1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
//! A dynamically-sized view into a contiguous sequence, `[T]`.
//!
//! *[See also the slice primitive type](slice).*
//!
//! Slices are a view into a block of memory represented as a pointer and a
//! length.
//!
//! ```
//! // slicing a Vec
//! let vec = vec![1, 2, 3];
//! let int_slice = &vec[..];
//! // coercing an array to a slice
//! let str_slice: &[&str] = &["one", "two", "three"];
//! ```
//!
//! Slices are either mutable or shared. The shared slice type is `&[T]`,
//! while the mutable slice type is `&mut [T]`, where `T` represents the element
//! type. For example, you can mutate the block of memory that a mutable slice
//! points to:
//!
//! ```
//! let x = &mut [1, 2, 3];
//! x[1] = 7;
//! assert_eq!(x, &[1, 7, 3]);
//! ```
//!
//! Here are some of the things this module contains:
//!
//! ## Structs
//!
//! There are several structs that are useful for slices, such as [`Iter`], which
//! represents iteration over a slice.
//!
//! ## Trait Implementations
//!
//! There are several implementations of common traits for slices. Some examples
//! include:
//!
//! * [`Clone`]
//! * [`Eq`], [`Ord`] - for slices whose element type are [`Eq`] or [`Ord`].
//! * [`Hash`] - for slices whose element type is [`Hash`].
//!
//! ## Iteration
//!
//! The slices implement `IntoIterator`. The iterator yields references to the
//! slice elements.
//!
//! ```
//! let numbers = &[0, 1, 2];
//! for n in numbers {
//!     println!("{} is a number!", n);
//! }
//! ```
//!
//! The mutable slice yields mutable references to the elements:
//!
//! ```
//! let mut scores = [7, 8, 9];
//! for score in &mut scores[..] {
//!     *score += 1;
//! }
//! ```
//!
//! This iterator yields mutable references to the slice's elements, so while
//! the element type of the slice is `i32`, the element type of the iterator is
//! `&mut i32`.
//!
//! * [`.iter`] and [`.iter_mut`] are the explicit methods to return the default
//!   iterators.
//! * Further methods that return iterators are [`.split`], [`.splitn`],
//!   [`.chunks`], [`.windows`] and more.
//!
//! [`Hash`]: core::hash::Hash
//! [`.iter`]: slice::iter
//! [`.iter_mut`]: slice::iter_mut
//! [`.split`]: slice::split
//! [`.splitn`]: slice::splitn
//! [`.chunks`]: slice::chunks
//! [`.windows`]: slice::windows
#![stable(feature = "rust1", since = "1.0.0")]
// Many of the usings in this module are only used in the test configuration.
// It's cleaner to just turn off the unused_imports warning than to fix them.
#![cfg_attr(test, allow(unused_imports, dead_code))]

use core::borrow::{Borrow, BorrowMut};
#[cfg(not(no_global_oom_handling))]
use core::cmp::Ordering::{self, Less};
#[cfg(not(no_global_oom_handling))]
use core::mem;
#[cfg(not(no_global_oom_handling))]
use core::mem::size_of;
#[cfg(not(no_global_oom_handling))]
use core::ptr;

use crate::alloc::Allocator;
#[cfg(not(no_global_oom_handling))]
use crate::alloc::Global;
#[cfg(not(no_global_oom_handling))]
use crate::borrow::ToOwned;
use crate::boxed::Box;
use crate::vec::Vec;

#[unstable(feature = "slice_range", issue = "76393")]
pub use core::slice::range;
#[unstable(feature = "array_chunks", issue = "74985")]
pub use core::slice::ArrayChunks;
#[unstable(feature = "array_chunks", issue = "74985")]
pub use core::slice::ArrayChunksMut;
#[unstable(feature = "array_windows", issue = "75027")]
pub use core::slice::ArrayWindows;
#[unstable(feature = "inherent_ascii_escape", issue = "77174")]
pub use core::slice::EscapeAscii;
#[stable(feature = "slice_get_slice", since = "1.28.0")]
pub use core::slice::SliceIndex;
#[stable(feature = "from_ref", since = "1.28.0")]
pub use core::slice::{from_mut, from_ref};
#[stable(feature = "rust1", since = "1.0.0")]
pub use core::slice::{from_raw_parts, from_raw_parts_mut};
#[stable(feature = "rust1", since = "1.0.0")]
pub use core::slice::{Chunks, Windows};
#[stable(feature = "chunks_exact", since = "1.31.0")]
pub use core::slice::{ChunksExact, ChunksExactMut};
#[stable(feature = "rust1", since = "1.0.0")]
pub use core::slice::{ChunksMut, Split, SplitMut};
#[unstable(feature = "slice_group_by", issue = "80552")]
pub use core::slice::{GroupBy, GroupByMut};
#[stable(feature = "rust1", since = "1.0.0")]
pub use core::slice::{Iter, IterMut};
#[stable(feature = "rchunks", since = "1.31.0")]
pub use core::slice::{RChunks, RChunksExact, RChunksExactMut, RChunksMut};
#[stable(feature = "slice_rsplit", since = "1.27.0")]
pub use core::slice::{RSplit, RSplitMut};
#[stable(feature = "rust1", since = "1.0.0")]
pub use core::slice::{RSplitN, RSplitNMut, SplitN, SplitNMut};
#[stable(feature = "split_inclusive", since = "1.51.0")]
pub use core::slice::{SplitInclusive, SplitInclusiveMut};

////////////////////////////////////////////////////////////////////////////////
// Basic slice extension methods
////////////////////////////////////////////////////////////////////////////////

