1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668
//! Multi-producer, single-consumer FIFO queue communication primitives.
//!
//! This module provides message-based communication over channels, concretely
//! defined among three types:
//!
//! * [`Sender`]
//! * [`SyncSender`]
//! * [`Receiver`]
//!
//! A [`Sender`] or [`SyncSender`] is used to send data to a [`Receiver`]. Both
//! senders are clone-able (multi-producer) such that many threads can send
//! simultaneously to one receiver (single-consumer).
//!
//! These channels come in two flavors:
//!
//! 1. An asynchronous, infinitely buffered channel. The [`channel`] function
//! will return a `(Sender, Receiver)` tuple where all sends will be
//! **asynchronous** (they never block). The channel conceptually has an
//! infinite buffer.
//!
//! 2. A synchronous, bounded channel. The [`sync_channel`] function will
//! return a `(SyncSender, Receiver)` tuple where the storage for pending
//! messages is a pre-allocated buffer of a fixed size. All sends will be
//! **synchronous** by blocking until there is buffer space available. Note
//! that a bound of 0 is allowed, causing the channel to become a "rendezvous"
//! channel where each sender atomically hands off a message to a receiver.
//!
//! [`send`]: Sender::send
//!
//! ## Disconnection
//!
//! The send and receive operations on channels will all return a [`Result`]
//! indicating whether the operation succeeded or not. An unsuccessful operation
//! is normally indicative of the other half of a channel having "hung up" by
//! being dropped in its corresponding thread.
//!
//! Once half of a channel has been deallocated, most operations can no longer
//! continue to make progress, so [`Err`] will be returned. Many applications
//! will continue to [`unwrap`] the results returned from this module,
//! instigating a propagation of failure among threads if one unexpectedly dies.
//!
//! [`unwrap`]: Result::unwrap
//!
//! # Examples
//!
//! Simple usage:
//!
//! ```
//! use std::thread;
//! use std::sync::mpsc::channel;
//!
//! // Create a simple streaming channel
//! let (tx, rx) = channel();
//! thread::spawn(move|| {
//! tx.send(10).unwrap();
//! });
//! assert_eq!(rx.recv().unwrap(), 10);
//! ```
//!
//! Shared usage:
//!
//! ```
//! use std::thread;
//! use std::sync::mpsc::channel;
//!
//! // Create a shared channel that can be sent along from many threads
//! // where tx is the sending half (tx for transmission), and rx is the receiving
//! // half (rx for receiving).
//! let (tx, rx) = channel();
//! for i in 0..10 {
//! let tx = tx.clone();
//! thread::spawn(move|| {
//! tx.send(i).unwrap();
//! });
//! }
//!
//! for _ in 0..10 {
//! let j = rx.recv().unwrap();
//! assert!(0 <= j && j < 10);
//! }
//! ```
//!
//! Propagating panics:
//!
//! ```
//! use std::sync::mpsc::channel;
//!
//! // The call to recv() will return an error because the channel has already
//! // hung up (or been deallocated)
//! let (tx, rx) = channel::<i32>();
//! drop(tx);
//! assert!(rx.recv().is_err());
//! ```
//!
//! Synchronous channels:
//!
//! ```
//! use std::thread;
//! use std::sync::mpsc::sync_channel;
//!
//! let (tx, rx) = sync_channel::<i32>(0);
//! thread::spawn(move|| {
//! // This will wait for the parent thread to start receiving
//! tx.send(53).unwrap();
//! });
//! rx.recv().unwrap();
//! ```
//!
//! Unbounded receive loop:
//!
//! ```
//! use std::sync::mpsc::sync_channel;
//! use std::thread;
//!
//! let (tx, rx) = sync_channel(3);
//!
//! for _ in 0..3 {
//! // It would be the same without thread and clone here
//! // since there will still be one `tx` left.
//! let tx = tx.clone();
//! // cloned tx dropped within thread
//! thread::spawn(move || tx.send("ok").unwrap());
//! }
//!
//! // Drop the last sender to stop `rx` waiting for message.
//! // The program will not complete if we comment this out.
//! // **All** `tx` needs to be dropped for `rx` to have `Err`.
//! drop(tx);
//!
//! // Unbounded receiver waiting for all senders to complete.
//! while let Ok(msg) = rx.recv() {
//! println!("{}", msg);
//! }
//!
//! println!("completed");
//! ```
#![stable(feature = "rust1", since = "1.0.0")]
#[cfg(all(test, not(target_os = "emscripten")))]
mod tests;
#[cfg(all(test, not(target_os = "emscripten")))]
mod sync_tests;
// A description of how Rust's channel implementation works
//
// Channels are supposed to be the basic building block for all other
// concurrent primitives that are used in Rust. As a result, the channel type
// needs to be highly optimized, flexible, and broad enough for use everywhere.
//
// The choice of implementation of all channels is to be built on lock-free data
// structures. The channels themselves are then consequently also lock-free data
// structures. As always with lock-free code, this is a very "here be dragons"
// territory, especially because I'm unaware of any academic papers that have
// gone into great length about channels of these flavors.
//
// ## Flavors of channels
//
// From the perspective of a consumer of this library, there is only one flavor
// of channel. This channel can be used as a stream and cloned to allow multiple
// senders. Under the hood, however, there are actually three flavors of
// channels in play.
//
// * Flavor::Oneshots - these channels are highly optimized for the one-send use
// case. They contain as few atomics as possible and
// involve one and exactly one allocation.
// * Streams - these channels are optimized for the non-shared use case. They
// use a different concurrent queue that is more tailored for this
// use case. The initial allocation of this flavor of channel is not
// optimized.
// * Shared - this is the most general form of channel that this module offers,
// a channel with multiple senders. This type is as optimized as it
// can be, but the previous two types mentioned are much faster for
// their use-cases.
//
// ## Concurrent queues
//
// The basic idea of Rust's Sender/Receiver types is that send() never blocks,
// but recv() obviously blocks. This means that under the hood there must be
// some shared and concurrent queue holding all of the actual data.
//
// With two flavors of channels, two flavors of queues are also used. We have
// chosen to use queues from a well-known author that are abbreviated as SPSC
// and MPSC (single producer, single consumer and multiple producer, single
// consumer). SPSC queues are used for streams while MPSC queues are used for
// shared channels.
//
// ### SPSC optimizations
//
// The SPSC queue found online is essentially a linked list of nodes where one
// half of the nodes are the "queue of data" and the other half of nodes are a
// cache of unused nodes. The unused nodes are used such that an allocation is
// not required on every push() and a free doesn't need to happen on every
// pop().
