1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
//! Operations on ASCII `[u8]`.

use crate::ascii;
use crate::fmt::{self, Write};
use crate::iter;
use crate::mem;
use crate::ops;

#[cfg(not(test))]
impl [u8] {
    /// Checks if all bytes in this slice are within the ASCII range.
    #[stable(feature = "ascii_methods_on_intrinsics", since = "1.23.0")]
    #[must_use]
    #[inline]
    pub fn is_ascii(&self) -> bool {
        is_ascii(self)
    }

    /// Checks that two slices are an ASCII case-insensitive match.
    ///
    /// Same as `to_ascii_lowercase(a) == to_ascii_lowercase(b)`,
    /// but without allocating and copying temporaries.
    #[stable(feature = "ascii_methods_on_intrinsics", since = "1.23.0")]
    #[must_use]
    #[inline]
    pub fn eq_ignore_ascii_case(&self, other: &[u8]) -> bool {
        self.len() == other.len() && iter::zip(self, other).all(|(a, b)| a.eq_ignore_ascii_case(b))
    }

    /// Converts this slice to its ASCII upper case equivalent in-place.
    ///
    /// ASCII letters 'a' to 'z' are mapped to 'A' to 'Z',
    /// but non-ASCII letters are unchanged.
    ///
    /// To return a new uppercased value without modifying the existing one, use
    /// [`to_ascii_uppercase`].
    ///
    /// [`to_ascii_uppercase`]: #method.to_ascii_uppercase
    #[stable(feature = "ascii_methods_on_intrinsics", since = "1.23.0")]
    #[inline]
    pub fn make_ascii_uppercase(&mut self) {
        for byte in self {
            byte.make_ascii_uppercase();
        }
    }

    /// Converts this slice to its ASCII lower case equivalent in-place.
    ///
    /// ASCII letters 'A' to 'Z' are mapped to 'a' to 'z',
    /// but non-ASCII letters are unchanged.
    ///
    /// To return a new lowercased value without modifying the existing one, use
    /// [`to_ascii_lowercase`].
    ///
    /// [`to_ascii_lowercase`]: #method.to_ascii_lowercase
    #[stable(feature = "ascii_methods_on_intrinsics", since = "1.23.0")]
    #[inline]
    pub fn make_ascii_lowercase(&mut self) {
        for byte in self {
            byte.make_ascii_lowercase();
        }
    }

    /// Returns an iterator that produces an escaped version of this slice,
    /// treating it as an ASCII string.
    ///
    /// # Examples
    ///
    /// ```
    ///
    /// let s = b"0\t\r\n'\"\\\x9d";
    /// let escaped = s.escape_ascii().to_string();
    /// assert_eq!(escaped, "0\\t\\r\\n\\'\\\"\\\\\\x9d");
    /// ```
    #[must_use = "this returns the escaped bytes as an iterator, \
                  without modifying the original"]
    #[stable(feature = "inherent_ascii_escape", since = "1.60.0")]
    pub fn escape_ascii(&self) -> EscapeAscii<'_> {
        EscapeAscii { inner: self.iter().flat_map(EscapeByte) }
    }

    /// Returns a byte slice with leading ASCII whitespace bytes removed.
    ///
    /// 'Whitespace' refers to the definition used by
    /// `u8::is_ascii_whitespace`.
    ///
    /// # Examples
    ///
    /// ```
    /// #![feature(byte_slice_trim_ascii)]
    ///
    /// assert_eq!(b" \t hello world\n".trim_ascii_start(), b"hello world\n");
    /// assert_eq!(b"  ".trim_ascii_start(), b"");
    /// assert_eq!(b"".trim_ascii_start(), b"");
    /// ```
    #[unstable(feature = "byte_slice_trim_ascii", issue = "94035")]
    pub const fn trim_ascii_start(&self) -> &[u8] {
        let mut bytes = self;
        // Note: A pattern matching based approach (instead of indexing) allows
        // making the function const.
        while let [first, rest @ ..] = bytes {
            if first.is_ascii_whitespace() {
                bytes = rest;
            } else {
                break;
            }
        }
        bytes
    }