// HACK(japaric) needed for the implementation of `vec!` macro during testing
// N.B., see the `hack` module in this file for more details.
#[cfg(test)]
pub use hack::into_vec;

// HACK(japaric) needed for the implementation of `Vec::clone` during testing
// N.B., see the `hack` module in this file for more details.
#[cfg(test)]
pub use hack::to_vec;

// HACK(japaric): With cfg(test) `impl [T]` is not available, these three
// functions are actually methods that are in `impl [T]` but not in
// `core::slice::SliceExt` - we need to supply these functions for the
// `test_permutations` test
mod hack {
    use core::alloc::Allocator;

    use crate::boxed::Box;
    use crate::vec::Vec;

    // We shouldn't add inline attribute to this since this is used in
    // `vec!` macro mostly and causes perf regression. See #71204 for
    // discussion and perf results.
    pub fn into_vec<T, A: Allocator>(b: Box<[T], A>) -> Vec<T, A> {
        unsafe {
            let len = b.len();
            let (b, alloc) = Box::into_raw_with_allocator(b);
            Vec::from_raw_parts_in(b as *mut T, len, len, alloc)
        }
    }

    #[cfg(not(no_global_oom_handling))]
    #[inline]
    pub fn to_vec<T: ConvertVec, A: Allocator>(s: &[T], alloc: A) -> Vec<T, A> {
        T::to_vec(s, alloc)
    }

    #[cfg(not(no_global_oom_handling))]
    pub trait ConvertVec {
        fn to_vec<A: Allocator>(s: &[Self], alloc: A) -> Vec<Self, A>
        where
            Self: Sized;
    }

    #[cfg(not(no_global_oom_handling))]
    impl<T: Clone> ConvertVec for T {
        #[inline]
        default fn to_vec<A: Allocator>(s: &[Self], alloc: A) -> Vec<Self, A> {
            struct DropGuard<'a, T, A: Allocator> {
                vec: &'a mut Vec<T, A>,
                num_init: usize,
            }
            impl<'a, T, A: Allocator> Drop for DropGuard<'a, T, A> {
                #[inline]
                fn drop(&mut self) {
                    // SAFETY:
                    // items were marked initialized in the loop below
                    unsafe {
                        self.vec.set_len(self.num_init);
                    }
                }
            }
            let mut vec = Vec::with_capacity_in(s.len(), alloc);
            let mut guard = DropGuard { vec: &mut vec, num_init: 0 };
            let slots = guard.vec.spare_capacity_mut();
            // .take(slots.len()) is necessary for LLVM to remove bounds checks
            // and has better codegen than zip.
            for (i, b) in s.iter().enumerate().take(slots.len()) {
                guard.num_init = i;
                slots[i].write(b.clone());
            }
            core::mem::forget(guard);
            // SAFETY:
            // the vec was allocated and initialized above to at least this length.
            unsafe {
                vec.set_len(s.len());
            }
            vec
        }
    }

    #[cfg(not(no_global_oom_handling))]
    impl<T: Copy> ConvertVec for T {
        #[inline]
        fn to_vec<A: Allocator>(s: &[Self], alloc: A) -> Vec<Self, A> {
            let mut v = Vec::with_capacity_in(s.len(), alloc);
            // SAFETY:
            // allocated above with the capacity of `s`, and initialize to `s.len()` in
            // ptr::copy_to_non_overlapping below.
            unsafe {
                s.as_ptr().copy_to_nonoverlapping(v.as_mut_ptr(), s.len());
                v.set_len(s.len());
            }
            v
        }
    }
}

#[lang = "slice_alloc"]
#[cfg(not(test))]
impl<T> [T] {
    /// Sorts the slice.
    ///
    /// This sort is stable (i.e., does not reorder equal elements) and *O*(*n* \* log(*n*)) worst-case.
    ///
    /// When applicable, unstable sorting is preferred because it is generally faster than stable
    /// sorting and it doesn't allocate auxiliary memory.
    /// See [`sort_unstable`](slice::sort_unstable).
    ///
    /// # Current implementation
    ///
    /// The current algorithm is an adaptive, iterative merge sort inspired by
    /// [timsort](https://en.wikipedia.org/wiki/Timsort).
    /// It is designed to be very fast in cases where the slice is nearly sorted, or consists of
    /// two or more sorted sequences concatenated one after another.
    ///
    /// Also, it allocates temporary storage half the size of `self`, but for short slices a
    /// non-allocating insertion sort is used instead.
    ///
    /// # Examples
    ///
    /// ```
    /// let mut v = [-5, 4, 1, -3, 2];
    ///
    /// v.sort();
    /// assert!(v == [-5, -3, 1, 2, 4]);
    /// ```
    #[cfg(not(no_global_oom_handling))]
    #[stable(feature = "rust1", since = "1.0.0")]
    #[inline]
    pub fn sort(&mut self)
    where
        T: Ord,
    {
        merge_sort(self, |a, b| a.lt(b));
    }