//
// As found online, however, the cache of nodes is of an infinite size. This
// means that if a channel at one point in its life had 50k items in the queue,
// then the queue will always have the capacity for 50k items. I believed that
// this was an unnecessary limitation of the implementation, so I have altered
// the queue to optionally have a bound on the cache size.
//
// By default, streams will have an unbounded SPSC queue with a small-ish cache
// size. The hope is that the cache is still large enough to have very fast
// send() operations while not too large such that millions of channels can
// coexist at once.
//
// ### MPSC optimizations
//
// Right now the MPSC queue has not been optimized. Like the SPSC queue, it uses
// a linked list under the hood to earn its unboundedness, but I have not put
// forth much effort into having a cache of nodes similar to the SPSC queue.
//
// For now, I believe that this is "ok" because shared channels are not the most
// common type, but soon we may wish to revisit this queue choice and determine
// another candidate for backend storage of shared channels.
//
// ## Overview of the Implementation
//
// Now that there's a little background on the concurrent queues used, it's
// worth going into much more detail about the channels themselves. The basic
// pseudocode for a send/recv are:
//
//
// send(t) recv()
// queue.push(t) return if queue.pop()
// if increment() == -1 deschedule {
// wakeup() if decrement() > 0
// cancel_deschedule()
// }
// queue.pop()
//
// As mentioned before, there are no locks in this implementation, only atomic
// instructions are used.
//
// ### The internal atomic counter
//
// Every channel has a shared counter with each half to keep track of the size
// of the queue. This counter is used to abort descheduling by the receiver and
// to know when to wake up on the sending side.
//
// As seen in the pseudocode, senders will increment this count and receivers
// will decrement the count. The theory behind this is that if a sender sees a
// -1 count, it will wake up the receiver, and if the receiver sees a 1+ count,
// then it doesn't need to block.
//
// The recv() method has a beginning call to pop(), and if successful, it needs
// to decrement the count. It is a crucial implementation detail that this
// decrement does *not* happen to the shared counter. If this were the case,
// then it would be possible for the counter to be very negative when there were
// no receivers waiting, in which case the senders would have to determine when
// it was actually appropriate to wake up a receiver.
//
// Instead, the "steal count" is kept track of separately (not atomically
// because it's only used by receivers), and then the decrement() call when
// descheduling will lump in all of the recent steals into one large decrement.
//
// The implication of this is that if a sender sees a -1 count, then there's
// guaranteed to be a waiter waiting!
//
// ## Native Implementation
//
// A major goal of these channels is to work seamlessly on and off the runtime.
// All of the previous race conditions have been worded in terms of
// scheduler-isms (which is obviously not available without the runtime).
//
// For now, native usage of channels (off the runtime) will fall back onto
// mutexes/cond vars for descheduling/atomic decisions. The no-contention path
// is still entirely lock-free, the "deschedule" blocks above are surrounded by
// a mutex and the "wakeup" blocks involve grabbing a mutex and signaling on a
// condition variable.
//
// ## Select
//
// Being able to support selection over channels has greatly influenced this
// design, and not only does selection need to work inside the runtime, but also
// outside the runtime.
//
// The implementation is fairly straightforward. The goal of select() is not to
// return some data, but only to return which channel can receive data without
// blocking. The implementation is essentially the entire blocking procedure
// followed by an increment as soon as its woken up. The cancellation procedure
// involves an increment and swapping out of to_wake to acquire ownership of the
// thread to unblock.
//
// Sadly this current implementation requires multiple allocations, so I have
// seen the throughput of select() be much worse than it should be. I do not
// believe that there is anything fundamental that needs to change about these
// channels, however, in order to support a more efficient select().
//
// FIXME: Select is now removed, so these factors are ready to be cleaned up!
//
// # Conclusion
//
// And now that you've seen all the races that I found and attempted to fix,
// here's the code for you to find some more!
use crate::cell::UnsafeCell;
use crate::error;
use crate::fmt;
use crate::mem;
use crate::sync::Arc;
use crate::time::{Duration, Instant};
mod blocking;
mod mpsc_queue;
mod oneshot;
mod shared;
mod spsc_queue;
mod stream;
mod sync;
mod cache_aligned;
/// The receiving half of Rust's [`channel`] (or [`sync_channel`]) type.
/// This half can only be owned by one thread.
///
/// Messages sent to the channel can be retrieved using [`recv`].
///
/// [`recv`]: Receiver::recv
///
/// # Examples
///
/// ```rust
/// use std::sync::mpsc::channel;
/// use std::thread;
/// use std::time::Duration;
///
/// let (send, recv) = channel();
///
/// thread::spawn(move || {
/// send.send("Hello world!").unwrap();
/// thread::sleep(Duration::from_secs(2)); // block for two seconds
/// send.send("Delayed for 2 seconds").unwrap();
/// });
///
/// println!("{}", recv.recv().unwrap()); // Received immediately
/// println!("Waiting...");
/// println!("{}", recv.recv().unwrap()); // Received after 2 seconds
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[cfg_attr(not(test), rustc_diagnostic_item = "Receiver")]
pub struct Receiver<T> {
inner: UnsafeCell<Flavor<T>>,
}
// The receiver port can be sent from place to place, so long as it
// is not used to receive non-sendable things.
#[stable(feature = "rust1", since = "1.0.0")]
unsafe impl<T: Send> Send for Receiver<T> {}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T> !Sync for Receiver<T> {}
/// An iterator over messages on a [`Receiver`], created by [`iter`].
///
/// This iterator will block whenever [`next`] is called,
/// waiting for a new message, and [`None`] will be returned
/// when the corresponding channel has hung up.
///
/// [`iter`]: Receiver::iter
/// [`next`]: Iterator::next
///
/// # Examples
///
/// ```rust
/// use std::sync::mpsc::channel;
/// use std::thread;
///
/// let (send, recv) = channel();
///
/// thread::spawn(move || {
/// send.send(1u8).unwrap();
/// send.send(2u8).unwrap();
/// send.send(3u8).unwrap();
/// });
///
/// for x in recv.iter() {
/// println!("Got: {}", x);
/// }
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[derive(Debug)]
pub struct Iter<'a, T: 'a> {
rx: &'a Receiver<T>,
}
/// An iterator that attempts to yield all pending values for a [`Receiver`],
/// created by [`try_iter`].
///
/// [`None`] will be returned when there are no pending values remaining or
/// if the corresponding channel has hung up.
///
/// This iterator will never block the caller in order to wait for data to
/// become available. Instead, it will return [`None`].
