1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571
//! A "once initialization" primitive
//!
//! This primitive is meant to be used to run one-time initialization. An
//! example use case would be for initializing an FFI library.
// A "once" is a relatively simple primitive, and it's also typically provided
// by the OS as well (see `pthread_once` or `InitOnceExecuteOnce`). The OS
// primitives, however, tend to have surprising restrictions, such as the Unix
// one doesn't allow an argument to be passed to the function.
//
// As a result, we end up implementing it ourselves in the standard library.
// This also gives us the opportunity to optimize the implementation a bit which
// should help the fast path on call sites. Consequently, let's explain how this
// primitive works now!
//
// So to recap, the guarantees of a Once are that it will call the
// initialization closure at most once, and it will never return until the one
// that's running has finished running. This means that we need some form of
// blocking here while the custom callback is running at the very least.
// Additionally, we add on the restriction of **poisoning**. Whenever an
// initialization closure panics, the Once enters a "poisoned" state which means
// that all future calls will immediately panic as well.
//
// So to implement this, one might first reach for a `Mutex`, but those cannot
// be put into a `static`. It also gets a lot harder with poisoning to figure
// out when the mutex needs to be deallocated because it's not after the closure
// finishes, but after the first successful closure finishes.
//
// All in all, this is instead implemented with atomics and lock-free
// operations! Whee! Each `Once` has one word of atomic state, and this state is
// CAS'd on to determine what to do. There are four possible state of a `Once`:
//
// * Incomplete - no initialization has run yet, and no thread is currently
// using the Once.
// * Poisoned - some thread has previously attempted to initialize the Once, but
// it panicked, so the Once is now poisoned. There are no other
// threads currently accessing this Once.
// * Running - some thread is currently attempting to run initialization. It may
// succeed, so all future threads need to wait for it to finish.
// Note that this state is accompanied with a payload, described
// below.
// * Complete - initialization has completed and all future calls should finish
// immediately.
//
// With 4 states we need 2 bits to encode this, and we use the remaining bits
// in the word we have allocated as a queue of threads waiting for the thread
// responsible for entering the RUNNING state. This queue is just a linked list
// of Waiter nodes which is monotonically increasing in size. Each node is
// allocated on the stack, and whenever the running closure finishes it will
// consume the entire queue and notify all waiters they should try again.
//
// You'll find a few more details in the implementation, but that's the gist of
// it!
//
// Atomic orderings:
// When running `Once` we deal with multiple atomics:
// `Once.state_and_queue` and an unknown number of `Waiter.signaled`.
// * `state_and_queue` is used (1) as a state flag, (2) for synchronizing the
// result of the `Once`, and (3) for synchronizing `Waiter` nodes.
// - At the end of the `call_inner` function we have to make sure the result
// of the `Once` is acquired. So every load which can be the only one to
// load COMPLETED must have at least Acquire ordering, which means all
// three of them.
// - `WaiterQueue::Drop` is the only place that may store COMPLETED, and
// must do so with Release ordering to make the result available.
// - `wait` inserts `Waiter` nodes as a pointer in `state_and_queue`, and
// needs to make the nodes available with Release ordering. The load in
// its `compare_exchange` can be Relaxed because it only has to compare
// the atomic, not to read other data.
// - `WaiterQueue::Drop` must see the `Waiter` nodes, so it must load
// `state_and_queue` with Acquire ordering.
// - There is just one store where `state_and_queue` is used only as a
// state flag, without having to synchronize data: switching the state
// from INCOMPLETE to RUNNING in `call_inner`. This store can be Relaxed,
// but the read has to be Acquire because of the requirements mentioned
// above.
// * `Waiter.signaled` is both used as a flag, and to protect a field with
// interior mutability in `Waiter`. `Waiter.thread` is changed in
// `WaiterQueue::Drop` which then sets `signaled` with Release ordering.
// After `wait` loads `signaled` with Acquire and sees it is true, it needs to
// see the changes to drop the `Waiter` struct correctly.