    /// Sorts the slice with a comparator function.
    ///
    /// This sort is stable (i.e., does not reorder equal elements) and *O*(*n* \* log(*n*)) worst-case.
    ///
    /// The comparator function must define a total ordering for the elements in the slice. If
    /// the ordering is not total, the order of the elements is unspecified. An order is a
    /// total order if it is (for all `a`, `b` and `c`):
    ///
    /// * total and antisymmetric: exactly one of `a < b`, `a == b` or `a > b` is true, and
    /// * transitive, `a < b` and `b < c` implies `a < c`. The same must hold for both `==` and `>`.
    ///
    /// For example, while [`f64`] doesn't implement [`Ord`] because `NaN != NaN`, we can use
    /// `partial_cmp` as our sort function when we know the slice doesn't contain a `NaN`.
    ///
    /// ```
    /// let mut floats = [5f64, 4.0, 1.0, 3.0, 2.0];
    /// floats.sort_by(|a, b| a.partial_cmp(b).unwrap());
    /// assert_eq!(floats, [1.0, 2.0, 3.0, 4.0, 5.0]);
    /// ```
    ///
    /// When applicable, unstable sorting is preferred because it is generally faster than stable
    /// sorting and it doesn't allocate auxiliary memory.
    /// See [`sort_unstable_by`](slice::sort_unstable_by).
    ///
    /// # Current implementation
    ///
    /// The current algorithm is an adaptive, iterative merge sort inspired by
    /// [timsort](https://en.wikipedia.org/wiki/Timsort).
    /// It is designed to be very fast in cases where the slice is nearly sorted, or consists of
    /// two or more sorted sequences concatenated one after another.
    ///
    /// Also, it allocates temporary storage half the size of `self`, but for short slices a
    /// non-allocating insertion sort is used instead.
    ///
    /// # Examples
    ///
    /// ```
    /// let mut v = [5, 4, 1, 3, 2];
    /// v.sort_by(|a, b| a.cmp(b));
    /// assert!(v == [1, 2, 3, 4, 5]);
    ///
    /// // reverse sorting
    /// v.sort_by(|a, b| b.cmp(a));
    /// assert!(v == [5, 4, 3, 2, 1]);
    /// ```
    #[cfg(not(no_global_oom_handling))]
    #[stable(feature = "rust1", since = "1.0.0")]
    #[inline]
    pub fn sort_by<F>(&mut self, mut compare: F)
    where
        F: FnMut(&T, &T) -> Ordering,
    {
        merge_sort(self, |a, b| compare(a, b) == Less);
    }

    /// Sorts the slice with a key extraction function.
    ///
    /// This sort is stable (i.e., does not reorder equal elements) and *O*(*m* \* *n* \* log(*n*))
    /// worst-case, where the key function is *O*(*m*).
    ///
    /// For expensive key functions (e.g. functions that are not simple property accesses or
    /// basic operations), [`sort_by_cached_key`](slice::sort_by_cached_key) is likely to be
    /// significantly faster, as it does not recompute element keys.
    ///
    /// When applicable, unstable sorting is preferred because it is generally faster than stable
    /// sorting and it doesn't allocate auxiliary memory.
    /// See [`sort_unstable_by_key`](slice::sort_unstable_by_key).
    ///
    /// # Current implementation
    ///
    /// The current algorithm is an adaptive, iterative merge sort inspired by
    /// [timsort](https://en.wikipedia.org/wiki/Timsort).
    /// It is designed to be very fast in cases where the slice is nearly sorted, or consists of
    /// two or more sorted sequences concatenated one after another.
    ///
    /// Also, it allocates temporary storage half the size of `self`, but for short slices a
    /// non-allocating insertion sort is used instead.
    ///
    /// # Examples
    ///
    /// ```
    /// let mut v = [-5i32, 4, 1, -3, 2];
    ///
    /// v.sort_by_key(|k| k.abs());
    /// assert!(v == [1, 2, -3, 4, -5]);
    /// ```
    #[cfg(not(no_global_oom_handling))]
    #[stable(feature = "slice_sort_by_key", since = "1.7.0")]
    #[inline]
    pub fn sort_by_key<K, F>(&mut self, mut f: F)
    where
        F: FnMut(&T) -> K,
        K: Ord,
    {
        merge_sort(self, |a, b| f(a).lt(&f(b)));
    }

    /// Sorts the slice with a key extraction function.
    ///
    /// During sorting, the key function is called only once per element.
    ///
    /// This sort is stable (i.e., does not reorder equal elements) and *O*(*m* \* *n* + *n* \* log(*n*))
    /// worst-case, where the key function is *O*(*m*).
    ///
    /// For simple key functions (e.g., functions that are property accesses or
    /// basic operations), [`sort_by_key`](slice::sort_by_key) is likely to be
    /// faster.
    ///
    /// # Current implementation
    ///
    /// The current algorithm is based on [pattern-defeating quicksort][pdqsort] by Orson Peters,
    /// which combines the fast average case of randomized quicksort with the fast worst case of
    /// heapsort, while achieving linear time on slices with certain patterns. It uses some
    /// randomization to avoid degenerate cases, but with a fixed seed to always provide
    /// deterministic behavior.
    ///
    /// In the worst case, the algorithm allocates temporary storage in a `Vec<(K, usize)>` the
    /// length of the slice.
    ///
    /// # Examples
    ///
    /// ```
    /// let mut v = [-5i32, 4, 32, -3, 2];
    ///
    /// v.sort_by_cached_key(|k| k.to_string());
    /// assert!(v == [-3, -5, 2, 32, 4]);
    /// ```
    ///
    /// [pdqsort]: https://github.com/orlp/pdqsort
    #[cfg(not(no_global_oom_handling))]
    #[stable(feature = "slice_sort_by_cached_key", since = "1.34.0")]
    #[inline]
    pub fn sort_by_cached_key<K, F>(&mut self, f: F)
    where
        F: FnMut(&T) -> K,
        K: Ord,
    {
        // Helper macro for indexing our vector by the smallest possible type, to reduce allocation.
        macro_rules! sort_by_key {
            ($t:ty, $slice:ident, $f:ident) => {{
                let mut indices: Vec<_> =
                    $slice.iter().map($f).enumerate().map(|(i, k)| (k, i as $t)).collect();
                // The elements of `indices` are unique, as they are indexed, so any sort will be
                // stable with respect to the original slice. We use `sort_unstable` here because
                // it requires less memory allocation.
                indices.sort_unstable();
                for i in 0..$slice.len() {
                    let mut index = indices[i].1;
                    while (index as usize) < i {
                        index = indices[index as usize].1;
                    }
                    indices[i].1 = index;
                    $slice.swap(i, index as usize);
                }
            }};
        }