///
/// [`try_iter`]: Receiver::try_iter
///
/// # Examples
///
/// ```rust
/// use std::sync::mpsc::channel;
/// use std::thread;
/// use std::time::Duration;
///
/// let (sender, receiver) = channel();
///
/// // Nothing is in the buffer yet
/// assert!(receiver.try_iter().next().is_none());
/// println!("Nothing in the buffer...");
///
/// thread::spawn(move || {
/// sender.send(1).unwrap();
/// sender.send(2).unwrap();
/// sender.send(3).unwrap();
/// });
///
/// println!("Going to sleep...");
/// thread::sleep(Duration::from_secs(2)); // block for two seconds
///
/// for x in receiver.try_iter() {
/// println!("Got: {}", x);
/// }
/// ```
#[stable(feature = "receiver_try_iter", since = "1.15.0")]
#[derive(Debug)]
pub struct TryIter<'a, T: 'a> {
rx: &'a Receiver<T>,
}
/// An owning iterator over messages on a [`Receiver`],
/// created by **Receiver::into_iter**.
///
/// This iterator will block whenever [`next`]
/// is called, waiting for a new message, and [`None`] will be
/// returned if the corresponding channel has hung up.
///
/// [`next`]: Iterator::next
///
/// # Examples
///
/// ```rust
/// use std::sync::mpsc::channel;
/// use std::thread;
///
/// let (send, recv) = channel();
///
/// thread::spawn(move || {
/// send.send(1u8).unwrap();
/// send.send(2u8).unwrap();
/// send.send(3u8).unwrap();
/// });
///
/// for x in recv.into_iter() {
/// println!("Got: {}", x);
/// }
/// ```
#[stable(feature = "receiver_into_iter", since = "1.1.0")]
#[derive(Debug)]
pub struct IntoIter<T> {
rx: Receiver<T>,
}
/// The sending-half of Rust's asynchronous [`channel`] type. This half can only be
/// owned by one thread, but it can be cloned to send to other threads.
///
/// Messages can be sent through this channel with [`send`].
///
/// Note: all senders (the original and the clones) need to be dropped for the receiver
/// to stop blocking to receive messages with [`Receiver::recv`].
///
/// [`send`]: Sender::send
///
/// # Examples
///
/// ```rust
/// use std::sync::mpsc::channel;
/// use std::thread;
///
/// let (sender, receiver) = channel();
/// let sender2 = sender.clone();
///
/// // First thread owns sender
/// thread::spawn(move || {
/// sender.send(1).unwrap();
/// });
///
/// // Second thread owns sender2
/// thread::spawn(move || {
/// sender2.send(2).unwrap();
/// });
///
/// let msg = receiver.recv().unwrap();
/// let msg2 = receiver.recv().unwrap();
///
/// assert_eq!(3, msg + msg2);
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
pub struct Sender<T> {
inner: UnsafeCell<Flavor<T>>,
}
// The send port can be sent from place to place, so long as it
// is not used to send non-sendable things.
#[stable(feature = "rust1", since = "1.0.0")]
unsafe impl<T: Send> Send for Sender<T> {}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T> !Sync for Sender<T> {}
/// The sending-half of Rust's synchronous [`sync_channel`] type.
///
/// Messages can be sent through this channel with [`send`] or [`try_send`].
///
/// [`send`] will block if there is no space in the internal buffer.
///
/// [`send`]: SyncSender::send
/// [`try_send`]: SyncSender::try_send
///
/// # Examples
///
/// ```rust
/// use std::sync::mpsc::sync_channel;
/// use std::thread;
///
/// // Create a sync_channel with buffer size 2
/// let (sync_sender, receiver) = sync_channel(2);
/// let sync_sender2 = sync_sender.clone();
///
/// // First thread owns sync_sender
/// thread::spawn(move || {
/// sync_sender.send(1).unwrap();
/// sync_sender.send(2).unwrap();
/// });
///
/// // Second thread owns sync_sender2
/// thread::spawn(move || {
/// sync_sender2.send(3).unwrap();
/// // thread will now block since the buffer is full
/// println!("Thread unblocked!");
/// });
///
/// let mut msg;
///
/// msg = receiver.recv().unwrap();
/// println!("message {} received", msg);
///
/// // "Thread unblocked!" will be printed now
///
/// msg = receiver.recv().unwrap();
/// println!("message {} received", msg);
///
/// msg = receiver.recv().unwrap();
///
/// println!("message {} received", msg);
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
pub struct SyncSender<T> {
inner: Arc<sync::Packet<T>>,
}
#[stable(feature = "rust1", since = "1.0.0")]
unsafe impl<T: Send> Send for SyncSender<T> {}
/// An error returned from the [`Sender::send`] or [`SyncSender::send`]
/// function on **channel**s.
///
/// A **send** operation can only fail if the receiving end of a channel is
/// disconnected, implying that the data could never be received. The error
/// contains the data being sent as a payload so it can be recovered.
#[stable(feature = "rust1", since = "1.0.0")]
#[derive(PartialEq, Eq, Clone, Copy)]
pub struct SendError<T>(#[stable(feature = "rust1", since = "1.0.0")] pub T);
/// An error returned from the [`recv`] function on a [`Receiver`].
///
/// The [`recv`] operation can only fail if the sending half of a
/// [`channel`] (or [`sync_channel`]) is disconnected, implying that no further
/// messages will ever be received.
///
/// [`recv`]: Receiver::recv
#[derive(PartialEq, Eq, Clone, Copy, Debug)]
#[stable(feature = "rust1", since = "1.0.0")]
pub struct RecvError;
/// This enumeration is the list of the possible reasons that [`try_recv`] could
/// not return data when called. This can occur with both a [`channel`] and
/// a [`sync_channel`].
///
/// [`try_recv`]: Receiver::try_recv
#[derive(PartialEq, Eq, Clone, Copy, Debug)]
#[stable(feature = "rust1", since = "1.0.0")]
pub enum TryRecvError {
/// This **channel** is currently empty, but the **Sender**(s) have not yet
/// disconnected, so data may yet become available.
#[stable(feature = "rust1", since = "1.0.0")]
Empty,
/// The **channel**'s sending half has become disconnected, and there will
/// never be any more data received on it.
#[stable(feature = "rust1", since = "1.0.0")]
Disconnected,
}
/// This enumeration is the list of possible errors that made [`recv_timeout`]
/// unable to return data when called. This can occur with both a [`channel`] and
/// a [`sync_channel`].
///
/// [`recv_timeout`]: Receiver::recv_timeout
#[derive(PartialEq, Eq, Clone, Copy, Debug)]
#[stable(feature = "mpsc_recv_timeout", since = "1.12.0")]
pub enum RecvTimeoutError {
/// This **channel** is currently empty, but the **Sender**(s) have not yet
/// disconnected, so data may yet become available.
