1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553
#[cfg(all(test, not(target_os = "emscripten")))]
mod tests;
use crate::cell::UnsafeCell;
use crate::fmt;
use crate::ops::{Deref, DerefMut};
use crate::sync::{poison, LockResult, TryLockError, TryLockResult};
use crate::sys_common::mutex as sys;
/// A mutual exclusion primitive useful for protecting shared data
///
/// This mutex will block threads waiting for the lock to become available. The
/// mutex can be created via a [`new`] constructor. Each mutex has a type parameter
/// which represents the data that it is protecting. The data can only be accessed
/// through the RAII guards returned from [`lock`] and [`try_lock`], which
/// guarantees that the data is only ever accessed when the mutex is locked.
///
/// # Poisoning
///
/// The mutexes in this module implement a strategy called "poisoning" where a
/// mutex is considered poisoned whenever a thread panics while holding the
/// mutex. Once a mutex is poisoned, all other threads are unable to access the
/// data by default as it is likely tainted (some invariant is not being
/// upheld).
///
/// For a mutex, this means that the [`lock`] and [`try_lock`] methods return a
/// [`Result`] which indicates whether a mutex has been poisoned or not. Most
/// usage of a mutex will simply [`unwrap()`] these results, propagating panics
/// among threads to ensure that a possibly invalid invariant is not witnessed.
///
/// A poisoned mutex, however, does not prevent all access to the underlying
/// data. The [`PoisonError`] type has an [`into_inner`] method which will return
/// the guard that would have otherwise been returned on a successful lock. This
/// allows access to the data, despite the lock being poisoned.
///
/// [`new`]: Self::new
/// [`lock`]: Self::lock
/// [`try_lock`]: Self::try_lock
/// [`unwrap()`]: Result::unwrap
/// [`PoisonError`]: super::PoisonError
/// [`into_inner`]: super::PoisonError::into_inner
///
/// # Examples
///
/// ```
/// use std::sync::{Arc, Mutex};
/// use std::thread;
/// use std::sync::mpsc::channel;
///
/// const N: usize = 10;
///
/// // Spawn a few threads to increment a shared variable (non-atomically), and
/// // let the main thread know once all increments are done.
/// //
/// // Here we're using an Arc to share memory among threads, and the data inside
/// // the Arc is protected with a mutex.
/// let data = Arc::new(Mutex::new(0));
///
/// let (tx, rx) = channel();
/// for _ in 0..N {
/// let (data, tx) = (Arc::clone(&data), tx.clone());
/// thread::spawn(move || {
/// // The shared state can only be accessed once the lock is held.
/// // Our non-atomic increment is safe because we're the only thread
/// // which can access the shared state when the lock is held.
/// //
/// // We unwrap() the return value to assert that we are not expecting
/// // threads to ever fail while holding the lock.
/// let mut data = data.lock().unwrap();
/// *data += 1;
/// if *data == N {
/// tx.send(()).unwrap();
/// }
/// // the lock is unlocked here when `data` goes out of scope.
/// });
/// }
///
/// rx.recv().unwrap();
/// ```
///
/// To recover from a poisoned mutex:
///
/// ```
/// use std::sync::{Arc, Mutex};
/// use std::thread;
///
/// let lock = Arc::new(Mutex::new(0_u32));
/// let lock2 = Arc::clone(&lock);
///
/// let _ = thread::spawn(move || -> () {
/// // This thread will acquire the mutex first, unwrapping the result of
/// // `lock` because the lock has not been poisoned.
/// let _guard = lock2.lock().unwrap();
///
/// // This panic while holding the lock (`_guard` is in scope) will poison
/// // the mutex.
/// panic!();
/// }).join();
///
/// // The lock is poisoned by this point, but the returned result can be
/// // pattern matched on to return the underlying guard on both branches.
/// let mut guard = match lock.lock() {
/// Ok(guard) => guard,
/// Err(poisoned) => poisoned.into_inner(),
/// };
///
/// *guard += 1;
/// ```
///
/// It is sometimes necessary to manually drop the mutex guard to unlock it
/// sooner than the end of the enclosing scope.
///
/// ```
/// use std::sync::{Arc, Mutex};
/// use std::thread;
///
/// const N: usize = 3;
///
/// let data_mutex = Arc::new(Mutex::new(vec![1, 2, 3, 4]));
/// let res_mutex = Arc::new(Mutex::new(0));
///
/// let mut threads = Vec::with_capacity(N);
/// (0..N).for_each(|_| {
/// let data_mutex_clone = Arc::clone(&data_mutex);
/// let res_mutex_clone = Arc::clone(&res_mutex);
///
/// threads.push(thread::spawn(move || {
/// let mut data = data_mutex_clone.lock().unwrap();
/// // This is the result of some important and long-ish work.
