<T> {
#[inline]
fn from(reference: &T) -> Self {
// SAFETY: A reference cannot be null, so the conditions for
// new_unchecked() are respected.
unsafe { NonNull { pointer: reference as *const T } }
}
}