1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400
//! This is a densely packed error representation which is used on targets with
//! 64-bit pointers.
//!
//! (Note that `bitpacked` vs `unpacked` here has no relationship to
//! `#[repr(packed)]`, it just refers to attempting to use any available bits in
//! a more clever manner than `rustc`'s default layout algorithm would).
//!
//! Conceptually, it stores the same data as the "unpacked" equivalent we use on
//! other targets. Specifically, you can imagine it as an optimized version of
//! the following enum (which is roughly equivalent to what's stored by
//! `repr_unpacked::Repr`, e.g. `super::ErrorData<Box<Custom>>`):
//!
//! ```ignore (exposition-only)
//! enum ErrorData {
//! Os(i32),
//! Simple(ErrorKind),
//! SimpleMessage(&'static SimpleMessage),
//! Custom(Box<Custom>),
//! }
//! ```
//!
//! However, it packs this data into a 64bit non-zero value.
//!
//! This optimization not only allows `io::Error` to occupy a single pointer,
//! but improves `io::Result` as well, especially for situations like
//! `io::Result<()>` (which is now 64 bits) or `io::Result<u64>` (which is now
//! 128 bits), which are quite common.
//!
//! # Layout
//! Tagged values are 64 bits, with the 2 least significant bits used for the
//! tag. This means there are there are 4 "variants":
//!
//! - **Tag 0b00**: The first variant is equivalent to
//! `ErrorData::SimpleMessage`, and holds a `&'static SimpleMessage` directly.
//!
//! `SimpleMessage` has an alignment >= 4 (which is requested with
//! `#[repr(align)]` and checked statically at the bottom of this file), which
//! means every `&'static SimpleMessage` should have the both tag bits as 0,
//! meaning its tagged and untagged representation are equivalent.
//!
//! This means we can skip tagging it, which is necessary as this variant can
//! be constructed from a `const fn`, which probably cannot tag pointers (or
//! at least it would be difficult).
//!
//! - **Tag 0b01**: The other pointer variant holds the data for
//! `ErrorData::Custom` and the remaining 62 bits are used to store a
//! `Box<Custom>`. `Custom` also has alignment >= 4, so the bottom two bits
//! are free to use for the tag.
//!
//! The only important thing to note is that `ptr::wrapping_add` and
//! `ptr::wrapping_sub` are used to tag the pointer, rather than bitwise
//! operations. This should preserve the pointer's provenance, which would
//! otherwise be lost.
//!
//! - **Tag 0b10**: Holds the data for `ErrorData::Os(i32)`. We store the `i32`
//! in the pointer's most significant 32 bits, and don't use the bits `2..32`
//! for anything. Using the top 32 bits is just to let us easily recover the
//! `i32` code with the correct sign.
//!
//! - **Tag 0b11**: Holds the data for `ErrorData::Simple(ErrorKind)`. This
//! stores the `ErrorKind` in the top 32 bits as well, although it doesn't
//! occupy nearly that many. Most of the bits are unused here, but it's not
//! like we need them for anything else yet.
//!
//! # Use of `NonNull<()>`
//!
//! Everything is stored in a `NonNull<()>`, which is odd, but actually serves a
//! purpose.
//!
//! Conceptually you might think of this more like:
//!
//! ```ignore (exposition-only)
//! union Repr {
//! // holds integer (Simple/Os) variants, and
//! // provides access to the tag bits.
//! bits: NonZeroU64,
//! // Tag is 0, so this is stored untagged.
//! msg: &'static SimpleMessage,
//! // Tagged (offset) `Box<Custom>` pointer.
//! tagged_custom: NonNull<()>,
//! }
//! ```
//!
//! But there are a few problems with this:
//!
//! 1. Union access is equivalent to a transmute, so this representation would
//! require we transmute between integers and pointers in at least one
//! direction, which may be UB (and even if not, it is likely harder for a
//! compiler to reason about than explicit ptr->int operations).
//!
//! 2. Even if all fields of a union have a niche, the union itself doesn't,
//! although this may change in the future. This would make things like
//! `io::Result<()>` and `io::Result<usize>` larger, which defeats part of
//! the motivation of this bitpacking.
//!
