pub struct BTreeSet<T> { /* private fields */ }
Expand description
A set based on a B-Tree.
See BTreeMap
’s documentation for a detailed discussion of this collection’s performance
benefits and drawbacks.
It is a logic error for an item to be modified in such a way that the item’s ordering relative
to any other item, as determined by the Ord
trait, changes while it is in the set. This is
normally only possible through Cell
, RefCell
, global state, I/O, or unsafe code.
The behavior resulting from such a logic error is not specified (it could include panics,
incorrect results, aborts, memory leaks, or non-termination) but will not be undefined
behavior.
Examples
use std::collections::BTreeSet;
// Type inference lets us omit an explicit type signature (which
// would be `BTreeSet<&str>` in this example).
let mut books = BTreeSet::new();
// Add some books.
books.insert("A Dance With Dragons");
books.insert("To Kill a Mockingbird");
books.insert("The Odyssey");
books.insert("The Great Gatsby");
// Check for a specific one.
if !books.contains("The Winds of Winter") {
println!("We have {} books, but The Winds of Winter ain't one.",
books.len());
}
// Remove a book.
books.remove("The Odyssey");
// Iterate over everything.
for book in &books {
println!("{}", book);
}
RunA BTreeSet
with a known list of items can be initialized from an array:
use std::collections::BTreeSet;
let set = BTreeSet::from([1, 2, 3]);
RunImplementations
Constructs a double-ended iterator over a sub-range of elements in the set.
The simplest way is to use the range syntax min..max
, thus range(min..max)
will
yield elements from min (inclusive) to max (exclusive).
The range may also be entered as (Bound<T>, Bound<T>)
, so for example
range((Excluded(4), Included(10)))
will yield a left-exclusive, right-inclusive
range from 4 to 10.
Examples
use std::collections::BTreeSet;
use std::ops::Bound::Included;
let mut set = BTreeSet::new();
set.insert(3);
set.insert(5);
set.insert(8);
for &elem in set.range((Included(&4), Included(&8))) {
println!("{}", elem);
}
assert_eq!(Some(&5), set.range(4..).next());
Runpub fn difference(&'a self, other: &'a BTreeSet<T>) -> Difference<'a, T>ⓘNotable traits for Difference<'a, T>impl<'a, T> Iterator for Difference<'a, T> where
T: Ord, type Item = &'a T;
where
T: Ord,
pub fn difference(&'a self, other: &'a BTreeSet<T>) -> Difference<'a, T>ⓘNotable traits for Difference<'a, T>impl<'a, T> Iterator for Difference<'a, T> where
T: Ord, type Item = &'a T;
where
T: Ord,
impl<'a, T> Iterator for Difference<'a, T> where
T: Ord, type Item = &'a T;
Visits the elements representing the difference,
i.e., the elements that are in self
but not in other
,
in ascending order.
Examples
use std::collections::BTreeSet;
let mut a = BTreeSet::new();
a.insert(1);
a.insert(2);
let mut b = BTreeSet::new();
b.insert(2);
b.insert(3);
let diff: Vec<_> = a.difference(&b).cloned().collect();
assert_eq!(diff, [1]);
Runpub fn symmetric_difference(
&'a self,
other: &'a BTreeSet<T>
) -> SymmetricDifference<'a, T>ⓘNotable traits for SymmetricDifference<'a, T>impl<'a, T> Iterator for SymmetricDifference<'a, T> where
T: Ord, type Item = &'a T;
where
T: Ord,
pub fn symmetric_difference(
&'a self,
other: &'a BTreeSet<T>
) -> SymmetricDifference<'a, T>ⓘNotable traits for SymmetricDifference<'a, T>impl<'a, T> Iterator for SymmetricDifference<'a, T> where
T: Ord, type Item = &'a T;
where
T: Ord,
impl<'a, T> Iterator for SymmetricDifference<'a, T> where
T: Ord, type Item = &'a T;
Visits the elements representing the symmetric difference,
i.e., the elements that are in self
or in other
but not in both,
in ascending order.