#[stable(feature = "mpsc_recv_timeout", since = "1.12.0")]
Timeout,
/// The **channel**'s sending half has become disconnected, and there will
/// never be any more data received on it.
#[stable(feature = "mpsc_recv_timeout", since = "1.12.0")]
Disconnected,
}
/// This enumeration is the list of the possible error outcomes for the
/// [`try_send`] method.
///
/// [`try_send`]: SyncSender::try_send
#[stable(feature = "rust1", since = "1.0.0")]
#[derive(PartialEq, Eq, Clone, Copy)]
pub enum TrySendError<T> {
/// The data could not be sent on the [`sync_channel`] because it would require that
/// the callee block to send the data.
///
/// If this is a buffered channel, then the buffer is full at this time. If
/// this is not a buffered channel, then there is no [`Receiver`] available to
/// acquire the data.
#[stable(feature = "rust1", since = "1.0.0")]
Full(#[stable(feature = "rust1", since = "1.0.0")] T),
/// This [`sync_channel`]'s receiving half has disconnected, so the data could not be
/// sent. The data is returned back to the callee in this case.
#[stable(feature = "rust1", since = "1.0.0")]
Disconnected(#[stable(feature = "rust1", since = "1.0.0")] T),
}
enum Flavor<T> {
Oneshot(Arc<oneshot::Packet<T>>),
Stream(Arc<stream::Packet<T>>),
Shared(Arc<shared::Packet<T>>),
Sync(Arc<sync::Packet<T>>),
}
#[doc(hidden)]
trait UnsafeFlavor<T> {
fn inner_unsafe(&self) -> &UnsafeCell<Flavor<T>>;
unsafe fn inner_mut(&self) -> &mut Flavor<T> {
&mut *self.inner_unsafe().get()
}
unsafe fn inner(&self) -> &Flavor<T> {
&*self.inner_unsafe().get()
}
}
impl<T> UnsafeFlavor<T> for Sender<T> {
fn inner_unsafe(&self) -> &UnsafeCell<Flavor<T>> {
&self.inner
}
}
impl<T> UnsafeFlavor<T> for Receiver<T> {
fn inner_unsafe(&self) -> &UnsafeCell<Flavor<T>> {
&self.inner
}
}
/// Creates a new asynchronous channel, returning the sender/receiver halves.
/// All data sent on the [`Sender`] will become available on the [`Receiver`] in
/// the same order as it was sent, and no [`send`] will block the calling thread
/// (this channel has an "infinite buffer", unlike [`sync_channel`], which will
/// block after its buffer limit is reached). [`recv`] will block until a message
/// is available while there is at least one [`Sender`] alive (including clones).
///
/// The [`Sender`] can be cloned to [`send`] to the same channel multiple times, but
/// only one [`Receiver`] is supported.
///
/// If the [`Receiver`] is disconnected while trying to [`send`] with the
/// [`Sender`], the [`send`] method will return a [`SendError`]. Similarly, if the
/// [`Sender`] is disconnected while trying to [`recv`], the [`recv`] method will
/// return a [`RecvError`].
///
/// [`send`]: Sender::send
/// [`recv`]: Receiver::recv
///
/// # Examples
///
/// ```
/// use std::sync::mpsc::channel;
/// use std::thread;
///
/// let (sender, receiver) = channel();
///
/// // Spawn off an expensive computation
/// thread::spawn(move|| {
/// # fn expensive_computation() {}
/// sender.send(expensive_computation()).unwrap();
/// });
///
/// // Do some useful work for awhile
///
/// // Let's see what that answer was
/// println!("{:?}", receiver.recv().unwrap());
/// ```
#[must_use]
#[stable(feature = "rust1", since = "1.0.0")]
pub fn channel<T>() -> (Sender<T>, Receiver<T>) {
let a = Arc::new(oneshot::Packet::new());
(Sender::new(Flavor::Oneshot(a.clone())), Receiver::new(Flavor::Oneshot(a)))
}
/// Creates a new synchronous, bounded channel.
/// All data sent on the [`SyncSender`] will become available on the [`Receiver`]
/// in the same order as it was sent. Like asynchronous [`channel`]s, the
/// [`Receiver`] will block until a message becomes available. `sync_channel`
/// differs greatly in the semantics of the sender, however.
///
/// This channel has an internal buffer on which messages will be queued.
/// `bound` specifies the buffer size. When the internal buffer becomes full,
/// future sends will *block* waiting for the buffer to open up. Note that a
/// buffer size of 0 is valid, in which case this becomes "rendezvous channel"
/// where each [`send`] will not return until a [`recv`] is paired with it.
///
/// The [`SyncSender`] can be cloned to [`send`] to the same channel multiple
/// times, but only one [`Receiver`] is supported.
///
/// Like asynchronous channels, if the [`Receiver`] is disconnected while trying
/// to [`send`] with the [`SyncSender`], the [`send`] method will return a
/// [`SendError`]. Similarly, If the [`SyncSender`] is disconnected while trying
/// to [`recv`], the [`recv`] method will return a [`RecvError`].
///
/// [`send`]: SyncSender::send
/// [`recv`]: Receiver::recv
///
/// # Examples
///
/// ```
/// use std::sync::mpsc::sync_channel;
/// use std::thread;
///
/// let (sender, receiver) = sync_channel(1);
///
/// // this returns immediately
/// sender.send(1).unwrap();
///
/// thread::spawn(move|| {
/// // this will block until the previous message has been received
/// sender.send(2).unwrap();
/// });
///
/// assert_eq!(receiver.recv().unwrap(), 1);
/// assert_eq!(receiver.recv().unwrap(), 2);
/// ```
#[must_use]
#[stable(feature = "rust1", since = "1.0.0")]
pub fn sync_channel<T>(bound: usize) -> (SyncSender<T>, Receiver<T>) {
let a = Arc::new(sync::Packet::new(bound));
(SyncSender::new(a.clone()), Receiver::new(Flavor::Sync(a)))
}
////////////////////////////////////////////////////////////////////////////////
// Sender
////////////////////////////////////////////////////////////////////////////////
impl<T> Sender<T> {
fn new(inner: Flavor<T>) -> Sender<T> {
Sender { inner: UnsafeCell::new(inner) }
}
/// Attempts to send a value on this channel, returning it back if it could
/// not be sent.