//! Storing everything in a `NonZeroUsize` (or some other integer) would be a
//! bit more traditional for pointer tagging, but it would lose provenance
//! information, couldn't be constructed from a `const fn`, and would probably
//! run into other issues as well.
//!
//! The `NonNull<()>` seems like the only alternative, even if it's fairly odd
//! to use a pointer type to store something that may hold an integer, some of
//! the time.
use super::{Custom, ErrorData, ErrorKind, SimpleMessage};
use alloc::boxed::Box;
use core::marker::PhantomData;
use core::mem::{align_of, size_of};
use core::ptr::{self, NonNull};
// The 2 least-significant bits are used as tag.
const TAG_MASK: usize = 0b11;
const TAG_SIMPLE_MESSAGE: usize = 0b00;
const TAG_CUSTOM: usize = 0b01;
const TAG_OS: usize = 0b10;
const TAG_SIMPLE: usize = 0b11;
/// The internal representation.
///
/// See the module docs for more, this is just a way to hack in a check that we
/// indeed are not unwind-safe.
///
/// ```compile_fail,E0277
/// fn is_unwind_safe<T: core::panic::UnwindSafe>() {}
/// is_unwind_safe::<std::io::Error>();
/// ```
#[repr(transparent)]
pub(super) struct Repr(NonNull<()>, PhantomData<ErrorData<Box<Custom>>>);
// All the types `Repr` stores internally are Send + Sync, and so is it.
unsafe impl Send for Repr {}
unsafe impl Sync for Repr {}
impl Repr {
pub(super) fn new_custom(b: Box<Custom>) -> Self {
let p = Box::into_raw(b).cast::<u8>();
// Should only be possible if an allocator handed out a pointer with
// wrong alignment.
debug_assert_eq!(p.addr() & TAG_MASK, 0);
// Note: We know `TAG_CUSTOM <= size_of::<Custom>()` (static_assert at
// end of file), and both the start and end of the expression must be
// valid without address space wraparound due to `Box`'s semantics.
//
// This means it would be correct to implement this using `ptr::add`
// (rather than `ptr::wrapping_add`), but it's unclear this would give
// any benefit, so we just use `wrapping_add` instead.
let tagged = p.wrapping_add(TAG_CUSTOM).cast::<()>();
// Safety: `TAG_CUSTOM + p` is the same as `TAG_CUSTOM | p`,
// because `p`'s alignment means it isn't allowed to have any of the
// `TAG_BITS` set (you can verify that addition and bitwise-or are the
// same when the operands have no bits in common using a truth table).
//
// Then, `TAG_CUSTOM | p` is not zero, as that would require
// `TAG_CUSTOM` and `p` both be zero, and neither is (as `p` came from a
// box, and `TAG_CUSTOM` just... isn't zero -- it's `0b01`). Therefore,
// `TAG_CUSTOM + p` isn't zero and so `tagged` can't be, and the
// `new_unchecked` is safe.
let res = Self(unsafe { NonNull::new_unchecked(tagged) }, PhantomData);
// quickly smoke-check we encoded the right thing (This generally will
// only run in libstd's tests, unless the user uses -Zbuild-std)
debug_assert!(matches!(res.data(), ErrorData::Custom(_)), "repr(custom) encoding failed");
res
}
#[inline]
pub(super) fn new_os(code: i32) -> Self {
let utagged = ((code as usize) << 32) | TAG_OS;
// Safety: `TAG_OS` is not zero, so the result of the `|` is not 0.
let res = Self(unsafe { NonNull::new_unchecked(ptr::invalid_mut(utagged)) }, PhantomData);
// quickly smoke-check we encoded the right thing (This generally will
// only run in libstd's tests, unless the user uses -Zbuild-std)
debug_assert!(
matches!(res.data(), ErrorData::Os(c) if c == code),
"repr(os) encoding failed for {code}"
);
res
}
#[inline]
pub(super) fn new_simple(kind: ErrorKind) -> Self {
let utagged = ((kind as usize) << 32) | TAG_SIMPLE;
// Safety: `TAG_SIMPLE` is not zero, so the result of the `|` is not 0.
let res = Self(unsafe { NonNull::new_unchecked(ptr::invalid_mut(utagged)) }, PhantomData);
// quickly smoke-check we encoded the right thing (This generally will
// only run in libstd's tests, unless the user uses -Zbuild-std)
debug_assert!(
matches!(res.data(), ErrorData::Simple(k) if k == kind),
"repr(simple) encoding failed {:?}",
kind,
);
res
}
#[inline]
pub(super) const fn new_simple_message(m: &'static SimpleMessage) -> Self {
// Safety: References are never null.