Examples
use std::collections::BTreeSet;
let mut a = BTreeSet::new();
a.insert(1);
a.insert(2);
let mut b = BTreeSet::new();
b.insert(2);
b.insert(3);
let sym_diff: Vec<_> = a.symmetric_difference(&b).cloned().collect();
assert_eq!(sym_diff, [1, 3]);
Runpub fn intersection(&'a self, other: &'a BTreeSet<T>) -> Intersection<'a, T>ⓘNotable traits for Intersection<'a, T>impl<'a, T> Iterator for Intersection<'a, T> where
T: Ord, type Item = &'a T;
where
T: Ord,
pub fn intersection(&'a self, other: &'a BTreeSet<T>) -> Intersection<'a, T>ⓘNotable traits for Intersection<'a, T>impl<'a, T> Iterator for Intersection<'a, T> where
T: Ord, type Item = &'a T;
where
T: Ord,
impl<'a, T> Iterator for Intersection<'a, T> where
T: Ord, type Item = &'a T;
Visits the elements representing the intersection,
i.e., the elements that are both in self
and other
,
in ascending order.
Examples
use std::collections::BTreeSet;
let mut a = BTreeSet::new();
a.insert(1);
a.insert(2);
let mut b = BTreeSet::new();
b.insert(2);
b.insert(3);
let intersection: Vec<_> = a.intersection(&b).cloned().collect();
assert_eq!(intersection, [2]);
RunVisits the elements representing the union,
i.e., all the elements in self
or other
, without duplicates,
in ascending order.
Examples
use std::collections::BTreeSet;
let mut a = BTreeSet::new();
a.insert(1);
let mut b = BTreeSet::new();
b.insert(2);
let union: Vec<_> = a.union(&b).cloned().collect();
assert_eq!(union, [1, 2]);
RunReturns true
if the set contains an element equal to the value.
The value may be any borrowed form of the set’s element type, but the ordering on the borrowed form must match the ordering on the element type.
Examples
use std::collections::BTreeSet;
let set = BTreeSet::from([1, 2, 3]);
assert_eq!(set.contains(&1), true);
assert_eq!(set.contains(&4), false);
RunReturns a reference to the element in the set, if any, that is equal to the value.
The value may be any borrowed form of the set’s element type, but the ordering on the borrowed form must match the ordering on the element type.
Examples
use std::collections::BTreeSet;
let set = BTreeSet::from([1, 2, 3]);
assert_eq!(set.get(&2), Some(&2));
assert_eq!(set.get(&4), None);
RunReturns true
if self
has no elements in common with other
.
This is equivalent to checking for an empty intersection.
Examples
use std::collections::BTreeSet;
let a = BTreeSet::from([1, 2, 3]);
let mut b = BTreeSet::new();
assert_eq!(a.is_disjoint(&b), true);
b.insert(4);
assert_eq!(a.is_disjoint(&b), true);
b.insert(1);
assert_eq!(a.is_disjoint(&b), false);
RunReturns true
if the set is a subset of another,
i.e., other
contains at least all the elements in self
.
Examples
use std::collections::BTreeSet;
let sup = BTreeSet::from([1, 2, 3]);
let mut set = BTreeSet::new();
assert_eq!(set.is_subset(&sup), true);
set.insert(2);
assert_eq!(set.is_subset(&sup), true);
set.insert(4);
assert_eq!(set.is_subset(&sup), false);
RunReturns true
if the set is a superset of another,
i.e., self
contains at least all the elements in other
.
Examples
use std::collections::BTreeSet;
let sub = BTreeSet::from([1, 2]);
let mut set = BTreeSet::new();
assert_eq!(set.is_superset(&sub), false);
set.insert(0);
set.insert(1);
assert_eq!(set.is_superset(&sub), false);
set.insert(2);
assert_eq!(set.is_superset(&sub), true);
RunReturns a reference to the first element in the set, if any. This element is always the minimum of all elements in the set.