///
/// A successful send occurs when it is determined that the other end of
/// the channel has not hung up already. An unsuccessful send would be one
/// where the corresponding receiver has already been deallocated. Note
/// that a return value of [`Err`] means that the data will never be
/// received, but a return value of [`Ok`] does *not* mean that the data
/// will be received. It is possible for the corresponding receiver to
/// hang up immediately after this function returns [`Ok`].
///
/// This method will never block the current thread.
///
/// # Examples
///
/// ```
/// use std::sync::mpsc::channel;
///
/// let (tx, rx) = channel();
///
/// // This send is always successful
/// tx.send(1).unwrap();
///
/// // This send will fail because the receiver is gone
/// drop(rx);
/// assert_eq!(tx.send(1).unwrap_err().0, 1);
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
pub fn send(&self, t: T) -> Result<(), SendError<T>> {
let (new_inner, ret) = match *unsafe { self.inner() } {
Flavor::Oneshot(ref p) => {
if !p.sent() {
return p.send(t).map_err(SendError);
} else {
let a = Arc::new(stream::Packet::new());
let rx = Receiver::new(Flavor::Stream(a.clone()));
match p.upgrade(rx) {
oneshot::UpSuccess => {
let ret = a.send(t);
(a, ret)
}
oneshot::UpDisconnected => (a, Err(t)),
oneshot::UpWoke(token) => {
// This send cannot panic because the thread is
// asleep (we're looking at it), so the receiver
// can't go away.
a.send(t).ok().unwrap();
token.signal();
(a, Ok(()))
}
}
}
}
Flavor::Stream(ref p) => return p.send(t).map_err(SendError),
Flavor::Shared(ref p) => return p.send(t).map_err(SendError),
Flavor::Sync(..) => unreachable!(),
};
unsafe {
let tmp = Sender::new(Flavor::Stream(new_inner));
mem::swap(self.inner_mut(), tmp.inner_mut());
}
ret.map_err(SendError)
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T> Clone for Sender<T> {
/// Clone a sender to send to other threads.
///
/// Note, be aware of the lifetime of the sender because all senders
/// (including the original) need to be dropped in order for
/// [`Receiver::recv`] to stop blocking.
fn clone(&self) -> Sender<T> {
let packet = match *unsafe { self.inner() } {
Flavor::Oneshot(ref p) => {
let a = Arc::new(shared::Packet::new());
{
let guard = a.postinit_lock();
let rx = Receiver::new(Flavor::Shared(a.clone()));
let sleeper = match p.upgrade(rx) {
oneshot::UpSuccess | oneshot::UpDisconnected => None,
oneshot::UpWoke(task) => Some(task),
};
a.inherit_blocker(sleeper, guard);
}
a
}
Flavor::Stream(ref p) => {
let a = Arc::new(shared::Packet::new());
{
let guard = a.postinit_lock();
let rx = Receiver::new(Flavor::Shared(a.clone()));
let sleeper = match p.upgrade(rx) {
stream::UpSuccess | stream::UpDisconnected => None,
stream::UpWoke(task) => Some(task),
};
a.inherit_blocker(sleeper, guard);
}
a
}
Flavor::Shared(ref p) => {
p.clone_chan();
return Sender::new(Flavor::Shared(p.clone()));
}
Flavor::Sync(..) => unreachable!(),
};
unsafe {
let tmp = Sender::new(Flavor::Shared(packet.clone()));
mem::swap(self.inner_mut(), tmp.inner_mut());
}
Sender::new(Flavor::Shared(packet))
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T> Drop for Sender<T> {
fn drop(&mut self) {
match *unsafe { self.inner() } {
Flavor::Oneshot(ref p) => p.drop_chan(),
Flavor::Stream(ref p) => p.drop_chan(),
Flavor::Shared(ref p) => p.drop_chan(),
Flavor::Sync(..) => unreachable!(),
}
}
}
#[stable(feature = "mpsc_debug", since = "1.8.0")]
impl<T> fmt::Debug for Sender<T> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_struct("Sender").finish_non_exhaustive()
}
}
////////////////////////////////////////////////////////////////////////////////
// SyncSender
////////////////////////////////////////////////////////////////////////////////
impl<T> SyncSender<T> {
fn new(inner: Arc<sync::Packet<T>>) -> SyncSender<T> {
SyncSender { inner }
}
/// Sends a value on this synchronous channel.
///
/// This function will *block* until space in the internal buffer becomes
/// available or a receiver is available to hand off the message to.
///
/// Note that a successful send does *not* guarantee that the receiver will
/// ever see the data if there is a buffer on this channel. Items may be
/// enqueued in the internal buffer for the receiver to receive at a later
/// time. If the buffer size is 0, however, the channel becomes a rendezvous
/// channel and it guarantees that the receiver has indeed received
/// the data if this function returns success.
///
/// This function will never panic, but it may return [`Err`] if the
/// [`Receiver`] has disconnected and is no longer able to receive
/// information.
///
/// # Examples
///
/// ```rust
/// use std::sync::mpsc::sync_channel;
/// use std::thread;
///
/// // Create a rendezvous sync_channel with buffer size 0
/// let (sync_sender, receiver) = sync_channel(0);
///
/// thread::spawn(move || {
/// println!("sending message...");
/// sync_sender.send(1).unwrap();
/// // Thread is now blocked until the message is received
///
/// println!("...message received!");
/// });
///
/// let msg = receiver.recv().unwrap();
/// assert_eq!(1, msg);
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
pub fn send(&self, t: T) -> Result<(), SendError<T>> {
self.inner.send(t).map_err(SendError)
}
/// Attempts to send a value on this channel without blocking.
///
/// This method differs from [`send`] by returning immediately if the
/// channel's buffer is full or no receiver is waiting to acquire some
/// data. Compared with [`send`], this function has two failure cases
/// instead of one (one for disconnection, one for a full buffer).
///
/// See [`send`] for notes about guarantees of whether the
/// receiver has received the data or not if this function is successful.