    /// Returns a byte slice with trailing ASCII whitespace bytes removed.
    ///
    /// 'Whitespace' refers to the definition used by
    /// `u8::is_ascii_whitespace`.
    ///
    /// # Examples
    ///
    /// ```
    /// #![feature(byte_slice_trim_ascii)]
    ///
    /// assert_eq!(b"\r hello world\n ".trim_ascii_end(), b"\r hello world");
    /// assert_eq!(b"  ".trim_ascii_end(), b"");
    /// assert_eq!(b"".trim_ascii_end(), b"");
    /// ```
    #[unstable(feature = "byte_slice_trim_ascii", issue = "94035")]
    pub const fn trim_ascii_end(&self) -> &[u8] {
        let mut bytes = self;
        // Note: A pattern matching based approach (instead of indexing) allows
        // making the function const.
        while let [rest @ .., last] = bytes {
            if last.is_ascii_whitespace() {
                bytes = rest;
            } else {
                break;
            }
        }
        bytes
    }

    /// Returns a byte slice with leading and trailing ASCII whitespace bytes
    /// removed.
    ///
    /// 'Whitespace' refers to the definition used by
    /// `u8::is_ascii_whitespace`.
    ///
    /// # Examples
    ///
    /// ```
    /// #![feature(byte_slice_trim_ascii)]
    ///
    /// assert_eq!(b"\r hello world\n ".trim_ascii(), b"hello world");
    /// assert_eq!(b"  ".trim_ascii(), b"");
    /// assert_eq!(b"".trim_ascii(), b"");
    /// ```
    #[unstable(feature = "byte_slice_trim_ascii", issue = "94035")]
    pub const fn trim_ascii(&self) -> &[u8] {
        self.trim_ascii_start().trim_ascii_end()
    }
}

impl_fn_for_zst! {
    #[derive(Clone)]
    struct EscapeByte impl Fn = |byte: &u8| -> ascii::EscapeDefault {
        ascii::escape_default(*byte)
    };
}

/// An iterator over the escaped version of a byte slice.
///
/// This `struct` is created by the [`slice::escape_ascii`] method. See its
/// documentation for more information.
#[stable(feature = "inherent_ascii_escape", since = "1.60.0")]
#[derive(Clone)]
#[must_use = "iterators are lazy and do nothing unless consumed"]
pub struct EscapeAscii<'a> {
    inner: iter::FlatMap<super::Iter<'a, u8>, ascii::EscapeDefault, EscapeByte>,
}

#[stable(feature = "inherent_ascii_escape", since = "1.60.0")]
impl<'a> iter::Iterator for EscapeAscii<'a> {
    type Item = u8;
    #[inline]
    fn next(&mut self) -> Option<u8> {
        self.inner.next()
    }
    #[inline]
    fn size_hint(&self) -> (usize, Option<usize>) {
        self.inner.size_hint()
    }
    #[inline]
    fn try_fold<Acc, Fold, R>(&mut self, init: Acc, fold: Fold) -> R
    where
        Fold: FnMut(Acc, Self::Item) -> R,
        R: ops::Try<Output = Acc>,
    {
        self.inner.try_fold(init, fold)
    }
    #[inline]
    fn fold<Acc, Fold>(self, init: Acc, fold: Fold) -> Acc
    where
        Fold: FnMut(Acc, Self::Item) -> Acc,
    {
        self.inner.fold(init, fold)
    }
    #[inline]
    fn last(mut self) -> Option<u8> {
        self.next_back()
    }
}

#[stable(feature = "inherent_ascii_escape", since = "1.60.0")]
impl<'a> iter::DoubleEndedIterator for EscapeAscii<'a> {
    fn next_back(&mut self) -> Option<u8> {
        self.inner.next_back()
    }
}
#[stable(feature = "inherent_ascii_escape", since = "1.60.0")]
impl<'a> iter::ExactSizeIterator for EscapeAscii<'a> {}
#[stable(feature = "inherent_ascii_escape", since = "1.60.0")]
impl<'a> iter::FusedIterator for EscapeAscii<'a> {}
#[stable(feature = "inherent_ascii_escape", since = "1.60.0")]
impl<'a> fmt::Display for EscapeAscii<'a> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        self.clone().try_for_each(|b| f.write_char(b as char))
    }
}
#[stable(feature = "inherent_ascii_escape", since = "1.60.0")]
impl<'a> fmt::Debug for EscapeAscii<'a> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.debug_struct("EscapeAscii").finish_non_exhaustive()
    }
}