        let sz_u8 = mem::size_of::<(K, u8)>();
        let sz_u16 = mem::size_of::<(K, u16)>();
        let sz_u32 = mem::size_of::<(K, u32)>();
        let sz_usize = mem::size_of::<(K, usize)>();

        let len = self.len();
        if len < 2 {
            return;
        }
        if sz_u8 < sz_u16 && len <= (u8::MAX as usize) {
            return sort_by_key!(u8, self, f);
        }
        if sz_u16 < sz_u32 && len <= (u16::MAX as usize) {
            return sort_by_key!(u16, self, f);
        }
        if sz_u32 < sz_usize && len <= (u32::MAX as usize) {
            return sort_by_key!(u32, self, f);
        }
        sort_by_key!(usize, self, f)
    }

    /// Copies `self` into a new `Vec`.
    ///
    /// # Examples
    ///
    /// ```
    /// let s = [10, 40, 30];
    /// let x = s.to_vec();
    /// // Here, `s` and `x` can be modified independently.
    /// ```
    #[cfg(not(no_global_oom_handling))]
    #[rustc_conversion_suggestion]
    #[stable(feature = "rust1", since = "1.0.0")]
    #[inline]
    pub fn to_vec(&self) -> Vec<T>
    where
        T: Clone,
    {
        self.to_vec_in(Global)
    }

    /// Copies `self` into a new `Vec` with an allocator.
    ///
    /// # Examples
    ///
    /// ```
    /// #![feature(allocator_api)]
    ///
    /// use std::alloc::System;
    ///
    /// let s = [10, 40, 30];
    /// let x = s.to_vec_in(System);
    /// // Here, `s` and `x` can be modified independently.
    /// ```
    #[cfg(not(no_global_oom_handling))]
    #[inline]
    #[unstable(feature = "allocator_api", issue = "32838")]
    pub fn to_vec_in<A: Allocator>(&self, alloc: A) -> Vec<T, A>
    where
        T: Clone,
    {
        // N.B., see the `hack` module in this file for more details.
        hack::to_vec(self, alloc)
    }

    /// Converts `self` into a vector without clones or allocation.
    ///
    /// The resulting vector can be converted back into a box via
    /// `Vec<T>`'s `into_boxed_slice` method.
    ///
    /// # Examples
    ///
    /// ```
    /// let s: Box<[i32]> = Box::new([10, 40, 30]);
    /// let x = s.into_vec();
    /// // `s` cannot be used anymore because it has been converted into `x`.
    ///
    /// assert_eq!(x, vec![10, 40, 30]);
    /// ```
    #[stable(feature = "rust1", since = "1.0.0")]
    #[inline]
    pub fn into_vec<A: Allocator>(self: Box<Self, A>) -> Vec<T, A> {
        // N.B., see the `hack` module in this file for more details.
        hack::into_vec(self)
    }

    /// Creates a vector by repeating a slice `n` times.
    ///
    /// # Panics
    ///
    /// This function will panic if the capacity would overflow.
    ///
    /// # Examples
    ///
    /// Basic usage:
    ///
    /// ```
    /// assert_eq!([1, 2].repeat(3), vec![1, 2, 1, 2, 1, 2]);
    /// ```
    ///
    /// A panic upon overflow:
    ///
    /// ```should_panic
    /// // this will panic at runtime
    /// b"0123456789abcdef".repeat(usize::MAX);
    /// ```
    #[cfg(not(no_global_oom_handling))]
    #[stable(feature = "repeat_generic_slice", since = "1.40.0")]
    pub fn repeat(&self, n: usize) -> Vec<T>
    where
        T: Copy,
    {
        if n == 0 {
            return Vec::new();
        }

        // If `n` is larger than zero, it can be split as
        // `n = 2^expn + rem (2^expn > rem, expn >= 0, rem >= 0)`.
        // `2^expn` is the number represented by the leftmost '1' bit of `n`,
        // and `rem` is the remaining part of `n`.

        // Using `Vec` to access `set_len()`.
        let capacity = self.len().checked_mul(n).expect("capacity overflow");
        let mut buf = Vec::with_capacity(capacity);

        // `2^expn` repetition is done by doubling `buf` `expn`-times.
        buf.extend(self);
        {
            let mut m = n >> 1;
            // If `m > 0`, there are remaining bits up to the leftmost '1'.
            while m > 0 {
                // `buf.extend(buf)`:
                unsafe {
                    ptr::copy_nonoverlapping(
                        buf.as_ptr(),
                        (buf.as_mut_ptr() as *mut T).add(buf.len()),
                        buf.len(),
                    );
                    // `buf` has capacity of `self.len() * n`.
                    let buf_len = buf.len();
                    buf.set_len(buf_len * 2);
                }

                m >>= 1;
            }
        }

        // `rem` (`= n - 2^expn`) repetition is done by copying
        // first `rem` repetitions from `buf` itself.
        let rem_len = capacity - buf.len(); // `self.len() * rem`
        if rem_len > 0 {
            // `buf.extend(buf[0 .. rem_len])`:
            unsafe {
                // This is non-overlapping since `2^expn > rem`.
                ptr::copy_nonoverlapping(
                    buf.as_ptr(),
                    (buf.as_mut_ptr() as *mut T).add(buf.len()),
                    rem_len,
                );
                // `buf.len() + rem_len` equals to `buf.capacity()` (`= self.len() * n`).
                buf.set_len(capacity);
            }
        }
        buf
    }