///
/// [`send`]: Self::send
///
/// # Examples
///
/// ```rust
/// use std::sync::mpsc::sync_channel;
/// use std::thread;
///
/// // Create a sync_channel with buffer size 1
/// let (sync_sender, receiver) = sync_channel(1);
/// let sync_sender2 = sync_sender.clone();
///
/// // First thread owns sync_sender
/// thread::spawn(move || {
/// sync_sender.send(1).unwrap();
/// sync_sender.send(2).unwrap();
/// // Thread blocked
/// });
///
/// // Second thread owns sync_sender2
/// thread::spawn(move || {
/// // This will return an error and send
/// // no message if the buffer is full
/// let _ = sync_sender2.try_send(3);
/// });
///
/// let mut msg;
/// msg = receiver.recv().unwrap();
/// println!("message {} received", msg);
///
/// msg = receiver.recv().unwrap();
/// println!("message {} received", msg);
///
/// // Third message may have never been sent
/// match receiver.try_recv() {
/// Ok(msg) => println!("message {} received", msg),
/// Err(_) => println!("the third message was never sent"),
/// }
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
pub fn try_send(&self, t: T) -> Result<(), TrySendError<T>> {
self.inner.try_send(t)
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T> Clone for SyncSender<T> {
fn clone(&self) -> SyncSender<T> {
self.inner.clone_chan();
SyncSender::new(self.inner.clone())
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T> Drop for SyncSender<T> {
fn drop(&mut self) {
self.inner.drop_chan();
}
}
#[stable(feature = "mpsc_debug", since = "1.8.0")]
impl<T> fmt::Debug for SyncSender<T> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_struct("SyncSender").finish_non_exhaustive()
}
}
////////////////////////////////////////////////////////////////////////////////
// Receiver
////////////////////////////////////////////////////////////////////////////////
impl<T> Receiver<T> {
fn new(inner: Flavor<T>) -> Receiver<T> {
Receiver { inner: UnsafeCell::new(inner) }
}
/// Attempts to return a pending value on this receiver without blocking.
///
/// This method will never block the caller in order to wait for data to
/// become available. Instead, this will always return immediately with a
/// possible option of pending data on the channel.
///
/// This is useful for a flavor of "optimistic check" before deciding to
/// block on a receiver.
///
/// Compared with [`recv`], this function has two failure cases instead of one
/// (one for disconnection, one for an empty buffer).
///
/// [`recv`]: Self::recv
///
/// # Examples
///
/// ```rust
/// use std::sync::mpsc::{Receiver, channel};
///
/// let (_, receiver): (_, Receiver<i32>) = channel();
///
/// assert!(receiver.try_recv().is_err());
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
pub fn try_recv(&self) -> Result<T, TryRecvError> {
loop {
let new_port = match *unsafe { self.inner() } {
Flavor::Oneshot(ref p) => match p.try_recv() {
Ok(t) => return Ok(t),
Err(oneshot::Empty) => return Err(TryRecvError::Empty),
Err(oneshot::Disconnected) => return Err(TryRecvError::Disconnected),
Err(oneshot::Upgraded(rx)) => rx,
},
Flavor::Stream(ref p) => match p.try_recv() {
Ok(t) => return Ok(t),
Err(stream::Empty) => return Err(TryRecvError::Empty),
Err(stream::Disconnected) => return Err(TryRecvError::Disconnected),
Err(stream::Upgraded(rx)) => rx,
},
Flavor::Shared(ref p) => match p.try_recv() {
Ok(t) => return Ok(t),
Err(shared::Empty) => return Err(TryRecvError::Empty),
Err(shared::Disconnected) => return Err(TryRecvError::Disconnected),
},
Flavor::Sync(ref p) => match p.try_recv() {
Ok(t) => return Ok(t),
Err(sync::Empty) => return Err(TryRecvError::Empty),
Err(sync::Disconnected) => return Err(TryRecvError::Disconnected),
},
};
unsafe {
mem::swap(self.inner_mut(), new_port.inner_mut());
}
}
}
/// Attempts to wait for a value on this receiver, returning an error if the
/// corresponding channel has hung up.
///
/// This function will always block the current thread if there is no data
/// available and it's possible for more data to be sent (at least one sender
/// still exists). Once a message is sent to the corresponding [`Sender`]
/// (or [`SyncSender`]), this receiver will wake up and return that
/// message.
///
/// If the corresponding [`Sender`] has disconnected, or it disconnects while
/// this call is blocking, this call will wake up and return [`Err`] to
/// indicate that no more messages can ever be received on this channel.
/// However, since channels are buffered, messages sent before the disconnect
/// will still be properly received.
///
/// # Examples
///
/// ```
/// use std::sync::mpsc;
/// use std::thread;
///
/// let (send, recv) = mpsc::channel();
/// let handle = thread::spawn(move || {
/// send.send(1u8).unwrap();
/// });
///
/// handle.join().unwrap();
///
/// assert_eq!(Ok(1), recv.recv());
/// ```
///
/// Buffering behavior:
///
/// ```
/// use std::sync::mpsc;
/// use std::thread;
/// use std::sync::mpsc::RecvError;
///
/// let (send, recv) = mpsc::channel();
/// let handle = thread::spawn(move || {
/// send.send(1u8).unwrap();
/// send.send(2).unwrap();
/// send.send(3).unwrap();
/// drop(send);
/// });
///
/// // wait for the thread to join so we ensure the sender is dropped
/// handle.join().unwrap();
///
/// assert_eq!(Ok(1), recv.recv());
/// assert_eq!(Ok(2), recv.recv());
/// assert_eq!(Ok(3), recv.recv());
/// assert_eq!(Err(RecvError), recv.recv());
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
pub fn recv(&self) -> Result<T, RecvError> {
loop {
let new_port = match *unsafe { self.inner() } {
Flavor::Oneshot(ref p) => match p.recv(None) {
Ok(t) => return Ok(t),
Err(oneshot::Disconnected) => return Err(RecvError),
Err(oneshot::Upgraded(rx)) => rx,
Err(oneshot::Empty) => unreachable!(),
},
Flavor::Stream(ref p) => match p.recv(None) {
Ok(t) => return Ok(t),
Err(stream::Disconnected) => return Err(RecvError),
Err(stream::Upgraded(rx)) => rx,
Err(stream::Empty) => unreachable!(),
},
Flavor::Shared(ref p) => match p.recv(None) {
Ok(t) => return Ok(t),
Err(shared::Disconnected) => return Err(RecvError),
Err(shared::Empty) => unreachable!(),
},
Flavor::Sync(ref p) => return p.recv(None).map_err(|_| RecvError),
};
unsafe {
mem::swap(self.inner_mut(), new_port.inner_mut());
}
}
}
/// Attempts to wait for a value on this receiver, returning an error if the
/// corresponding channel has hung up, or if it waits more than `timeout`.
///
/// This function will always block the current thread if there is no data
/// available and it's possible for more data to be sent (at least one sender
/// still exists). Once a message is sent to the corresponding [`Sender`]
/// (or [`SyncSender`]), this receiver will wake up and return that
/// message.
///
/// If the corresponding [`Sender`] has disconnected, or it disconnects while
/// this call is blocking, this call will wake up and return [`Err`] to
/// indicate that no more messages can ever be received on this channel.
/// However, since channels are buffered, messages sent before the disconnect
/// will still be properly received.