// * There is one place where the two atomics `Once.state_and_queue` and
// `Waiter.signaled` come together, and might be reordered by the compiler or
// processor. Because both use Acquire ordering such a reordering is not
// allowed, so no need for SeqCst.
#[cfg(all(test, not(target_os = "emscripten")))]
mod tests;
use crate::cell::Cell;
use crate::fmt;
use crate::marker;
use crate::panic::{RefUnwindSafe, UnwindSafe};
use crate::sync::atomic::{AtomicBool, AtomicUsize, Ordering};
use crate::thread::{self, Thread};
/// A synchronization primitive which can be used to run a one-time global
/// initialization. Useful for one-time initialization for FFI or related
/// functionality. This type can only be constructed with [`Once::new()`].
///
/// # Examples
///
/// ```
/// use std::sync::Once;
///
/// static START: Once = Once::new();
///
/// START.call_once(|| {
/// // run initialization here
/// });
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
pub struct Once {
// `state_and_queue` is actually a pointer to a `Waiter` with extra state
// bits, so we add the `PhantomData` appropriately.
state_and_queue: AtomicUsize,
_marker: marker::PhantomData<*const Waiter>,
}
// The `PhantomData` of a raw pointer removes these two auto traits, but we
// enforce both below in the implementation so this should be safe to add.
#[stable(feature = "rust1", since = "1.0.0")]
unsafe impl Sync for Once {}
#[stable(feature = "rust1", since = "1.0.0")]
unsafe impl Send for Once {}
#[stable(feature = "sync_once_unwind_safe", since = "1.59.0")]
impl UnwindSafe for Once {}
#[stable(feature = "sync_once_unwind_safe", since = "1.59.0")]
impl RefUnwindSafe for Once {}
/// State yielded to [`Once::call_once_force()`]’s closure parameter. The state
/// can be used to query the poison status of the [`Once`].
#[stable(feature = "once_poison", since = "1.51.0")]
#[derive(Debug)]
pub struct OnceState {
poisoned: bool,
set_state_on_drop_to: Cell<usize>,
}
/// Initialization value for static [`Once`] values.
///
/// # Examples
///
/// ```
/// use std::sync::{Once, ONCE_INIT};
///
/// static START: Once = ONCE_INIT;
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_deprecated(
since = "1.38.0",
reason = "the `new` function is now preferred",
suggestion = "Once::new()"
)]
pub const ONCE_INIT: Once = Once::new();
// Four states that a Once can be in, encoded into the lower bits of
// `state_and_queue` in the Once structure.
const INCOMPLETE: usize = 0x0;
const POISONED: usize = 0x1;
const RUNNING: usize = 0x2;
const COMPLETE: usize = 0x3;
// Mask to learn about the state. All other bits are the queue of waiters if
// this is in the RUNNING state.
const STATE_MASK: usize = 0x3;
// Representation of a node in the linked list of waiters, used while in the
// RUNNING state.
// Note: `Waiter` can't hold a mutable pointer to the next thread, because then
// `wait` would both hand out a mutable reference to its `Waiter` node, and keep
// a shared reference to check `signaled`. Instead we hold shared references and
// use interior mutability.
#[repr(align(4))] // Ensure the two lower bits are free to use as state bits.
struct Waiter {
thread: Cell<Option<Thread>>,
signaled: AtomicBool,
next: *const Waiter,
}
// Head of a linked list of waiters.
// Every node is a struct on the stack of a waiting thread.
// Will wake up the waiters when it gets dropped, i.e. also on panic.
struct WaiterQueue<'a> {
state_and_queue: &'a AtomicUsize,
set_state_on_drop_to: usize,
}
impl Once {
/// Creates a new `Once` value.