/// Returns `true` if any byte in the word `v` is nonascii (>= 128). Snarfed
/// from `../str/mod.rs`, which does something similar for utf8 validation.
#[inline]
fn contains_nonascii(v: usize) -> bool {
    const NONASCII_MASK: usize = usize::repeat_u8(0x80);
    (NONASCII_MASK & v) != 0
}

/// Optimized ASCII test that will use usize-at-a-time operations instead of
/// byte-at-a-time operations (when possible).
///
/// The algorithm we use here is pretty simple. If `s` is too short, we just
/// check each byte and be done with it. Otherwise:
///
/// - Read the first word with an unaligned load.
/// - Align the pointer, read subsequent words until end with aligned loads.
/// - Read the last `usize` from `s` with an unaligned load.
///
/// If any of these loads produces something for which `contains_nonascii`
/// (above) returns true, then we know the answer is false.
#[inline]
fn is_ascii(s: &[u8]) -> bool {
    const USIZE_SIZE: usize = mem::size_of::<usize>();

    let len = s.len();
    let align_offset = s.as_ptr().align_offset(USIZE_SIZE);

    // If we wouldn't gain anything from the word-at-a-time implementation, fall
    // back to a scalar loop.
    //
    // We also do this for architectures where `size_of::<usize>()` isn't
    // sufficient alignment for `usize`, because it's a weird edge case.
    if len < USIZE_SIZE || len < align_offset || USIZE_SIZE < mem::align_of::<usize>() {
        return s.iter().all(|b| b.is_ascii());
    }

    // We always read the first word unaligned, which means `align_offset` is
    // 0, we'd read the same value again for the aligned read.
    let offset_to_aligned = if align_offset == 0 { USIZE_SIZE } else { align_offset };

    let start = s.as_ptr();
    // SAFETY: We verify `len < USIZE_SIZE` above.
    let first_word = unsafe { (start as *const usize).read_unaligned() };

    if contains_nonascii(first_word) {
        return false;
    }
    // We checked this above, somewhat implicitly. Note that `offset_to_aligned`
    // is either `align_offset` or `USIZE_SIZE`, both of are explicitly checked
    // above.
    debug_assert!(offset_to_aligned <= len);

    // SAFETY: word_ptr is the (properly aligned) usize ptr we use to read the
    // middle chunk of the slice.
    let mut word_ptr = unsafe { start.add(offset_to_aligned) as *const usize };

    // `byte_pos` is the byte index of `word_ptr`, used for loop end checks.
    let mut byte_pos = offset_to_aligned;

    // Paranoia check about alignment, since we're about to do a bunch of
    // unaligned loads. In practice this should be impossible barring a bug in
    // `align_offset` though.
    debug_assert_eq!(word_ptr.addr() % mem::align_of::<usize>(), 0);

    // Read subsequent words until the last aligned word, excluding the last
    // aligned word by itself to be done in tail check later, to ensure that
    // tail is always one `usize` at most to extra branch `byte_pos == len`.
    while byte_pos < len - USIZE_SIZE {
        debug_assert!(
            // Sanity check that the read is in bounds
            (word_ptr.addr() + USIZE_SIZE) <= start.addr().wrapping_add(len) &&
            // And that our assumptions about `byte_pos` hold.
            (word_ptr.addr() - start.addr()) == byte_pos
        );

        // SAFETY: We know `word_ptr` is properly aligned (because of
        // `align_offset`), and we know that we have enough bytes between `word_ptr` and the end
        let word = unsafe { word_ptr.read() };
        if contains_nonascii(word) {
            return false;
        }

        byte_pos += USIZE_SIZE;
        // SAFETY: We know that `byte_pos <= len - USIZE_SIZE`, which means that
        // after this `add`, `word_ptr` will be at most one-past-the-end.
        word_ptr = unsafe { word_ptr.add(1) };
    }

    // Sanity check to ensure there really is only one `usize` left. This should
    // be guaranteed by our loop condition.
    debug_assert!(byte_pos <= len && len - byte_pos <= USIZE_SIZE);

    // SAFETY: This relies on `len >= USIZE_SIZE`, which we check at the start.
    let last_word = unsafe { (start.add(len - USIZE_SIZE) as *const usize).read_unaligned() };

    !contains_nonascii(last_word)
}