///
/// # Known Issues
///
/// There is currently a known issue (see [`#39364`]) that causes `recv_timeout`
/// to panic unexpectedly with the following example:
///
/// ```no_run
/// use std::sync::mpsc::channel;
/// use std::thread;
/// use std::time::Duration;
///
/// let (tx, rx) = channel::<String>();
///
/// thread::spawn(move || {
/// let d = Duration::from_millis(10);
/// loop {
/// println!("recv");
/// let _r = rx.recv_timeout(d);
/// }
/// });
///
/// thread::sleep(Duration::from_millis(100));
/// let _c1 = tx.clone();
///
/// thread::sleep(Duration::from_secs(1));
/// ```
///
/// [`#39364`]: https://github.com/rust-lang/rust/issues/39364
///
/// # Examples
///
/// Successfully receiving value before encountering timeout:
///
/// ```no_run
/// use std::thread;
/// use std::time::Duration;
/// use std::sync::mpsc;
///
/// let (send, recv) = mpsc::channel();
///
/// thread::spawn(move || {
/// send.send('a').unwrap();
/// });
///
/// assert_eq!(
/// recv.recv_timeout(Duration::from_millis(400)),
/// Ok('a')
/// );
/// ```
///
/// Receiving an error upon reaching timeout:
///
/// ```no_run
/// use std::thread;
/// use std::time::Duration;
/// use std::sync::mpsc;
///
/// let (send, recv) = mpsc::channel();
///
/// thread::spawn(move || {
/// thread::sleep(Duration::from_millis(800));
/// send.send('a').unwrap();
/// });
///
/// assert_eq!(
/// recv.recv_timeout(Duration::from_millis(400)),
/// Err(mpsc::RecvTimeoutError::Timeout)
/// );
/// ```
#[stable(feature = "mpsc_recv_timeout", since = "1.12.0")]
pub fn recv_timeout(&self, timeout: Duration) -> Result<T, RecvTimeoutError> {
// Do an optimistic try_recv to avoid the performance impact of
// Instant::now() in the full-channel case.
match self.try_recv() {
Ok(result) => Ok(result),
Err(TryRecvError::Disconnected) => Err(RecvTimeoutError::Disconnected),
Err(TryRecvError::Empty) => match Instant::now().checked_add(timeout) {
Some(deadline) => self.recv_deadline(deadline),
// So far in the future that it's practically the same as waiting indefinitely.
None => self.recv().map_err(RecvTimeoutError::from),
},
}
}
/// Attempts to wait for a value on this receiver, returning an error if the
/// corresponding channel has hung up, or if `deadline` is reached.
///
/// This function will always block the current thread if there is no data
/// available and it's possible for more data to be sent. Once a message is
/// sent to the corresponding [`Sender`] (or [`SyncSender`]), then this
/// receiver will wake up and return that message.
///
/// If the corresponding [`Sender`] has disconnected, or it disconnects while
/// this call is blocking, this call will wake up and return [`Err`] to
/// indicate that no more messages can ever be received on this channel.
/// However, since channels are buffered, messages sent before the disconnect
/// will still be properly received.
///
/// # Examples
///
/// Successfully receiving value before reaching deadline:
///
/// ```no_run
/// #![feature(deadline_api)]
/// use std::thread;
/// use std::time::{Duration, Instant};
/// use std::sync::mpsc;
///
/// let (send, recv) = mpsc::channel();
///
/// thread::spawn(move || {
/// send.send('a').unwrap();
/// });
///
/// assert_eq!(
/// recv.recv_deadline(Instant::now() + Duration::from_millis(400)),
/// Ok('a')
/// );
/// ```
///
/// Receiving an error upon reaching deadline:
///
/// ```no_run
/// #![feature(deadline_api)]
/// use std::thread;
/// use std::time::{Duration, Instant};
/// use std::sync::mpsc;
///
/// let (send, recv) = mpsc::channel();
///
/// thread::spawn(move || {
/// thread::sleep(Duration::from_millis(800));
/// send.send('a').unwrap();
/// });
///
/// assert_eq!(
/// recv.recv_deadline(Instant::now() + Duration::from_millis(400)),
/// Err(mpsc::RecvTimeoutError::Timeout)
/// );
/// ```
#[unstable(feature = "deadline_api", issue = "46316")]
pub fn recv_deadline(&self, deadline: Instant) -> Result<T, RecvTimeoutError> {
use self::RecvTimeoutError::*;
loop {
let port_or_empty = match *unsafe { self.inner() } {
Flavor::Oneshot(ref p) => match p.recv(Some(deadline)) {
Ok(t) => return Ok(t),
Err(oneshot::Disconnected) => return Err(Disconnected),
Err(oneshot::Upgraded(rx)) => Some(rx),
Err(oneshot::Empty) => None,
},
Flavor::Stream(ref p) => match p.recv(Some(deadline)) {
Ok(t) => return Ok(t),
Err(stream::Disconnected) => return Err(Disconnected),
Err(stream::Upgraded(rx)) => Some(rx),
Err(stream::Empty) => None,
},
Flavor::Shared(ref p) => match p.recv(Some(deadline)) {
Ok(t) => return Ok(t),
Err(shared::Disconnected) => return Err(Disconnected),
Err(shared::Empty) => None,
},
Flavor::Sync(ref p) => match p.recv(Some(deadline)) {
Ok(t) => return Ok(t),
Err(sync::Disconnected) => return Err(Disconnected),
Err(sync::Empty) => None,
},
};
if let Some(new_port) = port_or_empty {
unsafe {
mem::swap(self.inner_mut(), new_port.inner_mut());
}
}
// If we're already passed the deadline, and we're here without
// data, return a timeout, else try again.
if Instant::now() >= deadline {
return Err(Timeout);
}
}
}
/// Returns an iterator that will block waiting for messages, but never
/// [`panic!`]. It will return [`None`] when the channel has hung up.
///
/// # Examples
///
/// ```rust
/// use std::sync::mpsc::channel;
/// use std::thread;
///
/// let (send, recv) = channel();
///
/// thread::spawn(move || {
/// send.send(1).unwrap();
/// send.send(2).unwrap();
/// send.send(3).unwrap();
/// });
///
/// let mut iter = recv.iter();
/// assert_eq!(iter.next(), Some(1));
/// assert_eq!(iter.next(), Some(2));
/// assert_eq!(iter.next(), Some(3));
/// assert_eq!(iter.next(), None);
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
pub fn iter(&self) -> Iter<'_, T> {
Iter { rx: self }
}
/// Returns an iterator that will attempt to yield all pending values.
/// It will return `None` if there are no more pending values or if the
/// channel has hung up. The iterator will never [`panic!`] or block the
/// user by waiting for values.