    /// Flattens a slice of `T` into a single value `Self::Output`.
    ///
    /// # Examples
    ///
    /// ```
    /// assert_eq!(["hello", "world"].concat(), "helloworld");
    /// assert_eq!([[1, 2], [3, 4]].concat(), [1, 2, 3, 4]);
    /// ```
    #[stable(feature = "rust1", since = "1.0.0")]
    pub fn concat<Item: ?Sized>(&self) -> <Self as Concat<Item>>::Output
    where
        Self: Concat<Item>,
    {
        Concat::concat(self)
    }

    /// Flattens a slice of `T` into a single value `Self::Output`, placing a
    /// given separator between each.
    ///
    /// # Examples
    ///
    /// ```
    /// assert_eq!(["hello", "world"].join(" "), "hello world");
    /// assert_eq!([[1, 2], [3, 4]].join(&0), [1, 2, 0, 3, 4]);
    /// assert_eq!([[1, 2], [3, 4]].join(&[0, 0][..]), [1, 2, 0, 0, 3, 4]);
    /// ```
    #[stable(feature = "rename_connect_to_join", since = "1.3.0")]
    pub fn join<Separator>(&self, sep: Separator) -> <Self as Join<Separator>>::Output
    where
        Self: Join<Separator>,
    {
        Join::join(self, sep)
    }

    /// Flattens a slice of `T` into a single value `Self::Output`, placing a
    /// given separator between each.
    ///
    /// # Examples
    ///
    /// ```
    /// # #![allow(deprecated)]
    /// assert_eq!(["hello", "world"].connect(" "), "hello world");
    /// assert_eq!([[1, 2], [3, 4]].connect(&0), [1, 2, 0, 3, 4]);
    /// ```
    #[stable(feature = "rust1", since = "1.0.0")]
    #[rustc_deprecated(since = "1.3.0", reason = "renamed to join")]
    pub fn connect<Separator>(&self, sep: Separator) -> <Self as Join<Separator>>::Output
    where
        Self: Join<Separator>,
    {
        Join::join(self, sep)
    }
}

#[lang = "slice_u8_alloc"]
#[cfg(not(test))]
impl [u8] {
    /// Returns a vector containing a copy of this slice where each byte
    /// is mapped to its ASCII upper case equivalent.
    ///
    /// ASCII letters 'a' to 'z' are mapped to 'A' to 'Z',
    /// but non-ASCII letters are unchanged.
    ///
    /// To uppercase the value in-place, use [`make_ascii_uppercase`].
    ///
    /// [`make_ascii_uppercase`]: slice::make_ascii_uppercase
    #[cfg(not(no_global_oom_handling))]
    #[must_use = "this returns the uppercase bytes as a new Vec, \
                  without modifying the original"]
    #[stable(feature = "ascii_methods_on_intrinsics", since = "1.23.0")]
    #[inline]
    pub fn to_ascii_uppercase(&self) -> Vec<u8> {
        let mut me = self.to_vec();
        me.make_ascii_uppercase();
        me
    }

    /// Returns a vector containing a copy of this slice where each byte
    /// is mapped to its ASCII lower case equivalent.
    ///
    /// ASCII letters 'A' to 'Z' are mapped to 'a' to 'z',
    /// but non-ASCII letters are unchanged.
    ///
    /// To lowercase the value in-place, use [`make_ascii_lowercase`].
    ///
    /// [`make_ascii_lowercase`]: slice::make_ascii_lowercase
    #[cfg(not(no_global_oom_handling))]
    #[must_use = "this returns the lowercase bytes as a new Vec, \
                  without modifying the original"]
    #[stable(feature = "ascii_methods_on_intrinsics", since = "1.23.0")]
    #[inline]
    pub fn to_ascii_lowercase(&self) -> Vec<u8> {
        let mut me = self.to_vec();
        me.make_ascii_lowercase();
        me
    }
}

////////////////////////////////////////////////////////////////////////////////
// Extension traits for slices over specific kinds of data
////////////////////////////////////////////////////////////////////////////////

/// Helper trait for [`[T]::concat`](slice::concat).
///
/// Note: the `Item` type parameter is not used in this trait,
/// but it allows impls to be more generic.
/// Without it, we get this error:
///
/// ```error
/// error[E0207]: the type parameter `T` is not constrained by the impl trait, self type, or predica
///    --> src/liballoc/slice.rs:608:6
///     |
/// 608 | impl<T: Clone, V: Borrow<[T]>> Concat for [V] {
///     |      ^ unconstrained type parameter
/// ```
///
/// This is because there could exist `V` types with multiple `Borrow<[_]>` impls,
/// such that multiple `T` types would apply:
///
/// ```
/// # #[allow(dead_code)]
/// pub struct Foo(Vec<u32>, Vec<String>);
///
/// impl std::borrow::Borrow<[u32]> for Foo {
///     fn borrow(&self) -> &[u32] { &self.0 }
/// }
///
/// impl std::borrow::Borrow<[String]> for Foo {
///     fn borrow(&self) -> &[String] { &self.1 }
/// }
/// ```
#[unstable(feature = "slice_concat_trait", issue = "27747")]
pub trait Concat<Item: ?Sized> {
    #[unstable(feature = "slice_concat_trait", issue = "27747")]
    /// The resulting type after concatenation
    type Output;