#[inline]
#[stable(feature = "once_new", since = "1.2.0")]
#[rustc_const_stable(feature = "const_once_new", since = "1.32.0")]
#[must_use]
pub const fn new() -> Once {
Once { state_and_queue: AtomicUsize::new(INCOMPLETE), _marker: marker::PhantomData }
}
/// Performs an initialization routine once and only once. The given closure
/// will be executed if this is the first time `call_once` has been called,
/// and otherwise the routine will *not* be invoked.
///
/// This method will block the calling thread if another initialization
/// routine is currently running.
///
/// When this function returns, it is guaranteed that some initialization
/// has run and completed (it might not be the closure specified). It is also
/// guaranteed that any memory writes performed by the executed closure can
/// be reliably observed by other threads at this point (there is a
/// happens-before relation between the closure and code executing after the
/// return).
///
/// If the given closure recursively invokes `call_once` on the same [`Once`]
/// instance the exact behavior is not specified, allowed outcomes are
/// a panic or a deadlock.
///
/// # Examples
///
/// ```
/// use std::sync::Once;
///
/// static mut VAL: usize = 0;
/// static INIT: Once = Once::new();
///
/// // Accessing a `static mut` is unsafe much of the time, but if we do so
/// // in a synchronized fashion (e.g., write once or read all) then we're
/// // good to go!
/// //
/// // This function will only call `expensive_computation` once, and will
/// // otherwise always return the value returned from the first invocation.
/// fn get_cached_val() -> usize {
/// unsafe {
/// INIT.call_once(|| {
/// VAL = expensive_computation();
/// });
/// VAL
/// }
/// }
///
/// fn expensive_computation() -> usize {
/// // ...
/// # 2
/// }
/// ```
///
/// # Panics
///
/// The closure `f` will only be executed once if this is called
/// concurrently amongst many threads. If that closure panics, however, then
/// it will *poison* this [`Once`] instance, causing all future invocations of
/// `call_once` to also panic.
///
/// This is similar to [poisoning with mutexes][poison].
///
/// [poison]: struct.Mutex.html#poisoning
#[stable(feature = "rust1", since = "1.0.0")]
pub fn call_once<F>(&self, f: F)
where
F: FnOnce(),
{
// Fast path check
if self.is_completed() {
return;
}
let mut f = Some(f);
self.call_inner(false, &mut |_| f.take().unwrap()());
}
/// Performs the same function as [`call_once()`] except ignores poisoning.
///
/// Unlike [`call_once()`], if this [`Once`] has been poisoned (i.e., a previous
/// call to [`call_once()`] or [`call_once_force()`] caused a panic), calling
/// [`call_once_force()`] will still invoke the closure `f` and will _not_
/// result in an immediate panic. If `f` panics, the [`Once`] will remain
/// in a poison state. If `f` does _not_ panic, the [`Once`] will no
/// longer be in a poison state and all future calls to [`call_once()`] or
/// [`call_once_force()`] will be no-ops.
///
/// The closure `f` is yielded a [`OnceState`] structure which can be used
/// to query the poison status of the [`Once`].
///
/// [`call_once()`]: Once::call_once
/// [`call_once_force()`]: Once::call_once_force
///
/// # Examples
///
/// ```
/// use std::sync::Once;
/// use std::thread;
///
/// static INIT: Once = Once::new();
///
/// // poison the once
/// let handle = thread::spawn(|| {
/// INIT.call_once(|| panic!());
/// });
/// assert!(handle.join().is_err());
///
/// // poisoning propagates
/// let handle = thread::spawn(|| {
/// INIT.call_once(|| {});
/// });
/// assert!(handle.join().is_err());
///
/// // call_once_force will still run and reset the poisoned state
/// INIT.call_once_force(|state| {
/// assert!(state.is_poisoned());
/// });
///
/// // once any success happens, we stop propagating the poison
/// INIT.call_once(|| {});
/// ```
#[stable(feature = "once_poison", since = "1.51.0")]
pub fn call_once_force<F>(&self, f: F)
where
F: FnOnce(&OnceState),
{
// Fast path check
if self.is_completed() {
return;
}
let mut f = Some(f);
self.call_inner(true, &mut |p| f.take().unwrap()(p));
}
/// Returns `true` if some [`call_once()`] call has completed
/// successfully. Specifically, `is_completed` will return false in
/// the following situations:
/// * [`call_once()`] was not called at all,
/// * [`call_once()`] was called, but has not yet completed,
/// * the [`Once`] instance is poisoned
///
/// This function returning `false` does not mean that [`Once`] has not been
/// executed. For example, it may have been executed in the time between
/// when `is_completed` starts executing and when it returns, in which case
/// the `false` return value would be stale (but still permissible).