/// let result = data.iter().fold(0, |acc, x| acc + x * 2);
/// data.push(result);
/// drop(data);
/// *res_mutex_clone.lock().unwrap() += result;
/// }));
/// });
///
/// let mut data = data_mutex.lock().unwrap();
/// // This is the result of some important and long-ish work.
/// let result = data.iter().fold(0, |acc, x| acc + x * 2);
/// data.push(result);
/// // We drop the `data` explicitly because it's not necessary anymore and the
/// // thread still has work to do. This allow other threads to start working on
/// // the data immediately, without waiting for the rest of the unrelated work
/// // to be done here.
/// //
/// // It's even more important here than in the threads because we `.join` the
/// // threads after that. If we had not dropped the mutex guard, a thread could
/// // be waiting forever for it, causing a deadlock.
/// drop(data);
/// // Here the mutex guard is not assigned to a variable and so, even if the
/// // scope does not end after this line, the mutex is still released: there is
/// // no deadlock.
/// *res_mutex.lock().unwrap() += result;
///
/// threads.into_iter().for_each(|thread| {
/// thread
/// .join()
/// .expect("The thread creating or execution failed !")
/// });
///
/// assert_eq!(*res_mutex.lock().unwrap(), 800);
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[cfg_attr(not(test), rustc_diagnostic_item = "Mutex")]
pub struct Mutex<T: ?Sized> {
inner: sys::MovableMutex,
poison: poison::Flag,
data: UnsafeCell<T>,
}
// these are the only places where `T: Send` matters; all other
// functionality works fine on a single thread.
#[stable(feature = "rust1", since = "1.0.0")]
unsafe impl<T: ?Sized + Send> Send for Mutex<T> {}
#[stable(feature = "rust1", since = "1.0.0")]
unsafe impl<T: ?Sized + Send> Sync for Mutex<T> {}
/// An RAII implementation of a "scoped lock" of a mutex. When this structure is
/// dropped (falls out of scope), the lock will be unlocked.
///
/// The data protected by the mutex can be accessed through this guard via its
/// [`Deref`] and [`DerefMut`] implementations.
///
/// This structure is created by the [`lock`] and [`try_lock`] methods on
/// [`Mutex`].
///
/// [`lock`]: Mutex::lock
/// [`try_lock`]: Mutex::try_lock
#[must_use = "if unused the Mutex will immediately unlock"]
#[must_not_suspend = "holding a MutexGuard across suspend \
points can cause deadlocks, delays, \
and cause Futures to not implement `Send`"]
#[stable(feature = "rust1", since = "1.0.0")]
#[clippy::has_significant_drop]
pub struct MutexGuard<'a, T: ?Sized + 'a> {
lock: &'a Mutex<T>,
poison: poison::Guard,
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T: ?Sized> !Send for MutexGuard<'_, T> {}
#[stable(feature = "mutexguard", since = "1.19.0")]
unsafe impl<T: ?Sized + Sync> Sync for MutexGuard<'_, T> {}
impl<T> Mutex<T> {
/// Creates a new mutex in an unlocked state ready for use.
///
/// # Examples
///
/// ```
/// use std::sync::Mutex;
///
/// let mutex = Mutex::new(0);
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_const_stable(feature = "const_locks", since = "1.63.0")]
#[inline]
pub const fn new(t: T) -> Mutex<T> {
Mutex {
inner: sys::MovableMutex::new(),
poison: poison::Flag::new(),
data: UnsafeCell::new(t),
}
}
}
impl<T: ?Sized> Mutex<T> {
/// Acquires a mutex, blocking the current thread until it is able to do so.
///
/// This function will block the local thread until it is available to acquire
/// the mutex. Upon returning, the thread is the only thread with the lock
/// held. An RAII guard is returned to allow scoped unlock of the lock. When
/// the guard goes out of scope, the mutex will be unlocked.
///
/// The exact behavior on locking a mutex in the thread which already holds
/// the lock is left unspecified. However, this function will not return on
/// the second call (it might panic or deadlock, for example).
///
/// # Errors
///
/// If another user of this mutex panicked while holding the mutex, then
/// this call will return an error once the mutex is acquired.
///
/// # Panics
///
/// This function might panic when called if the lock is already held by
/// the current thread.