Examples
Basic usage:
#![feature(map_first_last)]
use std::collections::BTreeSet;
let mut set = BTreeSet::new();
assert_eq!(set.first(), None);
set.insert(1);
assert_eq!(set.first(), Some(&1));
set.insert(2);
assert_eq!(set.first(), Some(&1));
RunReturns a reference to the last element in the set, if any. This element is always the maximum of all elements in the set.
Examples
Basic usage:
#![feature(map_first_last)]
use std::collections::BTreeSet;
let mut set = BTreeSet::new();
assert_eq!(set.last(), None);
set.insert(1);
assert_eq!(set.last(), Some(&1));
set.insert(2);
assert_eq!(set.last(), Some(&2));
RunRemoves the first element from the set and returns it, if any. The first element is always the minimum element in the set.
Examples
#![feature(map_first_last)]
use std::collections::BTreeSet;
let mut set = BTreeSet::new();
set.insert(1);
while let Some(n) = set.pop_first() {
assert_eq!(n, 1);
}
assert!(set.is_empty());
RunRemoves the last element from the set and returns it, if any. The last element is always the maximum element in the set.
Examples
#![feature(map_first_last)]
use std::collections::BTreeSet;
let mut set = BTreeSet::new();
set.insert(1);
while let Some(n) = set.pop_last() {
assert_eq!(n, 1);
}
assert!(set.is_empty());
RunAdds a value to the set.
If the set did not have an equal element present, true
is returned.
If the set did have an equal element present, false
is returned, and
the entry is not updated. See the module-level documentation for more.
Examples
use std::collections::BTreeSet;
let mut set = BTreeSet::new();
assert_eq!(set.insert(2), true);
assert_eq!(set.insert(2), false);
assert_eq!(set.len(), 1);
RunAdds a value to the set, replacing the existing element, if any, that is equal to the value. Returns the replaced element.
Examples
use std::collections::BTreeSet;
let mut set = BTreeSet::new();
set.insert(Vec::<i32>::new());
assert_eq!(set.get(&[][..]).unwrap().capacity(), 0);
set.replace(Vec::with_capacity(10));
assert_eq!(set.get(&[][..]).unwrap().capacity(), 10);
RunIf the set contains an element equal to the value, removes it from the set and drops it. Returns whether such an element was present.
The value may be any borrowed form of the set’s element type, but the ordering on the borrowed form must match the ordering on the element type.
Examples
use std::collections::BTreeSet;
let mut set = BTreeSet::new();
set.insert(2);
assert_eq!(set.remove(&2), true);
assert_eq!(set.remove(&2), false);
RunRemoves and returns the element in the set, if any, that is equal to the value.
The value may be any borrowed form of the set’s element type, but the ordering on the borrowed form must match the ordering on the element type.
Examples
use std::collections::BTreeSet;
let mut set = BTreeSet::from([1, 2, 3]);
assert_eq!(set.take(&2), Some(2));
assert_eq!(set.take(&2), None);
RunRetains only the elements specified by the predicate.
In other words, remove all elements e
such that f(&e)
returns false
.
The elements are visited in ascending order.
Examples
use std::collections::BTreeSet;
let mut set = BTreeSet::from([1, 2, 3, 4, 5, 6]);
// Keep only the even numbers.
set.retain(|&k| k % 2 == 0);
assert!(set.iter().eq([2, 4, 6].iter()));
RunMoves all elements from other
into Self
, leaving other
empty.
Examples
use std::collections::BTreeSet;
let mut a = BTreeSet::new();
a.insert(1);
a.insert(2);
a.insert(3);
let mut b = BTreeSet::new();
b.insert(3);
b.insert(4);
b.insert(5);
a.append(&mut b);
assert_eq!(a.len(), 5);
assert_eq!(b.len(), 0);
assert!(a.contains(&1));
assert!(a.contains(&2));
assert!(a.contains(&3));
assert!(a.contains(&4));
assert!(a.contains(&5));
RunSplits the collection into two at the value. Returns a new collection with all elements greater than or equal to the value.