Self(unsafe { NonNull::new_unchecked(m as *const _ as *mut ()) }, PhantomData)
}
#[inline]
pub(super) fn data(&self) -> ErrorData<&Custom> {
// Safety: We're a Repr, decode_repr is fine.
unsafe { decode_repr(self.0, |c| &*c) }
}
#[inline]
pub(super) fn data_mut(&mut self) -> ErrorData<&mut Custom> {
// Safety: We're a Repr, decode_repr is fine.
unsafe { decode_repr(self.0, |c| &mut *c) }
}
#[inline]
pub(super) fn into_data(self) -> ErrorData<Box<Custom>> {
let this = core::mem::ManuallyDrop::new(self);
// Safety: We're a Repr, decode_repr is fine. The `Box::from_raw` is
// safe because we prevent double-drop using `ManuallyDrop`.
unsafe { decode_repr(this.0, |p| Box::from_raw(p)) }
}
}
impl Drop for Repr {
#[inline]
fn drop(&mut self) {
// Safety: We're a Repr, decode_repr is fine. The `Box::from_raw` is
// safe because we're being dropped.
unsafe {
let _ = decode_repr(self.0, |p| Box::<Custom>::from_raw(p));
}
}
}
// Shared helper to decode a `Repr`'s internal pointer into an ErrorData.
//
// Safety: `ptr`'s bits should be encoded as described in the document at the
// top (it should `some_repr.0`)
#[inline]
unsafe fn decode_repr<C, F>(ptr: NonNull<()>, make_custom: F) -> ErrorData<C>
where
F: FnOnce(*mut Custom) -> C,
{
let bits = ptr.as_ptr().addr();
match bits & TAG_MASK {
TAG_OS => {
let code = ((bits as i64) >> 32) as i32;
ErrorData::Os(code)
}
TAG_SIMPLE => {
let kind_bits = (bits >> 32) as u32;
let kind = kind_from_prim(kind_bits).unwrap_or_else(|| {
debug_assert!(false, "Invalid io::error::Repr bits: `Repr({:#018x})`", bits);
// This means the `ptr` passed in was not valid, which violates
// the unsafe contract of `decode_repr`.
//
// Using this rather than unwrap meaningfully improves the code
// for callers which only care about one variant (usually
// `Custom`)
core::hint::unreachable_unchecked();
});
ErrorData::Simple(kind)
}
TAG_SIMPLE_MESSAGE => ErrorData::SimpleMessage(&*ptr.cast::<SimpleMessage>().as_ptr()),
TAG_CUSTOM => {
// It would be correct for us to use `ptr::sub` here (see the
// comment above the `wrapping_add` call in `new_custom` for why),
// but it isn't clear that it makes a difference, so we don't.
let custom = ptr.as_ptr().cast::<u8>().wrapping_sub(TAG_CUSTOM).cast::<Custom>();
ErrorData::Custom(make_custom(custom))
}
_ => {
// Can't happen, and compiler can tell
unreachable!();
}
}
}
// This compiles to the same code as the check+transmute, but doesn't require
// unsafe, or to hard-code max ErrorKind or its size in a way the compiler
// couldn't verify.