///
/// # Examples
///
/// ```
/// use std::sync::{Arc, Mutex};
/// use std::thread;
///
/// let mutex = Arc::new(Mutex::new(0));
/// let c_mutex = Arc::clone(&mutex);
///
/// thread::spawn(move || {
/// *c_mutex.lock().unwrap() = 10;
/// }).join().expect("thread::spawn failed");
/// assert_eq!(*mutex.lock().unwrap(), 10);
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
pub fn lock(&self) -> LockResult<MutexGuard<'_, T>> {
unsafe {
self.inner.raw_lock();
MutexGuard::new(self)
}
}
/// Attempts to acquire this lock.
///
/// If the lock could not be acquired at this time, then [`Err`] is returned.
/// Otherwise, an RAII guard is returned. The lock will be unlocked when the
/// guard is dropped.
///
/// This function does not block.
///
/// # Errors
///
/// If another user of this mutex panicked while holding the mutex, then
/// this call will return the [`Poisoned`] error if the mutex would
/// otherwise be acquired.
///
/// If the mutex could not be acquired because it is already locked, then
/// this call will return the [`WouldBlock`] error.
///
/// [`Poisoned`]: TryLockError::Poisoned
/// [`WouldBlock`]: TryLockError::WouldBlock
///
/// # Examples
///
/// ```
/// use std::sync::{Arc, Mutex};
/// use std::thread;
///
/// let mutex = Arc::new(Mutex::new(0));
/// let c_mutex = Arc::clone(&mutex);
///
/// thread::spawn(move || {
/// let mut lock = c_mutex.try_lock();
/// if let Ok(ref mut mutex) = lock {
/// **mutex = 10;
/// } else {
/// println!("try_lock failed");
/// }
/// }).join().expect("thread::spawn failed");
/// assert_eq!(*mutex.lock().unwrap(), 10);
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
pub fn try_lock(&self) -> TryLockResult<MutexGuard<'_, T>> {
unsafe {
if self.inner.try_lock() {
Ok(MutexGuard::new(self)?)
} else {
Err(TryLockError::WouldBlock)
}
}
}
/// Immediately drops the guard, and consequently unlocks the mutex.
///
/// This function is equivalent to calling [`drop`] on the guard but is more self-documenting.
/// Alternately, the guard will be automatically dropped when it goes out of scope.
///
/// ```
/// #![feature(mutex_unlock)]
///
/// use std::sync::Mutex;
/// let mutex = Mutex::new(0);
///
/// let mut guard = mutex.lock().unwrap();
/// *guard += 20;
/// Mutex::unlock(guard);
/// ```
#[unstable(feature = "mutex_unlock", issue = "81872")]
pub fn unlock(guard: MutexGuard<'_, T>) {
drop(guard);
}
/// Determines whether the mutex is poisoned.
///
/// If another thread is active, the mutex can still become poisoned at any
/// time. You should not trust a `false` value for program correctness
/// without additional synchronization.
///
/// # Examples
///
/// ```
/// use std::sync::{Arc, Mutex};
/// use std::thread;
///
/// let mutex = Arc::new(Mutex::new(0));
/// let c_mutex = Arc::clone(&mutex);
///
/// let _ = thread::spawn(move || {
/// let _lock = c_mutex.lock().unwrap();
/// panic!(); // the mutex gets poisoned
/// }).join();
/// assert_eq!(mutex.is_poisoned(), true);
/// ```
#[inline]
#[stable(feature = "sync_poison", since = "1.2.0")]
pub fn is_poisoned(&self) -> bool {
self.poison.get()
}
/// Clear the poisoned state from a mutex
///
/// If the mutex is poisoned, it will remain poisoned until this function is called. This
/// allows recovering from a poisoned state and marking that it has recovered. For example, if
/// the value is overwritten by a known-good value, then the mutex can be marked as
/// un-poisoned. Or possibly, the value could be inspected to determine if it is in a
/// consistent state, and if so the poison is removed.
///
/// # Examples
///
/// ```
/// #![feature(mutex_unpoison)]
///
/// use std::sync::{Arc, Mutex};
/// use std::thread;
///
/// let mutex = Arc::new(Mutex::new(0));
/// let c_mutex = Arc::clone(&mutex);
///
/// let _ = thread::spawn(move || {
/// let _lock = c_mutex.lock().unwrap();
/// panic!(); // the mutex gets poisoned
/// }).join();
///
/// assert_eq!(mutex.is_poisoned(), true);
/// let x = mutex.lock().unwrap_or_else(|mut e| {
/// **e.get_mut() = 1;
/// mutex.clear_poison();
/// e.into_inner()
/// });
/// assert_eq!(mutex.is_poisoned(), false);
/// assert_eq!(*x, 1);
/// ```
#[inline]
#[unstable(feature = "mutex_unpoison", issue = "96469")]
pub fn clear_poison(&self) {
self.poison.clear();
}
/// Consumes this mutex, returning the underlying data.