///
/// [`call_once()`]: Once::call_once
///
/// # Examples
///
/// ```
/// use std::sync::Once;
///
/// static INIT: Once = Once::new();
///
/// assert_eq!(INIT.is_completed(), false);
/// INIT.call_once(|| {
/// assert_eq!(INIT.is_completed(), false);
/// });
/// assert_eq!(INIT.is_completed(), true);
/// ```
///
/// ```
/// use std::sync::Once;
/// use std::thread;
///
/// static INIT: Once = Once::new();
///
/// assert_eq!(INIT.is_completed(), false);
/// let handle = thread::spawn(|| {
/// INIT.call_once(|| panic!());
/// });
/// assert!(handle.join().is_err());
/// assert_eq!(INIT.is_completed(), false);
/// ```
#[stable(feature = "once_is_completed", since = "1.43.0")]
#[inline]
pub fn is_completed(&self) -> bool {
// An `Acquire` load is enough because that makes all the initialization
// operations visible to us, and, this being a fast path, weaker
// ordering helps with performance. This `Acquire` synchronizes with
// `Release` operations on the slow path.
self.state_and_queue.load(Ordering::Acquire) == COMPLETE
}
// This is a non-generic function to reduce the monomorphization cost of
// using `call_once` (this isn't exactly a trivial or small implementation).
//
// Additionally, this is tagged with `#[cold]` as it should indeed be cold
// and it helps let LLVM know that calls to this function should be off the
// fast path. Essentially, this should help generate more straight line code
// in LLVM.
//
// Finally, this takes an `FnMut` instead of a `FnOnce` because there's
// currently no way to take an `FnOnce` and call it via virtual dispatch
// without some allocation overhead.
#[cold]
fn call_inner(&self, ignore_poisoning: bool, init: &mut dyn FnMut(&OnceState)) {
let mut state_and_queue = self.state_and_queue.load(Ordering::Acquire);
loop {
match state_and_queue {
COMPLETE => break,
POISONED if !ignore_poisoning => {
// Panic to propagate the poison.
panic!("Once instance has previously been poisoned");
}
POISONED | INCOMPLETE => {
// Try to register this thread as the one RUNNING.
let exchange_result = self.state_and_queue.compare_exchange(
state_and_queue,
RUNNING,
Ordering::Acquire,
Ordering::Acquire,
);
if let Err(old) = exchange_result {
state_and_queue = old;
continue;
}
// `waiter_queue` will manage other waiting threads, and
// wake them up on drop.
let mut waiter_queue = WaiterQueue {
state_and_queue: &self.state_and_queue,
set_state_on_drop_to: POISONED,
};
// Run the initialization function, letting it know if we're
// poisoned or not.
let init_state = OnceState {
poisoned: state_and_queue == POISONED,
set_state_on_drop_to: Cell::new(COMPLETE),
};
init(&init_state);
waiter_queue.set_state_on_drop_to = init_state.set_state_on_drop_to.get();
break;
}
_ => {
// All other values must be RUNNING with possibly a
// pointer to the waiter queue in the more significant bits.
assert!(state_and_queue & STATE_MASK == RUNNING);
wait(&self.state_and_queue, state_and_queue);
state_and_queue = self.state_and_queue.load(Ordering::Acquire);
}
}
}
}
}
fn wait(state_and_queue: &AtomicUsize, mut current_state: usize) {
// Note: the following code was carefully written to avoid creating a
// mutable reference to `node` that gets aliased.