#[inline]
fn kind_from_prim(ek: u32) -> Option<ErrorKind> {
macro_rules! from_prim {
($prim:expr => $Enum:ident { $($Variant:ident),* $(,)? }) => {{
// Force a compile error if the list gets out of date.
const _: fn(e: $Enum) = |e: $Enum| match e {
$($Enum::$Variant => ()),*
};
match $prim {
$(v if v == ($Enum::$Variant as _) => Some($Enum::$Variant),)*
_ => None,
}
}}
}
from_prim!(ek => ErrorKind {
NotFound,
PermissionDenied,
ConnectionRefused,
ConnectionReset,
HostUnreachable,
NetworkUnreachable,
ConnectionAborted,
NotConnected,
AddrInUse,
AddrNotAvailable,
NetworkDown,
BrokenPipe,
AlreadyExists,
WouldBlock,
NotADirectory,
IsADirectory,
DirectoryNotEmpty,
ReadOnlyFilesystem,
FilesystemLoop,
StaleNetworkFileHandle,
InvalidInput,
InvalidData,
TimedOut,
WriteZero,
StorageFull,
NotSeekable,
FilesystemQuotaExceeded,
FileTooLarge,
ResourceBusy,
ExecutableFileBusy,
Deadlock,
CrossesDevices,
TooManyLinks,
InvalidFilename,
ArgumentListTooLong,
Interrupted,
Other,
UnexpectedEof,
Unsupported,
OutOfMemory,
Uncategorized,
})
}
// Some static checking to alert us if a change breaks any of the assumptions
// that our encoding relies on for correctness and soundness. (Some of these are
// a bit overly thorough/cautious, admittedly)
//
// If any of these are hit on a platform that libstd supports, we should likely
// just use `repr_unpacked.rs` there instead (unless the fix is easy).
macro_rules! static_assert {
($condition:expr) => {
const _: () = assert!($condition);
};
(@usize_eq: $lhs:expr, $rhs:expr) => {
const _: [(); $lhs] = [(); $rhs];
};
}
// The bitpacking we use requires pointers be exactly 64 bits.
static_assert!(@usize_eq: size_of::<NonNull<()>>(), 8);
// We also require pointers and usize be the same size.
static_assert!(@usize_eq: size_of::<NonNull<()>>(), size_of::<usize>());
// `Custom` and `SimpleMessage` need to be thin pointers.
static_assert!(@usize_eq: size_of::<&'static SimpleMessage>(), 8);
static_assert!(@usize_eq: size_of::<Box<Custom>>(), 8);
static_assert!((TAG_MASK + 1).is_power_of_two());
// And they must have sufficient alignment.
static_assert!(align_of::<SimpleMessage>() >= TAG_MASK + 1);
static_assert!(align_of::<Custom>() >= TAG_MASK + 1);
static_assert!(@usize_eq: (TAG_MASK & TAG_SIMPLE_MESSAGE), TAG_SIMPLE_MESSAGE);
static_assert!(@usize_eq: (TAG_MASK & TAG_CUSTOM), TAG_CUSTOM);
static_assert!(@usize_eq: (TAG_MASK & TAG_OS), TAG_OS);
static_assert!(@usize_eq: (TAG_MASK & TAG_SIMPLE), TAG_SIMPLE);
// This is obviously true (`TAG_CUSTOM` is `0b01`), but in `Repr::new_custom` we
// offset a pointer by this value, and expect it to both be within the same
// object, and to not wrap around the address space. See the comment in that
// function for further details.
//
// Actually, at the moment we use `ptr::wrapping_add`, not `ptr::add`, so this
// check isn't needed for that one, although the assertion that we don't
// actually wrap around in that wrapping_add does simplify the safety reasoning
// elsewhere considerably.
static_assert!(size_of::<Custom>() >= TAG_CUSTOM);
// These two store a payload which is allowed to be zero, so they must be
// non-zero to preserve the `NonNull`'s range invariant.
static_assert!(TAG_OS != 0);
static_assert!(TAG_SIMPLE != 0);
// We can't tag `SimpleMessage`s, the tag must be 0.
static_assert!(@usize_eq: TAG_SIMPLE_MESSAGE, 0);
// Check that the point of all of this still holds.
//
// We'd check against `io::Error`, but *technically* it's allowed to vary,
// as it's not `#[repr(transparent)]`/`#[repr(C)]`. We could add that, but
// the `#[repr()]` would show up in rustdoc, which might be seen as a stable
// commitment.
static_assert!(@usize_eq: size_of::<Repr>(), 8);
static_assert!(@usize_eq: size_of::<Option<Repr>>(), 8);
static_assert!(@usize_eq: size_of::<Result<(), Repr>>(), 8);
static_assert!(@usize_eq: size_of::<Result<usize, Repr>>(), 16);