    /// Implementation of [`[T]::concat`](slice::concat)
    #[unstable(feature = "slice_concat_trait", issue = "27747")]
    fn concat(slice: &Self) -> Self::Output;
}

/// Helper trait for [`[T]::join`](slice::join)
#[unstable(feature = "slice_concat_trait", issue = "27747")]
pub trait Join<Separator> {
    #[unstable(feature = "slice_concat_trait", issue = "27747")]
    /// The resulting type after concatenation
    type Output;

    /// Implementation of [`[T]::join`](slice::join)
    #[unstable(feature = "slice_concat_trait", issue = "27747")]
    fn join(slice: &Self, sep: Separator) -> Self::Output;
}

#[cfg(not(no_global_oom_handling))]
#[unstable(feature = "slice_concat_ext", issue = "27747")]
impl<T: Clone, V: Borrow<[T]>> Concat<T> for [V] {
    type Output = Vec<T>;

    fn concat(slice: &Self) -> Vec<T> {
        let size = slice.iter().map(|slice| slice.borrow().len()).sum();
        let mut result = Vec::with_capacity(size);
        for v in slice {
            result.extend_from_slice(v.borrow())
        }
        result
    }
}

#[cfg(not(no_global_oom_handling))]
#[unstable(feature = "slice_concat_ext", issue = "27747")]
impl<T: Clone, V: Borrow<[T]>> Join<&T> for [V] {
    type Output = Vec<T>;

    fn join(slice: &Self, sep: &T) -> Vec<T> {
        let mut iter = slice.iter();
        let first = match iter.next() {
            Some(first) => first,
            None => return vec![],
        };
        let size = slice.iter().map(|v| v.borrow().len()).sum::<usize>() + slice.len() - 1;
        let mut result = Vec::with_capacity(size);
        result.extend_from_slice(first.borrow());

        for v in iter {
            result.push(sep.clone());
            result.extend_from_slice(v.borrow())
        }
        result
    }
}

#[cfg(not(no_global_oom_handling))]
#[unstable(feature = "slice_concat_ext", issue = "27747")]
impl<T: Clone, V: Borrow<[T]>> Join<&[T]> for [V] {
    type Output = Vec<T>;

    fn join(slice: &Self, sep: &[T]) -> Vec<T> {
        let mut iter = slice.iter();
        let first = match iter.next() {
            Some(first) => first,
            None => return vec![],
        };
        let size =
            slice.iter().map(|v| v.borrow().len()).sum::<usize>() + sep.len() * (slice.len() - 1);
        let mut result = Vec::with_capacity(size);
        result.extend_from_slice(first.borrow());

        for v in iter {
            result.extend_from_slice(sep);
            result.extend_from_slice(v.borrow())
        }
        result
    }
}

////////////////////////////////////////////////////////////////////////////////
// Standard trait implementations for slices
////////////////////////////////////////////////////////////////////////////////

#[stable(feature = "rust1", since = "1.0.0")]
impl<T> Borrow<[T]> for Vec<T> {
    fn borrow(&self) -> &[T] {
        &self[..]
    }
}

#[stable(feature = "rust1", since = "1.0.0")]
impl<T> BorrowMut<[T]> for Vec<T> {
    fn borrow_mut(&mut self) -> &mut [T] {
        &mut self[..]
    }
}

#[cfg(not(no_global_oom_handling))]
#[stable(feature = "rust1", since = "1.0.0")]
impl<T: Clone> ToOwned for [T] {
    type Owned = Vec<T>;
    #[cfg(not(test))]
    fn to_owned(&self) -> Vec<T> {
        self.to_vec()
    }

    #[cfg(test)]
    fn to_owned(&self) -> Vec<T> {
        hack::to_vec(self, Global)
    }

    fn clone_into(&self, target: &mut Vec<T>) {
        // drop anything in target that will not be overwritten
        target.truncate(self.len());

        // target.len <= self.len due to the truncate above, so the
        // slices here are always in-bounds.
        let (init, tail) = self.split_at(target.len());

        // reuse the contained values' allocations/resources.
        target.clone_from_slice(init);
        target.extend_from_slice(tail);
    }
}

////////////////////////////////////////////////////////////////////////////////
// Sorting
////////////////////////////////////////////////////////////////////////////////

/// Inserts `v[0]` into pre-sorted sequence `v[1..]` so that whole `v[..]` becomes sorted.
///
/// This is the integral subroutine of insertion sort.
#[cfg(not(no_global_oom_handling))]
fn insert_head<T, F>(v: &mut [T], is_less: &mut F)
where
    F: FnMut(&T, &T) -> bool,
{
    if v.len() >= 2 && is_less(&v[1], &v[0]) {
        unsafe {
            // There are three ways to implement insertion here:
            //
            // 1. Swap adjacent elements until the first one gets to its final destination.
            //    However, this way we copy data around more than is necessary. If elements are big
            //    structures (costly to copy), this method will be slow.
            //
            // 2. Iterate until the right place for the first element is found. Then shift the
            //    elements succeeding it to make room for it and finally place it into the
            //    remaining hole. This is a good method.
            //
            // 3. Copy the first element into a temporary variable. Iterate until the right place
            //    for it is found. As we go along, copy every traversed element into the slot
            //    preceding it. Finally, copy data from the temporary variable into the remaining
            //    hole. This method is very good. Benchmarks demonstrated slightly better
            //    performance than with the 2nd method.
            //
            // All methods were benchmarked, and the 3rd showed best results. So we chose that one.
            let mut tmp = mem::ManuallyDrop::new(ptr::read(&v[0]));