loop {
// Don't queue this thread if the status is no longer running,
// otherwise we will not be woken up.
if current_state & STATE_MASK != RUNNING {
return;
}
// Create the node for our current thread.
let node = Waiter {
thread: Cell::new(Some(thread::current())),
signaled: AtomicBool::new(false),
next: (current_state & !STATE_MASK) as *const Waiter,
};
let me = &node as *const Waiter as usize;
// Try to slide in the node at the head of the linked list, making sure
// that another thread didn't just replace the head of the linked list.
let exchange_result = state_and_queue.compare_exchange(
current_state,
me | RUNNING,
Ordering::Release,
Ordering::Relaxed,
);
if let Err(old) = exchange_result {
current_state = old;
continue;
}
// We have enqueued ourselves, now lets wait.
// It is important not to return before being signaled, otherwise we
// would drop our `Waiter` node and leave a hole in the linked list
// (and a dangling reference). Guard against spurious wakeups by
// reparking ourselves until we are signaled.
while !node.signaled.load(Ordering::Acquire) {
// If the managing thread happens to signal and unpark us before we
// can park ourselves, the result could be this thread never gets
// unparked. Luckily `park` comes with the guarantee that if it got
// an `unpark` just before on an unparked thread it does not park.
thread::park();
}
break;
}
}
#[stable(feature = "std_debug", since = "1.16.0")]
impl fmt::Debug for Once {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_struct("Once").finish_non_exhaustive()
}
}
impl Drop for WaiterQueue<'_> {
fn drop(&mut self) {
// Swap out our state with however we finished.
let state_and_queue =
self.state_and_queue.swap(self.set_state_on_drop_to, Ordering::AcqRel);
// We should only ever see an old state which was RUNNING.
assert_eq!(state_and_queue & STATE_MASK, RUNNING);
// Walk the entire linked list of waiters and wake them up (in lifo
// order, last to register is first to wake up).
unsafe {
// Right after setting `node.signaled = true` the other thread may
// free `node` if there happens to be has a spurious wakeup.
// So we have to take out the `thread` field and copy the pointer to
// `next` first.
let mut queue = (state_and_queue & !STATE_MASK) as *const Waiter;
while !queue.is_null() {
let next = (*queue).next;
let thread = (*queue).thread.take().unwrap();
(*queue).signaled.store(true, Ordering::Release);
// ^- FIXME (maybe): This is another case of issue #55005
// `store()` has a potentially dangling ref to `signaled`.
queue = next;
thread.unpark();
}
}
}
}
impl OnceState {
/// Returns `true` if the associated [`Once`] was poisoned prior to the
/// invocation of the closure passed to [`Once::call_once_force()`].
///
/// # Examples
///
/// A poisoned [`Once`]:
///
/// ```
/// use std::sync::Once;
/// use std::thread;
///
/// static INIT: Once = Once::new();
///
/// // poison the once
/// let handle = thread::spawn(|| {
/// INIT.call_once(|| panic!());
/// });
/// assert!(handle.join().is_err());
///
/// INIT.call_once_force(|state| {
/// assert!(state.is_poisoned());
/// });
/// ```
///
/// An unpoisoned [`Once`]:
///
/// ```
/// use std::sync::Once;
///
/// static INIT: Once = Once::new();
///
/// INIT.call_once_force(|state| {
/// assert!(!state.is_poisoned());
/// });
#[stable(feature = "once_poison", since = "1.51.0")]
pub fn is_poisoned(&self) -> bool {
self.poisoned
}
/// Poison the associated [`Once`] without explicitly panicking.
// NOTE: This is currently only exposed for the `lazy` module
pub(crate) fn poison(&self) {
self.set_state_on_drop_to.set(POISONED);
}
}