///
/// # Examples
///
/// ```no_run
/// use std::sync::mpsc::channel;
/// use std::thread;
/// use std::time::Duration;
///
/// let (sender, receiver) = channel();
///
/// // nothing is in the buffer yet
/// assert!(receiver.try_iter().next().is_none());
///
/// thread::spawn(move || {
/// thread::sleep(Duration::from_secs(1));
/// sender.send(1).unwrap();
/// sender.send(2).unwrap();
/// sender.send(3).unwrap();
/// });
///
/// // nothing is in the buffer yet
/// assert!(receiver.try_iter().next().is_none());
///
/// // block for two seconds
/// thread::sleep(Duration::from_secs(2));
///
/// let mut iter = receiver.try_iter();
/// assert_eq!(iter.next(), Some(1));
/// assert_eq!(iter.next(), Some(2));
/// assert_eq!(iter.next(), Some(3));
/// assert_eq!(iter.next(), None);
/// ```
#[stable(feature = "receiver_try_iter", since = "1.15.0")]
pub fn try_iter(&self) -> TryIter<'_, T> {
TryIter { rx: self }
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<'a, T> Iterator for Iter<'a, T> {
type Item = T;
fn next(&mut self) -> Option<T> {
self.rx.recv().ok()
}
}
#[stable(feature = "receiver_try_iter", since = "1.15.0")]
impl<'a, T> Iterator for TryIter<'a, T> {
type Item = T;
fn next(&mut self) -> Option<T> {
self.rx.try_recv().ok()
}
}
#[stable(feature = "receiver_into_iter", since = "1.1.0")]
impl<'a, T> IntoIterator for &'a Receiver<T> {
type Item = T;
type IntoIter = Iter<'a, T>;
fn into_iter(self) -> Iter<'a, T> {
self.iter()
}
}
#[stable(feature = "receiver_into_iter", since = "1.1.0")]
impl<T> Iterator for IntoIter<T> {
type Item = T;
fn next(&mut self) -> Option<T> {
self.rx.recv().ok()
}
}
#[stable(feature = "receiver_into_iter", since = "1.1.0")]
impl<T> IntoIterator for Receiver<T> {
type Item = T;
type IntoIter = IntoIter<T>;
fn into_iter(self) -> IntoIter<T> {
IntoIter { rx: self }
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T> Drop for Receiver<T> {
fn drop(&mut self) {
match *unsafe { self.inner() } {
Flavor::Oneshot(ref p) => p.drop_port(),
Flavor::Stream(ref p) => p.drop_port(),
Flavor::Shared(ref p) => p.drop_port(),
Flavor::Sync(ref p) => p.drop_port(),
}
}
}
#[stable(feature = "mpsc_debug", since = "1.8.0")]
impl<T> fmt::Debug for Receiver<T> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_struct("Receiver").finish_non_exhaustive()
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T> fmt::Debug for SendError<T> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_struct("SendError").finish_non_exhaustive()
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T> fmt::Display for SendError<T> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
"sending on a closed channel".fmt(f)
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T: Send> error::Error for SendError<T> {
#[allow(deprecated)]
fn description(&self) -> &str {
"sending on a closed channel"
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T> fmt::Debug for TrySendError<T> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
match *self {
TrySendError::Full(..) => "Full(..)".fmt(f),
TrySendError::Disconnected(..) => "Disconnected(..)".fmt(f),
}
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T> fmt::Display for TrySendError<T> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
match *self {
TrySendError::Full(..) => "sending on a full channel".fmt(f),
TrySendError::Disconnected(..) => "sending on a closed channel".fmt(f),
}
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T: Send> error::Error for TrySendError<T> {
#[allow(deprecated)]
fn description(&self) -> &str {
match *self {
TrySendError::Full(..) => "sending on a full channel",
TrySendError::Disconnected(..) => "sending on a closed channel",
}
}
}
#[stable(feature = "mpsc_error_conversions", since = "1.24.0")]
impl<T> From<SendError<T>> for TrySendError<T> {
/// Converts a `SendError<T>` into a `TrySendError<T>`.
///
/// This conversion always returns a `TrySendError::Disconnected` containing the data in the `SendError<T>`.
///
/// No data is allocated on the heap.
fn from(err: SendError<T>) -> TrySendError<T> {
match err {
SendError(t) => TrySendError::Disconnected(t),
}
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl fmt::Display for RecvError {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
"receiving on a closed channel".fmt(f)
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl error::Error for RecvError {
#[allow(deprecated)]
fn description(&self) -> &str {
"receiving on a closed channel"
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl fmt::Display for TryRecvError {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
match *self {
TryRecvError::Empty => "receiving on an empty channel".fmt(f),
TryRecvError::Disconnected => "receiving on a closed channel".fmt(f),
}
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl error::Error for TryRecvError {
#[allow(deprecated)]
fn description(&self) -> &str {
match *self {
TryRecvError::Empty => "receiving on an empty channel",
TryRecvError::Disconnected => "receiving on a closed channel",
}
}
}
#[stable(feature = "mpsc_error_conversions", since = "1.24.0")]
impl From<RecvError> for TryRecvError {
/// Converts a `RecvError` into a `TryRecvError`.
///
/// This conversion always returns `TryRecvError::Disconnected`.
///
/// No data is allocated on the heap.
fn from(err: RecvError) -> TryRecvError {
match err {
RecvError => TryRecvError::Disconnected,
}
}
}
#[stable(feature = "mpsc_recv_timeout_error", since = "1.15.0")]
impl fmt::Display for RecvTimeoutError {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
match *self {
RecvTimeoutError::Timeout => "timed out waiting on channel".fmt(f),
RecvTimeoutError::Disconnected => "channel is empty and sending half is closed".fmt(f),
}
}
}
#[stable(feature = "mpsc_recv_timeout_error", since = "1.15.0")]
impl error::Error for RecvTimeoutError {
#[allow(deprecated)]
fn description(&self) -> &str {
match *self {
RecvTimeoutError::Timeout => "timed out waiting on channel",
RecvTimeoutError::Disconnected => "channel is empty and sending half is closed",
}
}
}
#[stable(feature = "mpsc_error_conversions", since = "1.24.0")]
impl From<RecvError> for RecvTimeoutError {
/// Converts a `RecvError` into a `RecvTimeoutError`.
///
/// This conversion always returns `RecvTimeoutError::Disconnected`.
///
/// No data is allocated on the heap.
fn from(err: RecvError) -> RecvTimeoutError {
match err {
RecvError => RecvTimeoutError::Disconnected,
}
}
}