            // Intermediate state of the insertion process is always tracked by `hole`, which
            // serves two purposes:
            // 1. Protects integrity of `v` from panics in `is_less`.
            // 2. Fills the remaining hole in `v` in the end.
            //
            // Panic safety:
            //
            // If `is_less` panics at any point during the process, `hole` will get dropped and
            // fill the hole in `v` with `tmp`, thus ensuring that `v` still holds every object it
            // initially held exactly once.
            let mut hole = InsertionHole { src: &mut *tmp, dest: &mut v[1] };
            ptr::copy_nonoverlapping(&v[1], &mut v[0], 1);

            for i in 2..v.len() {
                if !is_less(&v[i], &*tmp) {
                    break;
                }
                ptr::copy_nonoverlapping(&v[i], &mut v[i - 1], 1);
                hole.dest = &mut v[i];
            }
            // `hole` gets dropped and thus copies `tmp` into the remaining hole in `v`.
        }
    }

    // When dropped, copies from `src` into `dest`.
    struct InsertionHole<T> {
        src: *mut T,
        dest: *mut T,
    }

    impl<T> Drop for InsertionHole<T> {
        fn drop(&mut self) {
            unsafe {
                ptr::copy_nonoverlapping(self.src, self.dest, 1);
            }
        }
    }
}

/// Merges non-decreasing runs `v[..mid]` and `v[mid..]` using `buf` as temporary storage, and
/// stores the result into `v[..]`.
///
/// # Safety
///
/// The two slices must be non-empty and `mid` must be in bounds. Buffer `buf` must be long enough
/// to hold a copy of the shorter slice. Also, `T` must not be a zero-sized type.
#[cfg(not(no_global_oom_handling))]
unsafe fn merge<T, F>(v: &mut [T], mid: usize, buf: *mut T, is_less: &mut F)
where
    F: FnMut(&T, &T) -> bool,
{
    let len = v.len();
    let v = v.as_mut_ptr();
    let (v_mid, v_end) = unsafe { (v.add(mid), v.add(len)) };

    // The merge process first copies the shorter run into `buf`. Then it traces the newly copied
    // run and the longer run forwards (or backwards), comparing their next unconsumed elements and
    // copying the lesser (or greater) one into `v`.
    //
    // As soon as the shorter run is fully consumed, the process is done. If the longer run gets
    // consumed first, then we must copy whatever is left of the shorter run into the remaining
    // hole in `v`.
    //
    // Intermediate state of the process is always tracked by `hole`, which serves two purposes:
    // 1. Protects integrity of `v` from panics in `is_less`.
    // 2. Fills the remaining hole in `v` if the longer run gets consumed first.
    //
    // Panic safety:
    //
    // If `is_less` panics at any point during the process, `hole` will get dropped and fill the
    // hole in `v` with the unconsumed range in `buf`, thus ensuring that `v` still holds every
    // object it initially held exactly once.
    let mut hole;

    if mid <= len - mid {
        // The left run is shorter.
        unsafe {
            ptr::copy_nonoverlapping(v, buf, mid);
            hole = MergeHole { start: buf, end: buf.add(mid), dest: v };
        }

        // Initially, these pointers point to the beginnings of their arrays.
        let left = &mut hole.start;
        let mut right = v_mid;
        let out = &mut hole.dest;

        while *left < hole.end && right < v_end {
            // Consume the lesser side.
            // If equal, prefer the left run to maintain stability.
            unsafe {
                let to_copy = if is_less(&*right, &**left) {
                    get_and_increment(&mut right)
                } else {
                    get_and_increment(left)
                };
                ptr::copy_nonoverlapping(to_copy, get_and_increment(out), 1);
            }
        }
    } else {
        // The right run is shorter.
        unsafe {
            ptr::copy_nonoverlapping(v_mid, buf, len - mid);
            hole = MergeHole { start: buf, end: buf.add(len - mid), dest: v_mid };
        }

        // Initially, these pointers point past the ends of their arrays.
        let left = &mut hole.dest;
        let right = &mut hole.end;
        let mut out = v_end;

        while v < *left && buf < *right {
            // Consume the greater side.
            // If equal, prefer the right run to maintain stability.
            unsafe {
                let to_copy = if is_less(&*right.offset(-1), &*left.offset(-1)) {
                    decrement_and_get(left)
                } else {
                    decrement_and_get(right)
                };
                ptr::copy_nonoverlapping(to_copy, decrement_and_get(&mut out), 1);
            }
        }
    }
    // Finally, `hole` gets dropped. If the shorter run was not fully consumed, whatever remains of
    // it will now be copied into the hole in `v`.

    unsafe fn get_and_increment<T>(ptr: &mut *mut T) -> *mut T {
        let old = *ptr;
        *ptr = unsafe { ptr.offset(1) };
        old
    }

    unsafe fn decrement_and_get<T>(ptr: &mut *mut T) -> *mut T {
        *ptr = unsafe { ptr.offset(-1) };
        *ptr
    }

    // When dropped, copies the range `start..end` into `dest..`.
    struct MergeHole<T> {
        start: *mut T,
        end: *mut T,
        dest: *mut T,
    }

    impl<T> Drop for MergeHole<T> {
        fn drop(&mut self) {
            // `T` is not a zero-sized type, so it's okay to divide by its size.
            let len = (self.end as usize - self.start as usize) / mem::size_of::<T>();
            unsafe {
                ptr::copy_nonoverlapping(self.start, self.dest, len);
            }
        }
    }
}