Examples
Basic usage:
use std::collections::BTreeSet;
let mut a = BTreeSet::new();
a.insert(1);
a.insert(2);
a.insert(3);
a.insert(17);
a.insert(41);
let b = a.split_off(&3);
assert_eq!(a.len(), 2);
assert_eq!(b.len(), 3);
assert!(a.contains(&1));
assert!(a.contains(&2));
assert!(b.contains(&3));
assert!(b.contains(&17));
assert!(b.contains(&41));
Runpub fn drain_filter<'a, F>(&'a mut self, pred: F) -> DrainFilter<'a, T, F>ⓘNotable traits for DrainFilter<'_, T, F>impl<'a, '_, T, F> Iterator for DrainFilter<'_, T, F> where
F: 'a + FnMut(&T) -> bool, type Item = T;
where
T: Ord,
F: 'a + FnMut(&T) -> bool,
pub fn drain_filter<'a, F>(&'a mut self, pred: F) -> DrainFilter<'a, T, F>ⓘNotable traits for DrainFilter<'_, T, F>impl<'a, '_, T, F> Iterator for DrainFilter<'_, T, F> where
F: 'a + FnMut(&T) -> bool, type Item = T;
where
T: Ord,
F: 'a + FnMut(&T) -> bool,
impl<'a, '_, T, F> Iterator for DrainFilter<'_, T, F> where
F: 'a + FnMut(&T) -> bool, type Item = T;
Creates an iterator that visits all elements in ascending order and uses a closure to determine if an element should be removed.
If the closure returns true
, the element is removed from the set and
yielded. If the closure returns false
, or panics, the element remains
in the set and will not be yielded.
If the iterator is only partially consumed or not consumed at all, each
of the remaining elements is still subjected to the closure and removed
and dropped if it returns true
.
It is unspecified how many more elements will be subjected to the
closure if a panic occurs in the closure, or if a panic occurs while
dropping an element, or if the DrainFilter
itself is leaked.
Examples
Splitting a set into even and odd values, reusing the original set:
#![feature(btree_drain_filter)]
use std::collections::BTreeSet;
let mut set: BTreeSet<i32> = (0..8).collect();
let evens: BTreeSet<_> = set.drain_filter(|v| v % 2 == 0).collect();
let odds = set;
assert_eq!(evens.into_iter().collect::<Vec<_>>(), vec![0, 2, 4, 6]);
assert_eq!(odds.into_iter().collect::<Vec<_>>(), vec![1, 3, 5, 7]);
RunGets an iterator that visits the elements in the BTreeSet
in ascending
order.
Examples
use std::collections::BTreeSet;
let set = BTreeSet::from([1, 2, 3]);
let mut set_iter = set.iter();
assert_eq!(set_iter.next(), Some(&1));
assert_eq!(set_iter.next(), Some(&2));
assert_eq!(set_iter.next(), Some(&3));
assert_eq!(set_iter.next(), None);
RunValues returned by the iterator are returned in ascending order:
use std::collections::BTreeSet;
let set = BTreeSet::from([3, 1, 2]);
let mut set_iter = set.iter();
assert_eq!(set_iter.next(), Some(&1));
assert_eq!(set_iter.next(), Some(&2));
assert_eq!(set_iter.next(), Some(&3));
assert_eq!(set_iter.next(), None);
RunTrait Implementations
Creates a value from an iterator. Read more
type Item = T
type Item = T
The type of the elements being iterated over.
This method returns an ordering between self
and other
values if one exists. Read more
This method tests less than (for self
and other
) and is used by the <
operator. Read more
This method tests less than or equal to (for self
and other
) and is used by the <=
operator. Read more
This method tests greater than (for self
and other
) and is used by the >
operator. Read more