///
/// # Errors
///
/// If another user of this mutex panicked while holding the mutex, then
/// this call will return an error instead.
///
/// # Examples
///
/// ```
/// use std::sync::Mutex;
///
/// let mutex = Mutex::new(0);
/// assert_eq!(mutex.into_inner().unwrap(), 0);
/// ```
#[stable(feature = "mutex_into_inner", since = "1.6.0")]
pub fn into_inner(self) -> LockResult<T>
where
T: Sized,
{
let data = self.data.into_inner();
poison::map_result(self.poison.borrow(), |()| data)
}
/// Returns a mutable reference to the underlying data.
///
/// Since this call borrows the `Mutex` mutably, no actual locking needs to
/// take place -- the mutable borrow statically guarantees no locks exist.
///
/// # Errors
///
/// If another user of this mutex panicked while holding the mutex, then
/// this call will return an error instead.
///
/// # Examples
///
/// ```
/// use std::sync::Mutex;
///
/// let mut mutex = Mutex::new(0);
/// *mutex.get_mut().unwrap() = 10;
/// assert_eq!(*mutex.lock().unwrap(), 10);
/// ```
#[stable(feature = "mutex_get_mut", since = "1.6.0")]
pub fn get_mut(&mut self) -> LockResult<&mut T> {
let data = self.data.get_mut();
poison::map_result(self.poison.borrow(), |()| data)
}
}
#[stable(feature = "mutex_from", since = "1.24.0")]
impl<T> From<T> for Mutex<T> {
/// Creates a new mutex in an unlocked state ready for use.
/// This is equivalent to [`Mutex::new`].
fn from(t: T) -> Self {
Mutex::new(t)
}
}
#[stable(feature = "mutex_default", since = "1.10.0")]
impl<T: ?Sized + Default> Default for Mutex<T> {
/// Creates a `Mutex<T>`, with the `Default` value for T.
fn default() -> Mutex<T> {
Mutex::new(Default::default())
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T: ?Sized + fmt::Debug> fmt::Debug for Mutex<T> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
let mut d = f.debug_struct("Mutex");
match self.try_lock() {
Ok(guard) => {
d.field("data", &&*guard);
}
Err(TryLockError::Poisoned(err)) => {
d.field("data", &&**err.get_ref());
}
Err(TryLockError::WouldBlock) => {
struct LockedPlaceholder;
impl fmt::Debug for LockedPlaceholder {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.write_str("<locked>")
}
}
d.field("data", &LockedPlaceholder);
}
}
d.field("poisoned", &self.poison.get());
d.finish_non_exhaustive()
}
}
impl<'mutex, T: ?Sized> MutexGuard<'mutex, T> {
unsafe fn new(lock: &'mutex Mutex<T>) -> LockResult<MutexGuard<'mutex, T>> {
poison::map_result(lock.poison.guard(), |guard| MutexGuard { lock, poison: guard })
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T: ?Sized> Deref for MutexGuard<'_, T> {
type Target = T;
fn deref(&self) -> &T {
unsafe { &*self.lock.data.get() }
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T: ?Sized> DerefMut for MutexGuard<'_, T> {
fn deref_mut(&mut self) -> &mut T {
unsafe { &mut *self.lock.data.get() }
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T: ?Sized> Drop for MutexGuard<'_, T> {
#[inline]
fn drop(&mut self) {
unsafe {
self.lock.poison.done(&self.poison);
self.lock.inner.raw_unlock();
}
}
}
#[stable(feature = "std_debug", since = "1.16.0")]
impl<T: ?Sized + fmt::Debug> fmt::Debug for MutexGuard<'_, T> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
fmt::Debug::fmt(&**self, f)
}
}
#[stable(feature = "std_guard_impls", since = "1.20.0")]
impl<T: ?Sized + fmt::Display> fmt::Display for MutexGuard<'_, T> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
(**self).fmt(f)
}
}
pub fn guard_lock<'a, T: ?Sized>(guard: &MutexGuard<'a, T>) -> &'a sys::MovableMutex {
&guard.lock.inner
}
pub fn guard_poison<'a, T: ?Sized>(guard: &MutexGuard<'a, T>) -> &'a poison::Flag {
&guard.lock.poison
}