/// This merge sort borrows some (but not all) ideas from TimSort, which is described in detail
/// [here](https://github.com/python/cpython/blob/main/Objects/listsort.txt).
///
/// The algorithm identifies strictly descending and non-descending subsequences, which are called
/// natural runs. There is a stack of pending runs yet to be merged. Each newly found run is pushed
/// onto the stack, and then some pairs of adjacent runs are merged until these two invariants are
/// satisfied:
///
/// 1. for every `i` in `1..runs.len()`: `runs[i - 1].len > runs[i].len`
/// 2. for every `i` in `2..runs.len()`: `runs[i - 2].len > runs[i - 1].len + runs[i].len`
///
/// The invariants ensure that the total running time is *O*(*n* \* log(*n*)) worst-case.
#[cfg(not(no_global_oom_handling))]
fn merge_sort<T, F>(v: &mut [T], mut is_less: F)
where
    F: FnMut(&T, &T) -> bool,
{
    // Slices of up to this length get sorted using insertion sort.
    const MAX_INSERTION: usize = 20;
    // Very short runs are extended using insertion sort to span at least this many elements.
    const MIN_RUN: usize = 10;

    // Sorting has no meaningful behavior on zero-sized types.
    if size_of::<T>() == 0 {
        return;
    }

    let len = v.len();

    // Short arrays get sorted in-place via insertion sort to avoid allocations.
    if len <= MAX_INSERTION {
        if len >= 2 {
            for i in (0..len - 1).rev() {
                insert_head(&mut v[i..], &mut is_less);
            }
        }
        return;
    }

    // Allocate a buffer to use as scratch memory. We keep the length 0 so we can keep in it
    // shallow copies of the contents of `v` without risking the dtors running on copies if
    // `is_less` panics. When merging two sorted runs, this buffer holds a copy of the shorter run,
    // which will always have length at most `len / 2`.
    let mut buf = Vec::with_capacity(len / 2);

    // In order to identify natural runs in `v`, we traverse it backwards. That might seem like a
    // strange decision, but consider the fact that merges more often go in the opposite direction
    // (forwards). According to benchmarks, merging forwards is slightly faster than merging
    // backwards. To conclude, identifying runs by traversing backwards improves performance.
    let mut runs = vec![];
    let mut end = len;
    while end > 0 {
        // Find the next natural run, and reverse it if it's strictly descending.
        let mut start = end - 1;
        if start > 0 {
            start -= 1;
            unsafe {
                if is_less(v.get_unchecked(start + 1), v.get_unchecked(start)) {
                    while start > 0 && is_less(v.get_unchecked(start), v.get_unchecked(start - 1)) {
                        start -= 1;
                    }
                    v[start..end].reverse();
                } else {
                    while start > 0 && !is_less(v.get_unchecked(start), v.get_unchecked(start - 1))
                    {
                        start -= 1;
                    }
                }
            }
        }

        // Insert some more elements into the run if it's too short. Insertion sort is faster than
        // merge sort on short sequences, so this significantly improves performance.
        while start > 0 && end - start < MIN_RUN {
            start -= 1;
            insert_head(&mut v[start..end], &mut is_less);
        }

        // Push this run onto the stack.
        runs.push(Run { start, len: end - start });
        end = start;

        // Merge some pairs of adjacent runs to satisfy the invariants.
        while let Some(r) = collapse(&runs) {
            let left = runs[r + 1];
            let right = runs[r];
            unsafe {
                merge(
                    &mut v[left.start..right.start + right.len],
                    left.len,
                    buf.as_mut_ptr(),
                    &mut is_less,
                );
            }
            runs[r] = Run { start: left.start, len: left.len + right.len };
            runs.remove(r + 1);
        }
    }

    // Finally, exactly one run must remain in the stack.
    debug_assert!(runs.len() == 1 && runs[0].start == 0 && runs[0].len == len);

    // Examines the stack of runs and identifies the next pair of runs to merge. More specifically,
    // if `Some(r)` is returned, that means `runs[r]` and `runs[r + 1]` must be merged next. If the
    // algorithm should continue building a new run instead, `None` is returned.
    //
    // TimSort is infamous for its buggy implementations, as described here:
    // http://envisage-project.eu/timsort-specification-and-verification/
    //
    // The gist of the story is: we must enforce the invariants on the top four runs on the stack.
    // Enforcing them on just top three is not sufficient to ensure that the invariants will still
    // hold for *all* runs in the stack.
    //
    // This function correctly checks invariants for the top four runs. Additionally, if the top
    // run starts at index 0, it will always demand a merge operation until the stack is fully
    // collapsed, in order to complete the sort.
    #[inline]
    fn collapse(runs: &[Run]) -> Option<usize> {
        let n = runs.len();
        if n >= 2
            && (runs[n - 1].start == 0
                || runs[n - 2].len <= runs[n - 1].len
                || (n >= 3 && runs[n - 3].len <= runs[n - 2].len + runs[n - 1].len)
                || (n >= 4 && runs[n - 4].len <= runs[n - 3].len + runs[n - 2].len))
        {
            if n >= 3 && runs[n - 3].len < runs[n - 1].len { Some(n - 3) } else { Some(n - 2) }
        } else {
            None
        }
    }

    #[derive(Clone, Copy)]
    struct Run {
        start: usize,
        len: usize,
    }
}